平流层CDMA移动通信蜂窝网的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的通信方式,运行于距离地面20公里左右高空的平流层平台,相对于传统的卫星通信和地面蜂窝移动通信,有着造价低、容量大、覆盖范围广、布网速度快,适合于人口密度较少的地区和有突发情况的应急通信等显著优势。近些年来已经受到了许多国家和研究机构的关注。本文着重研究平流层CDMA移动通信蜂窝系统的性能和特点,为平流层通信系统的发展作了一些预备工作。
     对任何通信系统,信道建模都是非常重要的环节。平流层通信信道具有地面移动通信与卫星通信信道的双重特性。研究信道特性,最好的方法是在实际通信环境下对信道性能进行实测和分析;但要实时进行测试和数据采集,在平流层通信系统平台下几乎是不可能实现的。本文结合平流层通信系统的特点,分析该系统中的大尺度衰落,小尺度衰落等特性,结合平流层通信系统的组网特点,总结了目前平流层通信系统的信道建模方法。通常认为,直视路径的信号能量和经过一次反射的多径分量较其他经过多次反射的多径分量的信号能量要大的多,对信号质量的影响最大。因此本文结合卫星通信系统的椭球模型,分析了直视路径和一次反射的多径信号存在的概率。为整个平流层通信系统的研究提供了基础。
     本文详细地分析了平流层CDMA移动蜂窝系统的容量,分析结果表明平流层CDMA移动蜂窝系统的小区间干扰因子比地面移动通信系统小,使得平流层通信系统一个小区的容量较地面系统要大。但是由于平流层平台受到风力等因素的影响,仅能维持在一种准静止状态,这将导致平流层平台系统性能的不稳定,发生大规模的用户切换、掉话,从而导致系统容量下降。本文将平流层平台的准静止状态可以分为:平台摆动、平台位移(水平乙及垂直)、以及平台旋转,并从这几个方面对系统性能的影响进行评估,并提出了与相邻基站联合接收,以及与地面现有移动通信网联合组网的解决方案。
     地面移动通信系统广泛采用蜂窝状区域网结构,地面上分布多个基站,基站一般位于小区的中心,通过全向或定向天线覆盖一个小区利用天然的路径损耗实现同频干扰的减小,从而实现同频复用,提高频率利用率。与地面移动通信系统不同,平流层通信系统通过安装在平台下方的多波束天线,产生多个波束覆盖不同的区域,每个波束覆盖的区域定义成一个小区。通过这种方式,实现频谱的空分复用,提高频谱利用效率。正因为如此,目前ITU提出的覆盖方案都存在着波束在地面分布能量不均的问题,本文首先对ITU提出的针对移动通信的多波束覆盖方案进行了包括小区半径,电池损耗和系统容量等方面的评估,分析结果证明离平台越远的小区能量越涣散,波束之间的重叠区域越大,小区间干扰越严重,系统容量也越小。这种服务质量不公平的现象必然会影响平流层CDMA蜂窝移动通信系统的商用。在目前的条件下,最简单的解决方案就是对用户密度高,系统容量大的“热点区域”,利用现有的地面移动通信基站进行补充。本文对这种方案进行了评估,结果证明效果是很客观的。
     总而言之,本文针对平流层CDMA移动蜂窝网的特点,结合卫星通信和地面移动通信系统,提出了对平流层CDMA移动蜂窝网的有用建议。
High altitude platform station (HAPS) is a new way of communication, which operates in stratosphere whose altitude is about20km. Compared to traditional satellite communication and terrestrial cellular mobile communication, the HAPS has several significant advantages, such as lower cost of deployment, larger system capacity, larger area of coverage, faster speed of distribution network, and more suitable for areas with less population density and contingencies such as emergency communications. In recent years, it has been the concern of many countries and research institutions. This paper focuses on the performances and features of the HAPS-CDMA mobile cellular network, and makes some preparatory work for the development of this system.
     For any communication system research, channel modeling is a very important part. HAPS communition channel has the dual characteristics of the terrestrial mobile communication channel and satellite communication channel. The best way to study the performance of the channel is measurement and analysis in the actual communication environment. But it is almost impossible to achieve by real-time testing and data collection in the stratosphere environment. In this paper, considering the characteristics of the HAPS communication system, the large-scale fading, small scale fading are analysed, and the HAPS system's channel modeling methods are summarized. In generally, the signal energy of light of sight and once reflected multipath are larger than other multipath signals'. In this paper, using the method of the ellisposidal model of the satellite communication system to analyze the probability of the light of sight and once reflected multipath signals. The work of the HAPS system channel provides a basis for the following study.
