基于开关电容矩阵的波形数字化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波形数字化技术是未来粒子物理实验前端电子学非常重要的发展趋势之一,通过探测器波形,实验者可以获取其携带的所有物理信息。传统基于FADC (Flash ADC)的波形数字化技术路线不仅集成度低,成本高昂,而且随着采样率的提高,功耗越来越大,已经不能满足未来粒子物理实验发展的需求。新兴的基于开关电容矩阵(Switched-Capacitor Arrays:SCA)的波形数字化技术采用模拟采样+数字变换的路线,即:开关电容矩阵高速采样模拟信号,采样电荷再通过慢速高精度ADC数字化。该技术解决了高速采样和高精度A/D变换之间的矛盾,同时由于避免采用高速ADC,降低了系统的功耗。此外,基于开关电容矩阵的波形数字化技术在系统集成度和成本方面相对于FADC也具有明显优势。
     随着电子科学技术的发展,基于SCA的专用集成电路(ASIC)技术已经趋于成熟。在国外已经出现了多款专为粒子物理实验前端电子学设计的SCA ASIC:比如瑞士PSI研究所MEG实验的DRS系列、位于地中海的ANTARES实验的ARS等。国内基于开关电容矩阵的波形数字化技术研究刚刚开始,目前还没有比较系统的报道。我们采用瑞士PSI研究所的SCA ASIC:DRS4,研究基于开关电容矩阵的波形数字化技术,以及其在粒子物理实验中的应用。论文的组织按章节如下:
     第一章分析了当今粒子物理实验的特点,指出波形数字化技术是未来粒子物理实验前端电子学的重要发展方向之一。自上个世纪80年代开始,基于FADC的波形数字化技术已经在很多物理实验中成功应用。然而,随着粒子物理实验的发展,该技术在系统集成度、功耗以及成本等方面已经跟不上粒子物理实验发展的步伐,取而代之的是基于开关电容矩阵的波形数字化技术。进入本世纪,相继有多个粒子物理实验选择基于SCA的波形数字化技术,并取得成功应用。
     第二章阐述了基于开关电容矩阵的波形数字化的几种技术实现路线。SCA技术的发展和粒子物理实验的发展息息相关,一方面,不同实验需求的差别,催生了SCA ASIC的多种技术实现路线;另一方面,SCA ASIC技术的进步也推动了粒子物理实验的发展。该章归纳总结当今主流的SCA技术路线,并选择具有代表性的SCA芯片分类介绍。
     第三章介绍了基于DRS4的两版波形数字化系统的设计;第四章介绍两版波形数字化系统的性能,及相关的修正算法,包括采样单元直流偏置误差补偿,采样间隔不均匀性修正等。在此基础上,评估系统的波形定时精度。该章中还探讨了基于PCB走线延时实现DRS4模拟通道采样内插的方法。
     第五章探讨了基于DRS4的波形数字化技术在粒子物理实验中的应用。该章通过具体的物理实验,研究基于探测器信号波形提取粒子时间和电荷的方法。
     第六章总结全文,并展望未来工作。
Waveform digitization offers the experimenter the maximum possible information of the pulse from detectors. The arrival time and charge information can be easily extracted from the waveform. Traditionally we use Flash ADC for digitization; however such systems suffer from low channel densities, huge power comsuption, as well as high finicial cost. An alternative to flash ADCs is the switched-capacitor arrays (SCAs). Detector signals are sampled and stored in an array of fast capacitors at a very high speed, and digitized with a commercial ADC at a lower rate before a new waveform is acquired.
     Up to the present, several Application Specific Integrated Circuits (ASICs) have been developed abroad. Some of the representatives are as Domino Ring Sampler from Paul Scherrer Institute (PSI), Switzerland, and Analogue Ring Sampler (ARS) in ANTARES neutrino telescope, about40km off the Frech Riviera coast near Toulon. Currently we donot find any reports about waveform digitization with SCAs at home. In this thesis, we present the research of waveform digitization with DRS4, the fourth version of DRS, as well as its application in particle physics experiments. This thesis is arranged as follows.
