~(18)F-FDG PET-CT用于指导局部晚期食管鳞癌同期加量放疗的可行性的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第1部分治疗前18F-FDG PET-CT对局部晚期食管鳞癌放疗/放化疗后总生存疗效预测价值的研究
     目的:探讨治疗前的18F-FDG PET-CT是否具有预测局部晚期食管鳞癌非手术治疗后总生存的疗效的价值。
     方法:研究对象为近年在我院初治的食管鳞癌患者,入组条件为:1)病理确诊为食管鳞癌;2)治疗前未接受化放疗和手术;3)放疗为根治性剂量放疗;4)治疗前接受了18F-FDG PET/CT检查;5)分期检查无远处转移。排除条件:1)病人未完成预定放疗;2)治疗过程中出现远处转移。在PET图像上以SUV=2.5和本底确定原发灶的边界,统计MTV(以SUV=2.5为阈值所确定的食管癌原发灶的几何体积)、SUV等生物代谢参数及性别、年龄、分期、化疗等临床因素并随访生存情况后进行生存分析,观察指标为OS。生存统计采用Kaplan-Meier法,组间生存差异采用log-rank检验,用Cox风险回归模型进行多因素分析。
     结果:本研究共纳入2007年1月至2010年8月在我院行过治疗前FDG PET-CT检查的不可手术的局部晚期食管鳞癌患者30例。全组1、2、3年总生存率分别为76.7%、52.1%、26.5%,单因素分析显示原发灶的长度越长(p=0.024)代谢体积越大(p=0.006)的患者,总生存越差,多因素分析显示MTV是预测OS的独立影响因子(p=0.012)
     结论:食管鳞癌原发灶代谢体积是预测食管癌患者非手术治疗生存疗效的独立预测因子。
     第2部分治疗前18F-FDG PET-CT对局部晚期食管鳞癌原发灶放疗后局部控制预测价值的研究
     目的:探讨治疗前的18F-FDG PET-CT是否能预测局部晚期食管鳞癌非手术治疗后原发灶局部控制?
     方法:研究对象为近年我院初治的食管鳞癌患者,入组条件为:1)病理确诊为食管鳞癌;2)治疗前未接受化放疗和手术;3)放疗为根治性剂量放疗;4)治疗前接受了18F-FDGPET/CT检查;5)分期检查无远处转移。排除条件:1)病人未完成预定放疗;2)治疗过程中出现远处转移。在PET图像上以SUV=2.5和本底确定原发灶的边界,统计MTV(以SUV=2.5为阈值所确定的食管癌原发灶的几何体积)、SUV等生物代谢参数及性别、年龄、分期、化疗等临床因素并随访食管癌原发灶控制状况后进行生存分析,观察指标为食管癌的原发灶控制。生存统计采用Kaplan-Meier法,组间生存差异采用log-rank检验,用Cox风险回归模型进行多因素分析。
     结果:本研究共纳入2007年1月至2010年8月在我院行过治疗前FDG-PET-CT检查的不可手术的局部晚期食管鳞癌患者30例。全组1、2、3年局控率分别为72.0%、56.7%、56.7%,单因素分析显示对局控有影响的因素是原发灶的suvmax, suvmean、MTV的大小,多因素分析显示MTV这一指标是预测局部控制的的独立影响因子,代谢体积越高者,原发灶控制率越低(P=0.031)。
     结论:食管癌原发灶MTV与放疗后局控率密切相关,可评价和预测食管鳞癌的局部失败。
     第3部分食管癌原发灶18F-FDG代谢分布对指导个体化局部加量放疗的潜在价值
     目的:研究原发灶内18F-FDG高摄取区域的分布情况与食管鳞癌放疗局控之间的关系,探讨选择局部高危区域进行加量放疗的可行性。
     方法:收集2007年1月至2010年8月在我院行过治疗前18F-FDG PET-CT检查的不可手术的局部晚期食管鳞癌患者30例,在PET图像上以SUV=2.5和本底确定原发灶的边界,COV定义为原发灶内SUV的标准差与suvmean的比值,用其来评价不同MTV大小的肿瘤的异质性。读取PET图像上ROI内每个像素点的SUV值后,绘制成累积SUV值-体积直方图(Cumulative SUV-volume histograms,CSH),计算分别以SUV=9,8,7,6,5,4,3为阈值时CSH图上所对应的体积MTV的大小以及与原发灶局控的关系。
     结果:根据第2部分结果按MTV的中位值19.45cm3分组,局控较差的一组COV大于局控较好的一组(0.51:0.35,p=0.0001)。按不同阈值勾画所得ROI在SUV=3,4,5,6,7的情况下MTV高于中位值与低于中位值组局控有显著差异,而SUV=8,9为阈值则无法观察到局控的统计学差别。将各阈值下MTV与局控的关系绘制成ROC曲线按AUC的高低,在SUV=5组中找出最佳阈值为MTVSuv≥5=12.85cm3(敏感性为72.7%、特异性为72.2%)Kaplan-Meier生存分析显示MTVsuv≥5<12.85cm3一组2年无局部复发生存率为76.6%,而MTVsuv≥5>12.85cm3为27.7%,两组有显著统计学差异(p=0.003)。