     In this paper, the capacity of the HAPS-CDMA system is analysed. The results show that the inter-cell interference factor is smaller than the terrestrial CDMA communication system's, and the capacity is larger than the terrstiral one's. However, HAPS may suffer from stratospheric winds. Platform can maintain the platform in the quasi-static states, which will lead to instability of the system, such as large-scale user switching, dropped calls, resulting in lower system capacity. This paper define the quasi-stationary state three types:the platform swing, platform displacement (horizontal and vertical), and platform rotation, and assess the impact on system performance from several aspects. Finally, the algorithm of combined receiving signal with the adjacent HAPS base station, and the networking solutions of using existing ground base stations are proposed.
     The honeycomb network structure is widely used in the terrestial mobile communication system, and a number of base stations is distribution located in the center of the cells, covering the cell by the omni-directional or directional antenna. Frequency multiplexing is realized by natural path loss decreases, and the ratio of the frequency utilization is increased. Different from the terrestrial mobile communication system, the HAPS communication system cover different areas through the multiple beams producted by the multi-beam antennas which are installed on the platform below of the platform, and each beam coverage area is defined as a cell. Because of this, the beam energy distribution in the ground is uneven according to the ITU proposed coverage programs. First, the paper accesses the ITU programs from the cell radius, buttery loss and system capacity. The analysis results show that the farther from the platform, the greater the overlap region between the beam, the more serious inter-cell interference and the system capacity is also smaller. This QoS unfairness affects the HAPS-CDMA system commercialized. In the present conditions, the simplest solution is using existing ground mobile communication base stations to provide supplement service for the system capacity "hot spots", where the user density is high. The results show that the effect is very objective.
     In summary, this paper analyses the characteristics of the HAPS-CDMA mobile cellular network, combined with satellite communication and terrestrial mobile communication system, and provides helpful suggestions.
引文
[1]石新.移动通信类职位应聘指南(知识精要与试题解析)[M].北京:机械工业出版社,2007.
    [2]程月波,金荣洪,刘波,耿军平.平流层艇载CDMA系统的嵌入式多波束天线方案[J].电子与信息学报,2006,28(8):1395-1399.
    [3]牛志升,刘嵩,吴佑寿.基于多建筑阻挡概率的平流层多径信道模型[J].电子学报,2004,12A:132-135.
    [4]管明想.HAPS资源管理及容量估算研究[D].哈尔滨:哈尔滨工业大学,2008.
    [5]http://baike.baidu.com/view/39423.htm.
    [6]樊昌信.一种发展中的新移动通信方式—平流层通信研发概况[J].现代电子技术,2005,19:1-9.
    [7]A. Aragon-Zavala, J. L. Cuevas-Ruiz, J. A. Delgado-Penin. High-Altitude Platforms for Wireless Communications [M]. John wiley & sons, Inc.,2008.
    [8]D. Giggenbach, R. Purvinskis, M. Werner, et al. Stratospheric Optical Inter-Platform Links for High Altitude Platforms [C]. In Proc.20th AIAA International Communication Satellite Systems Conference (ICSSC), Montreal,Canada, May 2002.
    [9]ITU-R F.1500, Preferred Characteristics of Systems in the Fixed Service Using High Altitude Platforms Operating in the Bands 47.2-47.2 GHz and 47.9-48.2GHz [S],2000.
    [10]孙震强.一种有效的抗震应急通信系统:高空平台系统.电信科学,2008,(06):15-18.
    [11]巴勇,张中兆,张乃通.平流层通信系统在军事应用中的可行性探讨.系统工程与电子技术,1999,21(10):10-14.
    [12]张中兆,张乃通,巴勇.平流层通信及相关技术.电信科学,1998,14(11):6-8.
    [13]吴佑寿.高空平台信息系统—新一代无线通信体系.中国无线电管理,2003,(7):3-8.
    [14]M. Antonini, E. Cianca, A. De Luise, M. Pratesi, M. Ruggieri. Stratospheric relay: potentialities of new satellite-high altitude platforms integrated scenarios. IEEE Aerospace Conference,Montana,2003,3:1211-1219.
