多用户信息论中的差错指数分析与传输策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会生活水平的提高,要求无线通信系统能够支持高速率和满足不同的服务质量(Quality of Service, QoS),具有高速率高链路可靠性特征的无线通信系统成为了演进目标。面向多用户架构的宽带无线通信网络的最根本理论基础是多用户信息论,其能够刻画和体现信息流在无线通信网络多点传输过程中的实际网络特征(多源、多信宿、多址接入、广播、干扰、协作、反馈等)。多用户信息论是研究多个相互影响制约的信源信宿对所组成网络的信息传输极限并给予具体实现方案指导的理论。因此,近年来多用户信息论受到了理论研究者的格外关注。
     本论文主要针对认知无线电信道(也称为认知干扰信道)和多源中继广播信道开展研究,其主要贡献在于分别提出了这两类信道模型下的系统传输策略以及推导给出了在该传输策略下的可达速率域。此外,还从差错指数的角度揭示了系统可靠性、传输速率与编码码长之间的关系。
     第一,本论文给出了四个用户离散无记忆认知无线电信道的可达速率域,并指出该可达速率域由速率拆分、叠加编码、Gel'fand-Pinkser编码以及同时译码等传输策略得到。对于四个用户离散无记忆认知无线电信道中的所有接收机能够对公有消息进行译码情形,认知用户发射机在进行Gel'fand-Pinkser编码的时候仅仅预删除被认知用户的私有消息。对于认知用户的公有消息不能由被认知用户接收机译码,同时被认知用户的公有消息不能由认知用户接收机译码的情形,认知用户发射机在进行Gel'fand-Pinkser编码时将预删除被认知用户的所有消息(公有消息与私有消息)。同时,在公有消息能够被所有接收机译码的四个用户离散无记忆认知无线电信道中,如果固定某些辅助随机变量,所给出的可达速率域等价于前人得到的结果。
     第二,本论文运用不等式引理和Gallager界,给出了离散无记忆认知无线电信道的差错指数域。该差错指数域是基于叠加编码、Gel'fand-Pinkser编码以及最大似然译码等系统传输策略得到。同时,考虑高斯信道情况,根据所提的离散无记忆认知无线电信道的差错指数域,得到了固定参数下高斯认知无线电信道的差错指数域。
     第三,本论文针对退化高斯多源中继广播信道,提出了一种基于分组马尔科夫规则编码以及滑动窗译码的系统传输策略,并在该策略下通过推导得出了相应的可达速率域。同时,通过Fano不等式、网络最大流最小割定理以及条件熵引理本论文还给出了该信道模型的一个外界。
     第四,本论文分别提出了在速率拆分策略下基于放大转发(Amplify and Forward, AF)和译码转发(Decode and Forward, DF)的适用于两跳高斯多源中继广播信道的系统传输策略,并给出了相应的系统差错概率界。其中,AF中继策略下,其差错概率界可以通过综合指数函数得到。而在DF中继策略下,由于中继译码阶段和广播阶段的传输速率存在一个最小割集界,其差错概率界是一个分段函数,其中,差错指数的表达式在不同的传输速率区间不一样。同时,由于系统差错概率界不能刻画出各个源节点链路的可靠性,论文还给出了两跳高斯多源中继广播信道的可达差错指数域。
With the development of society, the demand for high data rates and different quality-of-service is growing rapidly. Improving the throughput and reliability have been the evolutional directions of wireless communication systems. As the theoretical foundation of broadband wireless communication networks, multi-user information theory can capture the aspects of information flow in real-world multipoint-to-multipoint communication networks (Multiple sources, multiple destinations, multi-access, broadcasting, interference, cooperation, feedback, etc.). Multi-user information theory is devoted to investigate the information theoretic capacity limits in networks where multiple sources and destinations interactive with each other. Therefore, the multi-user information theory has become an important research topic in recent years.
     This dissertation mainly focuses on cognitive radio channels (also called cognitive interference channels) and multi-source relay broadcast channels. The main contribution of our work lies in deriving several achieve rate regions under the corresponding transmission strategies, and showing the relationship among the communication reliability, transmission rate and the code length from an error exponent perspective.