     结论:体积因素是与放疗局部控制密切相关的因素,特别是肿瘤内部某些高摄取区域体积较大可能与局部治疗失败密切相关,具有对其进行加量放疗的潜在价值,但具体最佳界值还需要大样本的进一步研究和证实。
     第4部分食管鳞癌放疗前中18F-FDG高摄取区域的空间位置关系的研究
     目的:本研究的目的是观察放疗前和放疗中两次PET-CT所显示的食管原发病灶18F-FDG高摄取区域的空间位置关系,从而推测依据放疗前的PET图像上所显示的食管癌原发灶高18F-FDG摄取的信息进行区域选择性加量放疗的可行性。
     方法:入组病人为2011年在我院放疗科接受同步放化疗治疗的初治食管鳞癌患者。入组条件包括:1)病理确诊为食管鳞癌;2)入组前未接受过化放疗且KPS评分>70分;3)分期检查无远处转移;4)无心肺肾等慢性疾病。排除条件:1)病人不能完成预定放疗;2)治疗过程中出现远处转移。所有入组患者在治疗前和放疗45Gy时(第二次同步化疗前)分别行18F-FDG PET-CT扫描。在第一次PET图像上原发灶勾画首先以SUV=2.5,5,40%-70%SUVmax-pr。为阈值在PET图像上自动勾画得到GTV25pre、GTV5pre、GTV40%pre、GTV50%opre、GTV60%pre、GTV70%pre。在第二次PET图像上,以SUV=2.5和70%-90%SUVmax.dur为阈值勾画得GTV25dur、GTV70%dur、GTV80%dur、GTV90%dur。计算两次PET图像上以阈值自动勾画的区域的空间交集分数(OF)。OF定义为两个ROI的交集的体积与两个ROI相对较小的体积的比值,OF越接近于100%,代表放疗中所残留的高FDG代谢体积被放疗前高FDG代谢区域包括的体积越高。
     结果:研究共入组2011年4月至2011年11月在我院行根治性同步放化疗的局部晚期食管鳞癌患者7例.。所有患者的原发灶SUVmax, SUVmean均有显著下降(p=0.05和0.03)。残留高摄取区域与治疗前GTV50%pre的OF达到70%以上其中热点区域GTV90%dur完全处于原发灶的高摄取区域内,OF达到100%。以不同阈值勾画的体积有很大差异,而放疗前和放疗中的食管癌原发灶高代谢区域尽管体积变化很大,但空间位置保持相对的稳定。
     结论:在治疗中,食管鳞癌原发灶的SUV有显著的下降,但食管癌原发灶残留的18F-FDG高摄取区域仍然较稳定的落在治疗前原发灶GTV及治疗前PET上所显示的18F-FDG高摄取区域内,提示依据治疗前PET图像来选择性对食管癌原发病灶的部分区域进行局部加量放疗是可行的。
Part I The predictive value of pretreatment18F-FDG PET-CT on overall survival of patients with inoperable esophageal squamous cell carcinoma
     Purpose To analysis metabolic parameters of pretreatment18F-FDG PET-CT and investigate the relationship between pretreatment PET-CT and overall survival of those patients with inoperable ESCC.
     Materials and Methods Patients of ESCC with a pretreatment PET-CT scan treated with chemoradiotherapy or radiotherapy in our center in recent years were included in this study. A threshold of SUV=2.5was used to establish the primary lesion in PET image. Metabolic factors including MTV, SUV and clinical factors like sex, age, stage, et al were calculated. The association of these factors and the results of long-term follow-up of the patients were examined. Overall survival was estimated were estimated using the Kaplan-Meier method. Significance between groups was assessed by Log-Rank test. Multivariate analysis was performed to identify the prognostic factors influencing OS using Cox proportional hazards regression model.