    [15]R.Miura, M.Suzuki.Preliminary flight test program on telecom and broadcasting using high altitude platform stations.IEEE Wireless Personal Communications Journal,2003,24(2):341-361.
    [16]J.Thornton, D.Grace, C.Spillard, T.Konefal and T.C.Tozer., Broadband communications from a high-altitude platform, Electronics & Communication Engineering.June.2001,pp.138-144.
    [17]ITU-R Resolution 122, Use of the Bands 47.2-47.5GHz and 47.9-48.2GHz by High Altitude Platform Stations (HAPS) in the Fixed Service and by otherServices and the Potential Use of Bands in the Range 18-32GHz by HAPS in theFixed Service [S],1997.
    [18]ITU-R Resolution 122 (Rev.WRC-07), Use of the Bands 47.2-47.5 GHz and47.9-48.2 GHz by High Altitude Platform Stations in the Fixed Service and byother Services [S],2007.
    [19]ITU-R Resolution 145 (Rev.WRC-07), Use of the Bands 27.9-28.2 GHz and 31-31.3 GHz by High Altitude Platform Stations in the Fixed Service [S],2007.
    [20]ITU-R Resolution 221, Use of High Altitude Platform Stations Providing IMT-2000 in the Bands 1,885-1,980MHz,2,010-2,025MHz in Region 1 and 3 and 1,885-1,980MHz and 2,110-2,160MHz in Region 2 [S],2000.
    [21]吴伟陵,牛凯.移动通信原理[M].北京:电子工业出版社,2005.
    [22]Kara pantazis S, Pavlidou FN. The role of high altitude platforms in beyond 3G networks. IEEE WIRELESS COMMUNICATIONS,2005.
    [23]Anette Larsson, Torleiv Maseng, A Statistical Analysis of the Power Control Error in Fast Rayleigh Fading, PP.550-554.
    [24]J M Musser and J. N. Daigle, Throughput Analysis of An Asynchronous Code Division Multiple Access(CDMA)Systems, Proceedings Imemational Conference on Communication(ICe),1982:2E2.1--2F.2 7.
    [25]C. L. Weber,GK. Huth and B H. Baston, Performance Considerations of Code Division Multiple Access Systems. IEEE Transactions on Vehicular Technology,V01.30, Feb 1981, pp3-9.
    [26]M. Antonini, E. Cianca, A.De Luise, M.Pratesi, M.Ruggieri. Stratospheric relay: potentialities of new satellite-high altitude platforms integrated scenarios. IEEE Aerospace Conference, Montana,2003,3:1211-1219.
    [27]The Proceeding ofthe First Stratospheric Platform Systems Workshop, Yokosuka, Japan, May 1999.
    [28]詹世革,孟庆国,刘肖泉,汲培文.临近空间飞行器的发展趋势和重大基础科学问题研讨会在京召开.自然科学进展,2006,16(9):1185.
    [29]Jose Luis Cuevas-Ruiz. Jose A. Delgado-Penin. A statistical switched broadband channel model for HAPS links. WCNC 2004/IEEE Communications Society, p290-294.
    [30]Thornton, J., Grace, D., Capstick, M.H., Tozer, T. C. Optimizing an array of antennas for cellular coverage from a high altitude platform. IEEE Transactions on Wireless Communications,2003,5,2(3):484-492.
    [31]Cuevas-Ruiz, J.L., Delgado-Penin, J.A. Channel model based onsemi-Markovian processes: An approach for HAPS systems. The 14thlnternational Conference on Electronics, Communications and Computers,2004,2:52-56.
    [32]Milas, V.F., Constantinou, P.Simulations of fractional degradation in performance of terrestrial networks due to interference by high-altitude platforms. The 11 Intenational Workshop on Computer-Aided Modeling, Analysis and Design of Communication Links and Networks,2006,6:78-84.
    [33]Vasilis F. Milas, Demosthenes Vouyioukas, Nektarios Moraitis, Philip Constantinou. Spectrum planning and performance evaluation between heterogeneous satellite networks. European Journal of Operational Research,2008,12,191(3):1132-1138.
    [34]Tae Chul Hong, Bon-Jun Ku, Jong-Min Park, Do-Seob Ahn. Forward link capacity of the WCDMA system using high altitude platform stations. IEEE International Symposium on Consumer Electronics,2004,9:278-282.