     Firstly, the achievable rate regions of the four-user discrete memoryless cognitive radio channel are obtianed by rate splitting, superposition coding, Gel' fand-Pinsker coding and simultaneous decoding strategies. According to the different encoding and decoding strategies, the Gel'fand-Pinsker coding is only applied to cancel the private messages of the non-cognitive users at the cognitive transmitters in the case that public messages can be decoded by all the receivers, and the Gel' and-Pinsker coding is applied to cancel all the messages of the non-cognitive users at the cognitive transmitters in the case that public messages can not be decoded between cognitive receivers and non-cognitive receivers. Also, we show that the region is identical to the existing results via fixing some auxiliary random variables for the the four-user discrete memoryless cognitive radio channel in which the public messages can be decoded by all the receivers.
     Secondly, the error exponent for the cognitive radio channels is investigated, in which the superposition coding, Gel' fand-Pinsker coding and maximum likelihood decoding are considered. Under this model, we derive the error exponent region for the discrete memoryless cognitive radio channel with the inequality lemma and Gallager's bounding technique. Also, the error exponent region for the Gaussian cognitive radio channels under choosing the special parameter case is analyzed.
     Thirdly, this dissertation investigates the capacity of the degraded multi-source relay broadcast channels, where each source wants to communicate individual messages with its intended destination via both direct and relay links. An achievable rate region of this channel is obtained, in which the block Markov regular encoding and the sliding-window decoding transmission strategies are exploited. Also, the outer bound is derived via using the Fano's inequality, the max-flow min-cut theorem and condition entropy lemma.
     Finally, the error exponents of the two-hop multiple source-destination relay channels are obtained. Two relay modes are mentioned:amplified and forward (AF) and decode and forward (DF). An achievable rate region can be obtained by the rate splitting strategies which each source can split its message into private and public parts. We determine the system error probability via integrated exponent function under AF relay strategies. The most significant difference between AF and DF system error probability evaluations lies in a minimized cut-set bound of transmission rate under the DF strategy. There are many cases among transmission rate intervals for different system parameters (e.g. transmit power) and we derive the system error probability for the DF strategy. Moreover, in order to draw deep insight into the reliability requirement of each source node in this network, we provide the error exponent region for different source nodes to show the trade-off of error probability among source nodes.
引文
[1]C. E. Shannon, "Two-way communication channels," in Proc.4th Berkeley Sympos. Math. Statist. Prob. Berkeley, Calif.:Univ. California Press, vol. I, pp. 611-644,1961.
    [2]C. E. Shannon, "A mathematical theory of communication," Bell System Tech. J., vol.27, pp.379-423,623-656,1948.
    [3]H. Liao, "Multiple-Access Channels," Ph.D. dissertation, Dept. Elec., Univ. Hawaii, Honolulu, HI,1972.
    [4]R. Ahlswede, "Multi-way communication channels," in Proc.2nd Int. Symp. Inf. Theory, Tsahkadsor, Armenia S.S.R, pp.23-52,1973.
    [5]E. C. van der Meulen, "The discrete memoryless channels with two senders and one receiver," in Proc.2nd Int. Symp. Inf. Theory, Tsahkadsor, Armenia S.S.R, pp. 103-135,1973.
    [6]T. M. Cover, "Broadcast channels," IEEE Trans. Inf. Theory, vol.18, no.1, pp. 2-14, Jan.1972.
    [7]P. P. Bergmans, "Random coding theorem for broadcast channels with degraded components," IEEE Trans. Inf. Theory, vol.19, no.2, pp.197-207,1973.
    [8]P. P. Bergmans, "A simple converse for broadcast channels with additive white Gaussian noise," IEEE Trans. Inf. Theory, vol.20, pp.279-280,1974.
    [9]R. G. Gallager, "Capacity and coding for degraded broadcast channels," Prob/. Inf. Transm., vol.10, no.3, pp.3-14,1974.
    [10]J. Korner and K. Marton, "Comparison of two noisy channels," in Topics in Information Theory (Second Colloq., Keszthely,1975). Amsterdam: North-Holland,1997, pp.411-423.
    [11]A. El Gamal, "The capacity of a class of broadcast channels," IEEE Trans. Inf. Theory, vol.25, no.2, pp.166-169,1979.
    [12]J. Korner and K. Marton, "General broadcast channels with degraded message sets," IEEE Trans. Inf. Theory, vol.23, no.1, pp.60-64,1977.