     In chapter1, we discussed the trend of front-end electronics in future particle experiments. There is gaining evidence that waveform digitization will play an important role in front-end electronics in the next two decades. At first, Flash ADCs were widely used for digitization since the1980s, but they are now replaced by SCAs to meet the increasing requirements of nowadays particle experiments. We also gave experiments ultizing FADCs and SCAs for example in this chapter.
     In chapter2, we presented the various techniques of realization of current available SCAs. We tried to classify them and gave introductions of their implementation and characterization according to their catalog. Finally, we summarized our classification and gave the tendency of the next gereration of SCAs.
     In chapter3, we introduced the implementation of our two versions of waveform digitization system with DRS4. In Chapter4, we showed the performance of the waveform digitization systems. We developed a series of calibration strategies as DC offset compensation and uneven sampling intervals calibration. We also evaluated the timing performance of the system and the interleaved sampling scheme of analog channels of DRS4with PCB routing delay on board. Generally, the timing performance of the system is as low as10ps after calibration and we achieved about10GS/s with2channels interleaved.
     In chapter5, we put the waveform digization system into one of our physics experiments. We tried to extract the timing information of detector signals from their waveform and compared different timing techniques. We also gave our consideration of the extraction of the charge from the sampled waveform.
     Finally, in chapter6, we conclude this thesis and summarize what have been achieved.
引文
[1]谢一刚,陈昌,王曼等“粒子探测器与数据获取”,科学出版社
    [2]Shubin Liu, Changqing Feng, Qi An et. al. "BES Ⅲ Time-of-Flight Readout System", IEEE Transactions on Nuclear Science, Vol.57, No.2, April.2010.
    [3]郭建华,“北京谱仪(BESⅢ)飞行时间读出电子学系统设计与实现”中国科学技术大学博士论文。
    [4]M.Calvetti, S. Cittolin, C. Cochet, et al., "Electronics and results for the central detector", Nuclear Instruments and Methods 176 (1980), pp.255-262.
    [5]F. Bourgeois, G. Carboni, T. Del Prete et al. "Results of a 100 MHz FADC system built in fastbus used by the UA2 vertex detector", NIMA Vol252, Issuse 2-3, pages590-595, Dec.1986.
    [6]D. Buchholz, D. Claes, B. Gobbl et al. "The use of waveform digitizers with drift chambers for DO", NIMA 257(1987), pp.556-566.
    [7]M. Atiya, M. Ito, J. Haggerty et al. "Waveform Digitizing at 500 MHz", IEEE TNS, Vol.36, NO.1, February 1989, pp.813-817.
    [8]S. Klein, B. Earle, E. Hazen, "A Zero Suppressing 200 MSPS Waveform Digitizer for MACRO", Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference, vol.1, pp.661-664.
    [9]M. Aiya, C. Chi, H. Cunitz, et al. "A large system of Flash ADCs for a neutrino detector", NIMA 300(1991), pp.542-551.