    [35]Jeng-Ji Huang, Wei-Ting Wang, Huei-Wen Ferng.Uplink capacity enhancement for an integrated HAPS-terrestrial CDMA system. IEEE Communications Letters,2007,11(1):10-12.
    [36]Ahmed, B.T.On high altitude platforms(HAPs)UMTS-HSDPA.The 9th European Conference on Wireless Technology,2006,9:223-226.
    [37]Konefal,T.,Spillard,C.,Grace,D.Site diversity for high-altitude platforms:amethod for the prediction of joint site attenuation statistics.IEE Proceedings of Microwaves,Antennas and Propagation,2002,4:124-128.
    [38]ITU-R Doc. Recommendation ITUR M 1456, minimum performance characteristics and operational conditions for high altitude platform stations providing imt-2000 in the bands 1885-1980 mhz,2010-2025 mhz and 2110-2170 mhz in regions 1 and 3 1885-1980 mhz and 2110-2160 mhz in region 2, May 2000.
    [39]郭宪广,金荣洪,耿军平,陈俊杰,高波,吴琦.一种用于HAPS WCDMA系统的嵌入式多波束覆盖方案.电子与信息学报.第一期,2008,pp72-76.
    [40]ITU-R Doc. Recommendation ITU-RF.1569, Technical and operational characteristics for the fixed service using high altitude platform stations in the bands 27.5-28.35 GHz and 31-31.3 GHz. ITU-R Doc.9BL/25, May 2002.
    [41]Grace. D., Spillard, C.,Thornton, J., Tozer, T.C. Channel assignment strategies for a high altitude platform spot-beam architecture. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications,2002,9:1586-1590.
    [42]Woo Lip Lim,Yu Chiann Foo,Tafazolli,R.Adaptive softer handover algorithm for high altitude platform station UMTS with onboard power resource sharing.The 5th International Symposium on Wireless Personal MultimediaCommunications,2002,10:52-56.
    [43]D. Grace, C. Spillard, T. C. Tozer. High Altitude Platform Resource Management Strategies with Improved Connection Admission Control [C]. In Proc. Wireless Personal Mobile Conference in Japan, Oct.2003.
    [44]K. Katzis, D. A. J. Pearce, D. Grace. Fixed Channel Allocation Techniques Exploiting Cell Overlap for High Altitude Platforms [C]. In Proc. The fifth European Wireless Conference Mobile and Wireless Systems beyond 3G Barcelona, Spain, Feb,2004.
    [45]K. Katzis, D. A. J. Pearce, D. Grace. Fairness in Channel Allocation in a High Altitude Platform Communication System Exploiting Cellular Overlap [C]. In Proc. Wireless Personal Multimedia Communication Conference (WPMC), Abano Terme, Italy, Sep.2004.
    [46]K. Katzis. Resource Allocation Techniques for High Altitude Platforms [D]. York, UK: University of York Department of Electronics,2005.
    [47]Y. Foo, W. Lim, R. Tafazolli. Centralized total received power based call admission control for high altitude platform station UMTS. The 13th IEEE International Symposium on Personal, Indoor and Mobile RadioCommunications,Lisbon,Portugal,2002,4:1577-1581.
    [48]Y. Foo, W.Lim, R. Tafazolli. Centralized downlink call admission control for high altitudes platform station UMTS with onboard power resource sharing. The IEEE 56th Vehicular Technology Conference, Vancouver, Canada,2002,1:549-553.
    [49]Pace, P., Natalizio, E. Dynamic fair power sharing admission control for HAP-UMTS communication system. The 16th IST Mobile and Wireless Communications Summit,2007,7:1-5.
    [50]Y. C. Foo, W. Lim, R. Tafazolli. Centralized Downlink Call Admission Control for High Altitude Platform Station UMTS with Onboard Power Resource Sharing [C]. In Proc. IEEE 56th Vehicular Technology Conference (VTC)-Fall, Vancouver, BC., Canada, Sep.2002: 549-553.
    [51]P. Pace, D. Pace, S. Marano. An HAP-UMTS Integrated System Supporting Efficient Admission Control Scheme for Mixed Traffic Sources [C]. In Proc. IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Berlin, Germany, Sep.2005:2247-2251.
    [52]K. Katzis, D. Grace. Inter-High-Altitude-Platform Handoff for Communications Systems with Directional Antennas [J]. URSI Radio Science Bulletin,2010,332:29-38.