    [13]K. Marton, "A coding theorem for the discrete memoryless broadcast channel,' IEEE Trans. Inf. Theory, vol.25, no.3, pp.306-311,1979.
    [14]T. M. Cover, "An achievable rate region for the broadcast channel," IEEE Trans. Inf. Theory, vol.21, pp.399-404,1975.
    [15]E. C. van der Meulen, "Random coding theorems for the general discrete memoryless broadcast channel," IEEE Trans. Inf. Theory, vol.21, pp.180-190, 1975.
    [16]A. El Gamal and E. C. van der Meulen, "A proof of Marton's coding theorem for the discrete memoryless broadcast channel," IEEE Trans. Inf. Theory, vol.27, no. 1,pp.120-122, Jan.1981.
    [17]H. Sato, "An outer bound to the capacity region of broadcast channels," IEEE Trans. Inf. Theory, vol.24, no.3, pp.374-377, Mar.1978.
    [18]R. Ahlswede, "The capacity region of a channel with two senders and two receivers," Annals Probabil., vol.2, no.5, pp.805-814,1974.
    [19]A. B. Carleial, "A case where interference does not reduce capacity," IEEE Trans. Inf. Theory, vol.21, no.5, pp.569-570,1975.
    [20]H. Sato, "The capacity of the Gaussian interference channel under strong interference," IEEE Trans. Inf. Theory, vol.27, no.6, pp.786-788, Nov.1981.
    [21]M. H. M. Costa and A. El Gamal, "The capacity region of the discrete memoryless interference channel with strong interference," IEEE Trans. Inf. Theory, vol.33, no.5, pp.710-711,1987.
    [22]A. B. Carleial, "Interference channels," IEEE Trans. Inf. Theory, vol.24, no.1, pp.60-70, Jan.1978.
    [23]T. S. Han and K. Kobayashi, "A new achievable rate region for the interference channel," IEEE Trans. Inf. Theory, vol.27, no.1, pp.49-60,1981.
    [24]E. C. van der Meulen, "Transmission of Information in a T-Terminal Discrete Memoryless Channel," Ph.D. dissertation, Univ. California, Berkeley, CA, Jun. 1968.
    [25]E. C. van der Meulen, "Three-terminal communication channels," Adv. Appl. Prob., vol.3, pp.120-154,1971.
    [26]T. M. Cover and A. E. Gamal, "Capacity theorems for the relay channel," IEEE Trans. Inf. Theory, vol.25, no.5, pp.572-584, Sep.1979.
    [27]A. El Gamal and M. R. Aref, "The capacity of the semideterministic relay channel," IEEE Trans. Inf. Theory, vol.28, no.3, p.536, May 1982.
    [28]S. Borade, L. Zheng, and M. Trott, "Multilevel broadcast networks," in Proc. IEEE International Symposium on Information Theory, Nice, France, June 2007, pp.1151-1155.
    [29]C. Nair and A. El Gamal, "The capacity region of a class of three-receiver broadcast channels with degraded message sets," IEEE Trans. Inf. Theory, vol.55, no.10, pp.4479-4493, Oct.2009.
    [30]C. Nair and A. El Gamal, "An outer bound to the capacity region of the broadcast channel," IEEE Trans. Inf. Theory, vol.53, no.1, pp.350-355, Jan.2007.
    [31]A. A. Gohari and V. Anantharam, "Evaluation of Marton's inner bound for the general broadcast channel," IEEE Trans. Inf. Theory, vol.58, no.2, pp.608-619, Feb.2012.
    [32]M. Costa, "Writing on dirty paper," IEEE Trans. Inform. Theory, vol.29, no.3, pp.439-441, May 1983.
    [33]H.Weingarten, Y. Steinberg, and S. Shamai (Shitz), "The capacity region of the Gaussian MIMO broadcast channel," in Proc. IEEE ISIT 2004, pp.174, June 2004.
    [34]H.Weingarten, Y. Steinberg, and S. Shamai (Shitz), "The capacity region of the Gaussian multiple-input multiple-output broadcast channel," IEEE Trans. Inform. Theory, vol.52, no.9, pp.3936-3964, Sept.2006.
    [35]H.-F. Chong, M. Motani, H. K. Garg, and H. El Gamal, "On the Han-Kobayashi region for the interference channel," IEEE Trans. Inf. Theory, vol.54, no.7, pp. 3188-3195, July 2008.