    [10]Adam Bujak aP, Ulrich J Becker b, Joseph D. Burger et al, Spatial resolution and induction-crosstalk effects in the L3 muon drift chambers at LEP2, Nucl. Instr. and Meth. A 354 (1995) 288-295
    [11]R.L. Wixted, S. Chidzik, D.R.Marlow et al, A 32-Channel waveform sampling FASTBUS module with local DSP processing, Nucl. Instr.& Meth. A386 (1997)483-486
    [12]S. Dhawan_, V.W. Hughes_, D. Kawall et al, A quad 500 MHz waveform digitizer with differential trigger for use in the muon g-2 experiment, Nucl. Instr. & Meth. A 450 (2000) 391-398
    [13]V.A. Khriachkov, V.V. Ketlerov, V.F. Mitrofanov et al, Low-background spectrometer for the study of fast neutron-induced (n,a) reactions, Nucl. Instr.& Meth. A 444 (2000) 614}621
    [14]F. Becvar, J. Cizek, I. Prochazka, et al, The asset of ultra-fast digitizers for positron-lifetime spectroscopy, Nucl. Instr.& Meth. A 539 (2005) 372-385
    [15]Weijun Guo, Robin P. Gardner et al, A study of the real-time deconvolution of digitized waveforms with pulse pile up for digital radiation spectroscopy, Nucl. Instr.& Meth. A544(2005)668-678
    [16]L.C. Mihailescua,b, C. Borceaa,b, A.J.M. Plompen et al, Data acquisition with a fast digitizer for large volume HPGe detectors, Nucl. Instr.& Meth. A 578 (2007) 298-305
    [17]L.C. Mihailescu a, A. Borella a, C. Massimi et al, Investigations for the use of the fast digitizers with C6D6 detectors for radiative capture measurements at GELINA, Nucl. Instr.& Meth. A 600 (2009) 453-459
    [18]C. Baixeras, D. Bastieri, C. Bigongiari, et al. "Commissioning and first tests of the MAGIC telescope", NIMA 518(2004),188-192.
    [19]F. Goebel, J. Antonio Coarasal, R. Stiehler et al, The Data Acquisition of the MAGIC Telescope, Proceedings of the 28th International Cosmic Ray Conference,2003, p.2939-2942
    [20]H. Bartko_, F. Goebel, R. Mirzoyan, W. Pimpl, M. Teshima, Tests of a prototype multiplexed fiber-optic ultra-fast FADC data acquisition system for the MAGIC telescope, Nucl. Instr.& Meth. A 548(2005)464-484
    [21]J. Albert a, E. Aliu b, H. Anderhub, etc, FADC signal reconstruction for the MAGIC telescope, Nucl. Instr.& Meth. A 594 (2008) 407-419
    [22]刘继国,安琪,“瞬态波形数字化在飞行时间测量中的应用研究”,核技术,28卷2期,2005年2月。P130-134
    [23]向海生,赵豫斌,江晓山等,“双通道IGsps波形取样电路研制“,核电子学与探测技术,第29卷第1期,2009年1月。
    [24]香山科学会议第342次学术讨论会综述,宇宙线物理的若干前沿问题,北京,2009年2月18-19日
    [25]National semiconductors, ADC08B3000 datasheet, http://www.national.com/
    [26][24] e2Vsemiconductors, EV8AQ160 data sheet, http://www.e2v.com/
    [27]S. A. Kleinfelder, "Development of a Switched Capacitor Based Multi-Channel Transient Waveform Recording Integrated Circuit," IEEE Trans. Nucl. Sci., NS-35,151 (1988).
    [28]D. Tescaro, J. Aleksic, M. Barcelo et al, The readout system of the MAGIC-Ⅱ Cherenkov Telescope, Proceedings of The 31st International Cosmic Ray Conference,2009.2
    [29]Stuart Kleinfelder, Gigahertz Waveform Sampling and Digitization Circuit Design and Implementation, IEEE Trans. Nucl. Sci. NS-50 (2003) 955-962
    [30]Stefan Ritt, Roberto Dinapoli, Ueli Hartmann, Application of the DRS Chip for Fast Waveform Digitizing, TIPP 2009
    [31]ADC architecture overview, Imran Ahmed, Copyright 2004-2008, http://www. iadc. ca/ADC_architectures_tutorial.htm
    [32]Flash ADC, S. Hoyos-ELEN-610, Fall,2009.
    [33]B. Hieu, S. Beak, S. Choi et al. "Thermometer-to-binary encoder with bubble error correction (BEC) circuit for Flash Analog-to-digital Converter (FADC)' 2010 Third International conference on Communications and Electronics (ICCE), pp.102-106, Aug,2010.