    [53]K. Katzis, A. J. D. Pearce, D. Grace. Impact of High Altitude Platform Movements on Cellular Handoff [C]. International Workshop on High Altitude Platform Systems, Athens, Greece, Sep.2005.
    [54]D. Grace, K. Katzis, D.A.J. Pearce, et al. Low-Latency MAC-Layer Handoff for a High-Altitude Platform Delivering Broadband Communications [J]. URSI Radio Science Bulletin,2010,332:39-49.
    [55]S. Liu, Z. Niu, Y. Wu. Impact of Platform Motion on Soft Handover in High Altitude Platform IMT-2000 System [C]. In Proc. IEEE 57th Vehicular Technology Conference (VTC)-Spring, Jeju, Korea, Apr.2003:1964-1968.
    [56]S. Liu, Z. Niu, Y. Wu. An Adaptive Thresholds Capacity Reservation Scheme for High Altitude Platform CDMA Systems. In Proc. IEEE 57th Vehicular Technology Conference (VTC)-Spring, Jeju, Korea, Apr.2003:2062-2065.
    [57]W. L. Lim, Y. C. Foo, R. Tafazolli. Inter-System Handover Algorithms for HAPS and Tower-based Overlay UMTS [C]. In Proc. Fifth International Conference on Information, Communications and Signal Processing, Bangkok,2005:419-424.
    [58]E. Lutz, A Markov model for Correlated Land Mobile Satellite Channels, International Journal of Satellite Communications, VOl.13,1996, PP.333-339.
    [59]D. I. Axiotis, M. E. Theologou, and E. D. Sykas. The effect of platform instability on the system level performance of HAPS UMTS[J]. IEEE Commun. Lett., vol.8, no.2, Feb.2004, pp.111-113.
    [60]J.-J. Huang et al. The Effect of Platform Displacement on a HAPS CDMA System with Multibeam Antennas[A]. IEEE PIMRC[C], French Riviera:IEEE,2008, pp 1-5.
    [61]B. El-Jabu, R. Steele. Effect of Positional Instability of an Aerial Platform on its CDMA Performance [C]. In Proc. IEEE 50th Vehicular Technology Conference (VTC)-Fall, Amsterdam, Netherlands, Sep.1999:2471-2475.
    [62]S. Liu, Z. Niu, Y. Wu. Impact of Platform Motion on Soft Handover in High Altitude Platform IMT-2000 System [C]. In Proc. IEEE 57th Vehicular Technology Conference (VTC)-Spring, Jeju, Korea, Apr.2003:1964-1968.
    [63]Huang JJ, Wang WT, Ferng HW. Capacity Enhancement for Integrated HAPS-Terrestrial CDMA System.2006 IEEE 63RD VEHICULAR TECHNOLOGY CONFERENCE,2006.
    [64]周炯槃,庞沁华,续大我,吴伟陵.通信原理[M].北京:北京邮电大学出版社,2005.
    [65]M. Gudmundson, Correlation Model for Shadow Fading in Mobile Radio Systems Electronic Letters, VOl.27, No 23, Nov1991,PP5-11.
    [66]M. Marsan and G. C, Hess, Shadow variability in an Urban Land Mobile Radio Environment, Electronic Letters,V01.26, May 1990,PP646-648.
    [67]K.S Gilhousen,I.M Jacobs,R. Padovani,A J.Viterbi,LA.Weaver Jr.,and C.E.Wheatley III. On the Capacity ofa Cellular CDMA System. IEEE Trans. Vehic Techn01.V01.40, No.2, May 1991.PP.303-312.
    [68]A. Chockalingam, P.Dietrich, L.B Milstein and R R.Rao, Performance of closed loop Power ControJjll DS. CDMA Cellular Systems. IEEE Trans. Vehicular Tech., Vol 47, No.3, Aug 1998, PP 774-789.
    [69]E. Lutz, A Markov model for Correlated Land Mobile Satellite Channels, International Journal ofSatellite Communications, VOl.13,1996, PP.333-339.
    [70]YC Foo, W. L. Lim, R. Tafazolli, L. Barclay,Perfomlance of High Altitude Platform inDelivery of/MT2000 W-CDMA, SPSW2000-S. II, PP151-162.
    [71]GL Turin, GD. Clapp., L Johnson, etal., A Statistical Model of Urban Multipath Propagation, IEEE Trans. Vehicular Technology,01. VT-12, No.1, Feb.1972, PP 1-9.