    [36]K. Kobayashi and T. S. Han, "A Further Consideration of the HK and CMG Regions for the Interference Channel," UCSD-ITA, Jan.2007.
    [37]G. M. Ziegler, Lectures on Polytopes. New York:Springer-Verlag,1995.
    [38]G. Kramer, "Outer bounds on the capacity of Gaussian interference channels," IEEE Tram. Inf. Theory, vol.50, no.3, pp.581-586,2004.
    [39]R. Etkin, D. Tse, and H. Wang, "Gaussian interference channel capacity to within one bit," IEEE Trans. Inf. Theory, vol.54, no.12, pp.5534-5562, Dec.2008.
    [40]T. Liu and P. Viswanath, "An extremal inequality motivated by multiterminal information-theoretic problems," IEEE Trans. Inf. Theory, vol.53, no.5, pp. 1839-1851, May 2006.
    [41]X. Shang, G. Kramer, and B. Chen, "A new outer bound and the noisy-interference sum-rate capacity for Gaussian interference channels," IEEE Trans. Inf. Theory, vol.55, no.2, pp.689-699, Feb.2009.
    [42]A. S. Motahari and A. K. Khandani, "Capacity bounds for the Gaussian interference channel," IEEE Trans. Inf. Theory, vol.55, no.2, pp.620-643, Feb. 2009.
    [43]V. S. Annapureddy and V. V. Veeravalli, "Gaussian interference networks:Sum capacity in the low interference regime and new outer bounds on the capacity region," IEEE Trans. Inf. Theory, vol.55, no.7, pp.3032-3050, July 2009.
    [44]I. E. Telatar and D. N. C. Tse, "Bounds on the capacity region of a class of interference channels," in Proc. IEEE International Symposium on Information Theory, Nice, France, June 2007.
    [45]G. Bresler and D. N. C. Tse, "The two-user Gaussian interference channel:A deterministic view," Euro. Trans. Telecomm., vol.19, no.4, pp.333-354, Jun. 2008.
    [46]G. Bresler, A. Parekh, and D. N. C. Tse, "The approximate capacity of the many-to-one and one-to-many Gaussian interference channel," IEEE Trans. Inf. Theory, vol.56, no.9, pp.4566-4592, Aug.2010.
    [47]M. A. Maddah-Ali, A. S. Motahari, and A. K. Khandani, "Communication over MIMO X channels:Interference alignment, decomposition, and performance analysis," IEEE Trans. Inf. Theory, vol.54, no.8, pp.3457-3470,2008.
    [48]V. Cadambe and S. A. Jafar, "Interference alignment and degrees of freedom of the K-user interference channel," IEEE Trans. Inf. Theory, vol.54, no.8, pp. 3425-3441, Aug.2008.
    [49]H. F. Chong, M. Motani, and H. K. Garg, "Generalized backward decoding strategies for the relay channel," IEEE Trans. Inf. Theory, vol.53, no.1, pp. 394-401, Jan.2007.
    [50]H. F. Chong and M. Motani, "On achievable rates for the general relay channel," IEEE Trans. Inf. Theory, vol.57, no.3, pp.1249-1266, Mar.2011.
    [51]L.-L. Xie and P. R. Kumar, "An achievable rate for the multiple-level relay channel," IEEE Trans. Inf. Theory, vol.51, no.4, pp.1348-1358, Apr.2005.
    [52]M. Gastpar, G. Kramer, and P. Gupta, "The multiple-relay channel:Coding and antenna-clustering capacity," in Proc. IEEE Int. Symp. Information Theory, Lausanne, Switzerland, Jun.2002, p.136.
    [53]M. H. Yassaee and M. R. Aref, "Generalized compress-and-forward strategy for relay networks," in Proc. Int. Symp. Information Theory, Toronto, ON, Canada, pp.2683-2687, Jul.2008.
    [54]A. E. Gamal and H. K. Young, Network information theory, Cambridge University Press,2011.
    [55]A. E. Gamal and H. K. Young, "Lecture notes on network information theory," [Online], Available:http://arxiv.org/abs/1001.3404,2010
    [56]G. Kramer, "Topics in multi-user information theory," Foundations and Trends(?) in. Communications and Information Theory, vol.4, no.4-5, pp.265-444,2008.