    [34]M. Tavani, et al., SPIE 4851 (2003) 1151.
    [35]N. Gehrels, et al., AIP Conf. Porc.3(2001) 558.
    [36]D. Tescaro, H. Bartko, N. Gallante, et al., "Study of the performance and capability of the new ultra-fast 2 GSamples/s FADC data acquisition system of the MAGIC telescope",30th International Cosmic ray conference.
    [37]D. Lachartre, F. Feinstein, "Application specific integrated circuits for ANTARES offshore front-end electronics", NIMA 442(2000), pp.99-104.
    [38]F. Feinstein, "The analogue ring sampler:A front-end chip for ANTARES" NIMA 504(2003), pp.258-261.
    [1]E. Andres et al., "Observation of high-energy neutrinos using Cerekov detectors embedded deep in Antarctic ice", Nature, vol.410, pp.441-443, Mar.2001.
    [2]S. Kleinfelder, "Gigahertz Waveform Sampling and Digitization Circuit Design and Implementation", IEEE Transactions on Nuclear Science, Vol.50, No.4, pp.955-962, August 2003.
    [3]http://antares.in2p3.fr/
    [4]D. Lachartre, F. Feinstein, "Application specific integrated circuits for ANTARJES offshore front-end electronics", NIMA 442(2000), pp.99-104.
    [5]F. Feinstein, "The analogue ring sampler:A front-end chip for ANTARES", NIMA 504(2003), pp.258-261.
    [6]T. Mori, et al., in PSI R-99-05 experiment proposal, Paul Scherrer Institute Villigen,1999.
    [7]S. Ritt, R. Dinapoli, U. Hartmann, "Application of the DRS chip for fast waveform digitizing", NIMA 623(2010) pp.486-488.
    [8]S. Hoover, et al., "Observation of Ultrahigh-Energy Cosmic Rays with the ANITA Balloon-Borne Radio Interferometer", Physical Review Letters, Vol.105, Issue 15(2010), pp.151101-1-151101-5
    [9]G. Varner, L. Ruckman, J. Nam, et al., "The large analog bandwidth recorder and digitizer with ordered readout (LABRADOR) ASIC", NIMA 583(2007), pp.447-460.
    [10]E. Delagnes, Y. Degerli, P. Goret et al., "SAM:A new GHz sampling ASIC for the H.E.S.S.-Ⅱ front-end electronics", NIMA 567(2006), pp.21-26
    [11]M. Houry, E. Delagnes, D. Riz, et al., "DEMIN:A neutron spectrometer, Micromegas-type, for inertial confinement fusion experiments", NIMA 557(2006), pp.648-656.
    [12]D. Breton, E. Delagnes, M. Houry et al., "Very High Dynamic Range and High Sampling Rate VME Digitizing Boards for Physics Experiments", IEEE Transactions on Nuclear Science, Vol.52, No.6, pp.2853-2860, Dec.2005.
    [13]F. Feinstein, E. Delagnes, "Concepts and trends for front-en chips in astroparticle experiments", Journal of Physics:Conference Series 60(2007), pp.284-287.
    [14]S. Kleinfelder, "A Multi-Gigahertz Analog Transient Recorder Integrated Circuit", May,1992. Thesis, University of California, Berkeley.
    [15]C. Bronnimann, R. Horisberger, R. Schnyder, "The domino sampling chip:a 1.2 GHz waveform sampling CMOS chip", NIM A 420(1999), pp.264-269.
    [1]ADT1-1WT+:Surface Mount RF Transformer, Mini-Circuits. www.minicircuits.com
    [2]Rob Reeder, "Transformer-coupled Front-End for Wideband A/D Converters", Analog Dialogue 39-04, April 2005.