    [72]D. A. Hawbaker, T. S. Rapp. a port, S.Jain,etc., Indoor wideband Radion wave Propagation Measurements at 1 3GHz and 4. OGHz. Electrohie Letters,2 6, Oct.1990, pp1800-1802.
    [73]S.Y. Seidel, TS. Rappaport, S. Jain, etc., Pathloss Scattering and Multipath Delay Statistics in Four Wuropean Cities for Digital Cellular and Miero Cellular Radiotelephones, IEEE Trans. Vehicular Technology, VOl.Vr.21, No.4, Nov 1991, PP721-730.
    [74]Willam C.Y. Lee, Overview of Cellular CDMA, IEEE Trans. Vehicular Technology, V01.40, No.2, May 1991, pp291-302.
    [75]J C Liberti,T S Rappaport. A geometrically based model for line of sight multipath radio channels,46th IEEE Vehicular Technology Conference.1996.844-848.
    [76]Iskandar, Dimas Rinarso Putro, Performance Evaluation of Broadband WiMAX Services over High Altitude Platforms (HAPs) Communication Channel, ICWMC'08[C].Washington, DC, USA:IEEE Computer Society,2008.pp55-59.
    [77]F Dovis, R Fantini, M Mondin, P Savi.4G communications based on high altitude stratospheric platforms:channel modeling and performance evaluation, IEEE GlobecomOl, San Antonio, USA,2001,1:557-561.
    [78]P.A.Bello, Aeronautical channel characterization based on measurement flights, IEEE Conf.GLOBECOM'87,(1987) 1654-1659.
    [79]A. Neul., Modulation and Codierung im aeronautischen satellitenkanal, University of the Federal Armed Forces Munich, (1989).
    [80]www.helinet.polito.it (HeliNet project).
    [81]www.aerovironment.com(Aero Vironment).
    [82]www.skytowerglobal.com(Skytower Telecommunications)
    [83]www.uav.com(Aeronautical Systems-Predator).
    [84]http://baike.baidu.com/view/60680.htm.
    [85]李树峰.高空平台通信系统中呼叫控制与切换技术的研究[D].长沙:国防科技大学.
    [86]S. Masumura and M. Nakagawa. Joint System of Terrestrial and High Altitude Platform Station (HAPS) Cellular for W-CDMA Mobile Communications. IEICE Trans, on Commun., Vol. E85-B, No.10, Oct.2002, pp.2051-2058.
    [87]J.-M. Park, D.-S. Oh, Y.-S. Kim, and D.-S. Ahn. Evaluation of interference effect into cellular system from high altitude platform station to provides IMT-2000 service. IEEE GLOBECOM'03, vol.1,1-5 Dec.2003, pp.420-424.
    [88]A. K. Widiawan, R. Tafazolli. Analytical Investigation on Sharing Band Overlaid High Altitude Platform Station-terrestrial CDMA System [J]. Electronics Letters 2005,41(2): 77-79.
    [89]P. Likitthanasate, D. Grace, P. D. Mitchell. Coexistence Performance of High Altitude Platform and Terrestrial Systems Sharing a Common Downlink WiMAX Frequency Band [J]. Electronics Letters,2005,41(15):858-860.
    [90]P. Likitthanasate, D. Grace, P. D. Mitchell. Spectrum Etiquettes for Terrestrial and High-altitude Platform-based Cognitive Radio Systems [J]. IET Communications,2008,2(6): 846-855.
    [91]S. Masumura and M. Nakagawa. Joint System of Terrestrial and High Altitude Platform Station (HAPS) Cellular for WCDMA Mobile Communications. IEICE Trans. on Commun., Vol. E85-B, No.10, Oct.2002, pp.2051-2058.
    [92]J.-M. Park, D.-S. Oh, Y.-S. Kim, and D.-S. Ahn. Evaluation of interference effect into cellular system from high altitude platform stationto provides IMT-2000 service. IEEE GLOBECOM'03, vol.1,1-5 Dec.2003, pp.420-424.
    [93]Y. C. Foo, W. L. Lim, R. Tafazolli, and L. Barclay. Other-cell interference and reverse link capacity of high altitude platform station CDMA system. Electron. Lett., vol.36, no.22, pp. 1881-1882,26 Oct.2000.
    [94]Y.R. Zheng, C.S. Xiao, Simulation models with correct statistical properties for Rayleigh fading channels, leee Transactions on Communications,51 (2003) 920-928.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700