     Results Between2007.1and2010.8,30,30patients were enrolled in this study.Mean follow-up for all analyzable patients was19.5months, lyr-,2yr-,3yr-OS for the whole group was76.7%、52.1%、26.5%、 Univariate analysis showed patients having tumors with a length of primary lesion less than4cm (p=0.024) or MTV less than19.45cm3(p=0.006) had a better survival than those with a greater one, In the Cox multivariate analysis, MTV (p=0.012) were significant predictors of overall survival.We didn't find a significant relationship between SUV and OS.
     Conclusion The present study shows that tumor volume parameters, especially MTV was valuable for predicting long-term survival.
     Part Ⅱ The predictive value of pretreatment18F-FDG PET-CT on local control of patients with inoperable esophageal squamous cell carcinoma
     Purpose The objective of this study is to evaluate the prognostic value of pretreatment18F-FDG PET/CT on local control after radical radiotherapy or chemoradiotherapy in patients with ESCC.
     Materials and Methods Patients with a pretreatment PET-CT scan treated with chemoradiotherapy or radiotherapy were included in this study. A threshold of SUV=2.5was used to establish the primary lesion in PET image. Metabolic factors including MTV, SUV and clinical factors like sex, age, stage, et al were calculated. The association of these factors and the results of long-term follow-up of the patients were examined. Local progression-free survival was estimated were estimated using the Kaplan-Meier method. Significance between groups was assessed by Log-Rank test. Multivariate analysis was performed to identify the prognostic factors influencing local control using Cox proportional hazards regression model.
     Results Between2007.1and2010.8,30,30patients were enrolled in this study.Mean follow-up for all analyzable patients was19.5months, lyr-,2yr-,3yr-local control rate for the whole group was72.0%、56.7%、56.7%. Univariate analysis showed patients having tumors with a SUVmax<12.6(p=0.032) or SUVmean<5.79(p=0.044) or MTV<19.45cm3(p=0.018) had a better local control than those with a greater one, In the Cox multivariate analysis, MTV (p=0.031) were significant predictors of local control.
     Conclusion The present study shows that tumor volume parameters, especially MTV was valuable for predicting local progression-free survival.
     Part Ⅲ The potential value of pretreatment18F-FDG PET-CT in in guiding individualized radiotherapy of patients with esophageal squamous cell carcinoma
     Purpose:The objective of this study is to evaluate the prognostic value of pretreatment18F-FDG PET/CT on local control (LC) after radical radiotherapy or chemoradiotherapy in patients with ESCC, and investigate its potential value in establishing optimal radiation treatment plans.
     Materials and methods:Thirty patients with pathologically proven ESCC who underwent pretreatment18F-FDG PET-CT in our cancer center were retrospectively reviewed. A threshold of SUV2.5was used to delineate the target volume of primary tumor separately. Coefficient of variation (COV) was used to evaluate the heterogeneity within the primary lesion. SUV and MTV of every pixel in all primary malignant lesions delineated on PET-CT images were measured. Cumulative SUV-volume histograms (CSH), describing total tumor volume above threshold of SUV (from2.5to SUVmax), were calculated. Receiver operating characteristics (ROC) curve was used to further evaluate the optimal cutoff for predicting local control. The local control was estimated using the Kaplan-Meier method and significance between groups was assessed by Log-Rank test.
     Results:COV of the group with a MTV<19.45cm3was0.35, smaller than that of the group with a MTV>19.45cm3(0.51, p=0.0001). ROC curve showed MTV=12.85cm3when delineated with a threshold of SUV=5might be the best cut off values. Local control for patients with MTVSUV≥5<12.85cm3on pretreatment18F-FDG PET-CT scan were better than those with higher MTVSuv≥5>12.85cm3(p=0.003).
     Conclusions:In this study, MTV above some threshold of SUV assessed by pretreatment PET/CT might be an adverse factor predicting local control in esophageal SCC, which indicated variation of biologically metabolic level within tumors should be consider as well as tumor volume promising for selecting risk-adapted therapies. These results will need to be validated in larger cohorts with longer follow-up, and evaluated prospectively.
     Part IV Spatial dynamic distribution and stability of F-FDG uptake locations within tumor during radiotherapy for esophageal squamous cell carcinoma
     Purpose:Because individual tumors are heterogeneous, including for18F-FDG uptake and, most likely, for radioresistance, selective boosting of high FDG uptake zones within the tumor has been suggested. To do this, it is critical to know whether the location of these high FDG uptake patterns within the tumor remain stable during radiotherapy (RT).