    [57]C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, "Lower bounds to error probability for coding on discrete memoryless channels," Inf. Contr., vol.10, pt. I, pp.65-103,1967.
    [58]R. G. Gallager, Information Theory and Reliability Communication, Wiley Press, NewYork,1968.
    [59]I. Csiszar and J. G. Korner, Information Theory:Coding Theorems for Discrete Memoryless Systems. Orlando, FL, USA:Academic Press, Inc.,1982.
    [60]I. N. Sanov, "On the probability of large deviations of random variables," Selected TranslMath Statist, vol.1, pp.213-244,1961.
    [61]I. Csiszar, "Method of types," IEEE Trans. Inf. Theory, vol.44, no.6, pp. 2505-2523, Oct.1998.
    [62]I. Csiszar and Paul, "Information Theory and Statistics:A Tutorial T,' Foundations and Trends in Communications and Information Theory, Now Pub, 2004
    [63]Lizhong zheng Lecture notes on Information Theory, MIT Course,2009 unpublished
    [64]M. Mezard and A. Montanari, Information, Physics and Computation. Oxford, U.K.:Oxford Univ. Press,2009.
    [65]N. Merhav, "Relations between random coding exponents and the statistical physics of random codes," IEEE Trans. Inf. Theory, vol.55, no.1, pp.83-92, Jan. 2009.
    [66]N. Merhav, "Statistical Physics and Information Theory," Foundations and Trends in Communications and Information Theory, Now Pub,2009
    [67]D. Slepian and J. K. Wolf, "A coding theorem for multiple access channels with correlated sources," Bell Syst. tech. J., vol.52, pp.1037-1076,1973.
    [68]A. G. Dyachkov, "Random constant composition codes for multiple-access channels," Probl. of Control and Inform. Theory, pp.357-369,1984.
    [69]R. Gallager, "A perspective on multi-access channels," IEEE Trans. Information Theory, vol.31, no.2, pp.124-142, Mar.1985.
    [70]J. Pokorney and H. S. Wallmeier, "Random coding bounds and codes produced by permutations for the multiple-access channels," IEEE Trans. Information Iheory, vol.31, no.6, pp.741-750, Nov.1985.
    [71]Y. Liu and B. L. Hughes, "A new universal random coding bound for the multiple-access channels," IEEE Trans. Information Theory, vol.42, no.2, pp. 376-386, Mar.1996.
    [72]E. A. Haroutunian, "Lower bound for the error probability of multiple-access channels," Problemy Peredachi Informatsii, vol.11, pp.23-36, June 1975.
    [73]A. Nazari, S. S. Pradhan, and A. Anastasopoulous, "A new sphere-packing bound for maximal error exponent for multiple-access channels," in Proc. International Symposium on Information Theory,2008,
    [74]R. G. Gallager, "Capacity and coding for degraded broadcast channels," Probl. Peredachi Informatsii, vol.10, no.3, pp.3-14,1974.
    [75]J. Korner and A. Sgarro, "Universally attainable error exponents for broadcast channels with degraded message sets," IEEE Trans. Inf. Theory, vol.26, no.6, pp. 670-679, Nov.1980.
    [76]Y. Kaspi and N. Merhav, "Error exponents for broadcast channels with degraded message sets," IEEE Trans. Inf. Theory, vol.57, no.1, pp.101-123, Jan.2011.
    [77]L. Weng, S. S. Pradhan, and A. Anastasopoulos, "Error exponent regions for gaussian broadcast and multiple-access channels," IEEE Trans. Inf. Theory, vol. 54, no.7, pp.2919-2942, Jul.2008.
    [78]R. Etkin, N. Merhav, and E. Ordentlich, "Error exponents of optimum decoding for the interference channel," IEEE Trans. Inf. Theory, vol.56, no.1, pp.40-56, Jan.2010.
    [79]Hien Quoc Ngo, Tony Q. S. Quek, and Hyundong Shin,"Amplify-and forward two-way relay channels:error exponents," in Proceeding of the International Symposium on Information Theory (ISIT), pp.2028-2032, Seoul, Korea, Jun, 2009.
    [80]W. Zhang and U. Mitra, "Multi-hopping Strategies:An Error-Exponent Comparison," in Proceeding of the International Symposium on Information Theory (ISIT), pp.1411-1415, Nice, France, Jun.2007.