    [3]ADG936 Datasheet, Analog Devices, Inc. www.analog.com
    [4]AD9252 Datasheet, Analog Devices, Inc. www.analog.com
    [5]AD4950 Datasheet, Analog Devices, Inc. www.analog.com
    [6]J. Ardizzoni, J. Pearson, et al., "Rules of the Road for High-Speed Differential ADC Drivers", Vol.43-05, May,2009. www.analog.com/analogdialogue
    [7]Spartan-3 FPGA Family Data Sheet, DS099 June 25,2008.
    [8]VCC6-Q/R Series 2.5 and 3.3 volt LVPECL Crystal Oscillator, www.vectron.com
    [9]AD9510 Datasheet, Analog Devices, www.analog.com
    [10]AD9512 Datasheet, Analog Devices, www.analog.com
    [11]Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs, XAPP462 (v1.1), January 5,2006. www.xilinx.com
    [12]LTC2600 Datasheet, www.linear.com
    [13]CY68013 A Datasheet, www.cypress.com
    [14]EZ-USB Technical Reference Manual, www.cypress.com
    [15]MAX II Device Handbook, MII5V1-3.3, Altera Corporation, August,2009.
    [16]PCI Complier User Guide, version 4.1.1, Altera Corporation, April,2006.
    [17]THS4508 Datasheet, Texas Instruments, www.ti.com
    [18]THS770006 Datasheet, Texas Instruments, www.ti.com
    [19]ADA4937 Datasheet, Analog Devices, Inc. www.analog.com
    [1]ROHDE&SCHWARZ Corporation. SMA 100A Signal Generator User Guide, 2010.
    [2]IEEE standard for digitizing waveform recorders, IEEE Std 1057-2007, Revision of IEEE 1057-1994.
    [3]A. Bhushan, F. Coppinger, B. Jalali, "Time-stretched analogue-to-digital conversion", Electron. Lett, vol.34, issue 9, pp.839-841, April,1998.
    [4]J. Genat, G. Varner, F. Tang, et al., "Signal processing for picoseconds resolution timing measurements", Nucl. Instrum.& Methods in Physics Research A, vol.607, pp.387-393,2009.
    [5]M. Nelson, B. Rooney, D. Dinwiddie, et al. "Analysis of digital timing methods with BaF2 scintillators", Nucl. Instrum.& Methods in Physics Research A, vol.505, pp.324-327,2003.
    [6]Polar Instruments Corporation, www.polarinstruments.com.
    [7]N. Kurosawa, H. Kobayashi, K. Maruyama, etc., "Explicit Analysis of Channel Mismatch Effects in Time-Interleaved ADC Systems", IEEE Trans. Circuits Syst. I, Fundam. Theory and Appl, vol.48, No.3, March,2001.
    [8]W. Kester, "Understand SINAD, ENOB, SNR, THD, THD+N, and SFDR so You Don't Get Lost in the Noise Floor", Analog Devices Tutorial, MT-003, Rev.A.
    [9]S. Ritt, "Plans for the DRS5 Switched Capacitor Arrays", Picosecond Workshp 2011, http://drs.web.psi.ch/docs.
    [10]S. Ritt, "Development of high speed waveform sampling ASICs", NSNI 2010, conference proceedings.
    [1]EJ200 Plastic scintillator, ELJEN Technology, www.eljentechnology.com
    [2]北京高新贝森光电子技术研究所,]http://gxbs.cn.gongchang.com/
    [3]Digital Delay Generator, http://www.thinksrs.com/products/DG645.htm
    [4]Kichimi H, Yoshimura Y, Browder T, et al. NIM A (2000) 453, pp:315-320.
    [5]安琪,“粒子物理实验中的精密时间间隔测量”,核技术,第29卷,第6期,2006年6月。
    [6]J. Albert et al. "FADC signal reconstruction for the MAGIC telescope", NIMA, 594 (2008), pp.407-419.
    [7]W. Cleland, E. Stern, "Signal processing considerations for liquid ionization calorimeters in a high rate environment", NIMA 338 (1994), pp.467-497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700