    [81]J. Mitola, M. Gerald, "Cognitive radio:making software radios more personal,' IEEE Personal Communications, vol.6, no.4, pp.13-18, Aug.1999.
    [82]J. Mitola, "Cognitive Radio:An Integrated Agent Architecture for Software Defined Radio," Dissertation, Doctor of Technology, Royal Inst Technol (KTH), Stockholm, Sweden,2000.
    [83]S. Haykin, "Cognitive Radio:Brain-Empowered Wireless Communications,' IEEEJ. Sel. Areas Commun., vol.23, no.2, pp.201-220, Feb 2005.
    [84]T.Yucek and H. Arslan, "A survey of spectrum sensing slgorithms for cognitive radio applications," IEEE Communications Surveys & Tutorials, vol.11, no.1, pp.116-130, Apr.2009.
    [85]Y. Zeng, Y. Liang, A. Hoang, and R. Zhang, "A review on spectrum sensing for cognitive radio:Challenges and solutions," EURASIP Journal on Advances in Signal Processing, vol.2010, p.2,2010.
    [86]B. Wang, Y. Wu, and K. J. R. Liu, "Game theory for cognitive radio networks:An overview," Computer Networks, vol.54, no.14, pp.2537-2561, Oct.2010.
    [87]Z. Han and K. J. R. Liu, Resource Allocation for Wireless Networks:Basics, Techniques, and Applications, Cambridge Univ Press,2008.
    [88]R. Pabst, B. Walke, D. Schultz, P. Herhold, H. Yanikomeroglu, S. Mukherjee, H. Viswanathan, M. Lott, W. Zirwas, M. Dohler, H. Aghvami, D. Falconer, and G. Fettweis, "Relay-based deployment concepts for wireless and mobile broadband radio," IEEE Commun. Mag., vol.42, no.9, pp.80-89, Sept.2004.
    [89]A. Nosratinia, T. E. Hunter, and A. Hedayat, "Cooperative communication in wireless networks," IEEE Commun. Mag., vol.42, no.10, pp.74-80, Oct.2004.
    [90]J. N. Laneman and G. W. Wornell, "Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks," IEEE Trans. Inf. Theory, vol.49, no.10, pp.2415-2425, Oct.2003.
    [91]J. N. Laneman, D. N. C. Tse, and G.W.Wornell, "Cooperative diversity in wireless networks:efficient protocols and outage behavior," IEEE Trans. Inf. Theory, vol. 50, no.12, pp.3062-3080, Dec.2004.
    [92]A. Sendonaris, E. Erkip, and B. Aazhang, "User cooperation diversity-part Ⅰ: system description," IEEE Trans. Commun., vol.51, no.11, pp.1927-1938, Nov. 2003.
    [93]A. Sendonaris, E. Erkip, and B. Aazhang, "User cooperation diversity-part Ⅱ: implementation aspects and performance analysis," IEEE Trans. Commun., vol. 51, no.11, pp.1939-1948, Nov.2003.
    [94]N. Devroye, P. Mitran, and V. Tarokh, "Achievable rates in cognitive channels,' IEEE Trans. Inf. Theory, vol.52, no.5, pp.1813-1827, May 2006.
    [95]N. Devroye, P. Mitran, and V. Tarokh, "Limits on communications in a cognitive radio channel," IEEE Commun. Mag., vol.44, no.6, pp.44-49, Jun.2006.
    [96]S. Gel'fand and M. Pinsker, "Coding for channels with random parameters,' Probl. Contr. and Inf. Theory, vol.9, no.1, pp.19-31,1980.
    [97]A. Goldsmith, S. Jafar, I. Marie, and S. Srinivasa, "Breaking spectrum gridlock with cognitive radios:An information theoretic perspective," Proc. of IEEE, vol. 97, no.5, pp.894-914,2009.
    [98]G. A. Hodtani, M. R. H. Aref, "On the Devroye-Mitran-Tarokh rate region for cognitive radio channel," IEEE Trans. Wireless Commun., vol.8, no.7, pp. 3458-3461, July 2009.
    [99]W. Wu, S. Vishwanath, and A. Arapostathis, "Capacity of a class of cognitive radio channels:Interference channels with degraded message sets," IEEE Trans. Inf. Theory, vol.53, no.11, pp.4391-4399, Nov.2007.
    [100]A. Jovicic and P. Viswanath, "Cognitive radio:an information-theoretic perspective," IEEE Trans. Inf. Theory, vol.55, no.9, pp.3945-3958, Sep.2009.
    [101]I. Maric, R. D. Yates, and G. Kramer, "Capacity of interference channels with partial transmitter cooperation," IEEE Trans. Inf. Theory, vol.53, no.10, pp. 3536-3548, Oct.2007.
    [102]Y. Liang, A. Somekh-Baruch, V Poor, S. Shamai, and S. Verdu, "Capacity of Cognitive interference channels with and without secrecy," IEEE Trans. Inf. Theory, vol.55, no.2, pp.604-618, Feb.2009.
    [103]J. Jiang and Y. Xin, "On the achievable rate regions for interference channels with degraded message sets," IEEE Trans. Inf. Theory, vol.54, no.10, pp. 4707-4712, Oct.2008.
    [104]I. Maric, A. Goldsmith, G. Kramer, and S. Shamai, "On the capacity of interference channels with one cooperating transmitter," European Trans. Telecomm., vol.19, pp.405-420, Apr.2008.
    [105]Y. Cao and B. Chen, "Interference channel with one cognitive transmitter," in Proc. Signals, Systems and Computers,42nd Asilomar Conf., pp.1593-1597, 2009.
    [106]S. Rini, D. Tuninetti and N. Devroye, "New inner and outer bounds for the discrete memoryless cognitive interference channel and some capacity results,' IEEE Trans. Inf. Theory, vol.57, no.7, pp.4087-4109, Jul.2008.
    [107]K. G. Nagananda and C. R. Murthy, "Three-user cognitive channels with cumulative message sharing:An achievable rate region," in Proc. IEEE Inf. Iheory Workshop on Net. and Inf. Theory, Volos, Greece, Jun.2009, pp.291-295.
    [108]K. G. Nagananda and C. R. Murthy, "Information theoretic results for three-user cognitive radio channels," in Proc. IEEE Global Telecomm. Conf., Hawaii, USA, Nov.2009, pp.1-6.
    [109]K. G. Nagananda, C. R. Murthy, and S. Kishore, "Achievable rates in three-user interference channels with one cognitive transmitter," in Proc. IEEE Int. Conf. Signal Process. andComm., Bangalore, India, Jul.2010, pp.1-5.
    [110]G. Kramer and A. J. Wijnngaarden, "On the white Gaussian multiple-access relay channel". In proc. IEEE Int. Symp. Inform. Theory, Sorrento, Italy, Jun. 2000, p.40.
    [111]G Kramer, M. Gastpar, and P. Gupta, "Cooperative strategies and capacity theorems for relay networks". IEEE Trans. Inform. Theory, vol.51, no.9, pp. 3037-3063, Sep.2005.
    [112]L. Sankar, G. Kramer, and N. B. Mandayam, "Offset encoding for multiaccess relay channels". IEEE Trans. Inform. Theory, vol.53, no.10, pp.3814-3821, Oct. 2007.
    [113]L. Sankar, G. Kramer, and N. B. Mandayam, "Capacity theorems for the multiple-access relay channel". In Proc.42nd Annu. Allerton Conf. Communications, Control, and Computing, Monticello, IL, Sep.2004, pp. 1782-1791.
    [114]R. Tandon and H. V. Poor, "On the capacity region of multiple-access relay channels". In Proc. Conf. Information Sciences and Systems, Baltimore, MD, March 2011.
    [115]L. Sankar, N. B. Mandayam, and H. V. Poor, "On the sum-capacity of the degraded Gaussian multiaccess relay channel". IEEE Trans. Inform. Theory, vol. 55, no.12, pp.5394-5411, Dec.2009.
    [116]Y. Liang and V. Veeravalli, "The impact of relaying on the capacity of broadcast channels," In proc. IEEE Int. Symp. Inform. Theory, June.2004, pp.403.
    [117]S. Bhaskaran, "Gaussian degraded relay broadcast channel," IEEE Trans. Inform. Theory, vol.54, no.8, pp.3699-3709, Aug.2008.
    [118]M. Abouelseoud and A. Nosratinia, "The gateway channel:Outage analysis," In proc. IEEE Global Telecommunications Conf., New Orleans, LA, Dec.2008.
    [119]D. Gunduz, A. Yener, A. Goldsmith, and H. V. Poor, "Multi-way relay channel,' In proc. IEEE Int. Symp. Inform. Theory, Seoul, South Korea, Jun.2009.
    [120]O. Sahin, O. Simeone, and E. Erkip, "Interference channel with an out-of-band relay". IEEE Trans. Inform. Iheory,vol.57, no.5, pp.2746-2764, May 2011.
    [121]O. Sahin and E. Erkip, "Achievable rates for the Gaussian interference relay channel," In proc. IEEE Global Telecommunications Conf., Washington, DC, Nov. 2007.
    [122]D. Gunduz, O. Simeone, A. Goldsmith, H. V. Poor, and S. Shamai, "Multiple multicasts with the help of a relay," IEEE Trans. Inf. Theory., vol.56, no.12, pp. 6142-6158, Dec.2010.
    [123]A. M. Mchenry, "Spectrum occupancy measurements project summary," Shared Spectrum Company Report,2005.
    [124]Ross, Sheldon, A first course in probability, Prentice Hall Press,2009
    [125]P. Moulin and Y. Wang, "Capacity and random coding exponents for channel coding with side information," IEEE Trans. Inform. Theory, vol.53, no.4, pp. 1326-1347, Apr.2007.
    [126]U. Erez and R. Zamir, "Error exponents of modulo-additive noise channels with side information at the transmitter," IEEE Trans. Inform. Theory, vol.47, no.1, pp.210-218, Jan.2007.
    [127]A. Somekh-Baruch and N. Merhav, "On the random coding error exponents of the single-user and the multiple-access Gelfand-Pinsker channels," In proc. IEEE Int. Symp. Inform. Theory, June.2004, pp.448.
    [128]A.Viterbi and J. Omura, Principles of digital communication and coding. New York:McGraw-Hill,1979.
    [129]L. Deng, A. Liu et al, "Error exponents for two-hop Gaussian multiple source-destination relay channels," SCIENCE CHINA Information Sciences, vol. 55, no.2, pp.348-359, Feb.2011.
    [130]A. B. Carleial, "Multiple-access channels with different generalized feedback signals," IEEE Trans. Inf. Theory, vol. IT-28, no.6, pp.841-850, Nov.1982.
    [131]F. M. J.Willems, "Informationtheoretical Results for the Discrete Memoryless Multiple Access Channel," Doctor Dissertation, Katholieke Univ. Leuven, Leuven, Belgium, Oct.1982.
    [132]C.-M. Zeng, F. Kuhlmann, and A. Buzo, "Achievability proof of some multiuser channel coding theorems using backward decoding," IEEE Trans. Inf. Theory, vol. 35, no.6, pp.1160-1165, Nov.1989.
    [133]J. N. Laneman and G. Kramer, "Window decoding for the multi-access channel with generalized feedback," in Proc. IEEE Int. Symp. Information Theory, Chicago, IL, Jun.2004, p.281.
    [134]IEEE Standard 802.11:Available:http://grouper.ieee.org/groups/802/11/
    [135]IEEE Std.802.16j/D7:Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Multihop Relay Specication,2007.
    [136]3GPP, TR36.913 (V8.0.0):Requirements for further advancements for E-UTRA (LTE-Advanced),2008.
    [137]Z. Wang and B. Milstein. "CDMA overlay situations for microcellular mobile communications," IEEE Transactions Commun., vol.43, no.2-4, pp.603-614, Feb.1995.
    [138]L. Ford and D. Fulkerson, "Maximal flow through a network," Canad. J. Math., vol.8, pp.399-404,1956.
    [139]Wang J Z, Chen J. "Performance of wideband CDMA systems with complex spreading and imperfect channel estimation," IEEE J Select Areas Commun., vol. 19, no.1, pp.152-163, Jan.2001.
    [140]H. Ngo, S. Quek and H. Shin. "Random coding error exponent for dual-hop Nakagami-m fading channels with amplify-and-forward relaying," IEEE Commun Letters, vol.13, no.11, pp.823-825, Nov.2009.
    [141]G. Gur, S. Bayhan and F. Alagoz, "Cognitive femtocell networks:an overlay architechture for localized dynamic spectrum access," IEEE Wireless. Commun., pp.62-70, Aug.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700