     Materials and methods:Seven patients with ESCC treated with concurrent chemo-radiation underwent repeated F-FDG PET-CT scans before RT and after20fractions of RT. On all scans, the high and low FDG uptake regions were autodelineated using several SUV thresholds, varying from40%to70%of SUVmax on the pretreatment scan (GTV4o%pre, GTV5o%Pre, GTV6o%Pre, GTV7o%Pre)and from70%to90%of SUVmax on the dur-treatment scan (GTV7o%dur, GTV8o%dur, GTV9o%dur) and fixed thresholds of2.5and5(GTV2.5pre, GTV5pre). The volumes and overlap fractions of these delineations were calculated to demonstrate the stability of the high FDG uptake regions during RT.
     Results:The high uptake regions within the tumor during RT largely corresponded (OF>70%) with the50%SUVmax high FDG uptake area (GTV50%pre,) of the pretreatment scan. The hotspot within the residual area (GTV9o%dur) was completely within the GTV and pre-radiotherapy high uptake regions (OF=100%). The volumes of the thresholds varied markedly. Although the location of the high FDG uptake patterns within the tumor during RT remained stable, the delineated volumes varied markedly.
     Conclusions:The location of the high FDG uptake areas within the tumor remained stable during RT. This knowledge may enable selective boosting of high FDG uptake areas within the tumor.
引文
[1]F. Kamangar, G. M. Dores, W. F. Anderson. Patterns of cancer incidence, mortality, and prevalence across five continents:defining priorities to reduce cancer disparities in different geographic regions of the world[J]. J Clin Oncol,2006,24 (14):2137-2150
    [2]D. M. Parkin, F. Bray, J. Ferlay,et al. Global cancer statistics,2002[J]. CA Cancer J Clin, 2005,55 (2):74-108
    [3]邹小农.食管癌流行病学[J].中华肿瘤防治杂志,2006,13(18):11-18
    [4]D. R. Sun. Ten-year follow-up of esophageal cancer treated by radical radiation therapy: analysis of 869 patients[J]. Int J Radiat Oncol Biol Phys,1989,16 (2):329-334
    [5]J. S. Cooper, M. D. Guo, A. Herskovic,et al. Chemoradiotherapy of locally advanced esophageal cancer:long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group[J]. JAMA,1999,281 (17):1623-1627
    [6]A. Herskovic, K. Martz, M. Al-Sarraf,et al. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus[J]. N Engl J Med, 1992,326 (24):1593-1598
    [7]B. D. Minsky, T. F. Pajak, R. J. Ginsberg,et al. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer:high-dose versus standard-dose radiation therapy [J]. J Clin Oncol,2002,20 (5):1167-1174
    [8]赵快乐,施学辉,蒋国梁等.食管癌后程加速超分割放疗同期化疗的Ⅲ期临床研究[J].中华放射肿瘤学杂志,2006,15(4):277-279
    [9]L. J. Bos, E. M. Damen, R. W. de Boer,et al. Reduction of rectal dose by integration of the boost in the large-field treatment plan for prostate irradiation[J], Int J Radiat Oncol Biol Phys, 2002,52 (1):254-265
    [10]M. E. Montejo, D. C. Shrieve, B. G. Bentz,et al. IMRT with simultaneous integrated boost and concurrent chemotherapy for locoregionally advanced squamous cell carcinoma of the head and neck[J]. Int J Radiat Oncol Biol Phys,2011,81 (5):e845-e852
    [11]R. Singla, S. King, K. Albuquerque,et al. Simultaneous-integrated boost intensity-modulated radiation therapy (SIB-IMRT) in the treatment of early-stage left-sided breast carcinoma[J]. Med Dosim,2006,31 (3):190-196
    [12]J. Welsh, M. B. Palmer, J. A. Ajani,et al. Esophageal cancer dose escalation using a simultaneous integrated boost technique[J]. Int J Radiat Oncol Biol Phys,2012,82 (1):468-474
    [13]S. Ben-Haim, P. Ell.18F-FDG PET and PET/CT in the evaluation of cancer treatment response[J]. J Nucl Med,2009,50(1):88-99
    [14]H. L. van Westreenen, M. Westerterp, P. M. Bossuyt,et al. Systematic review of the staging performance of 18F-fluorodeoxyglucose positron emission tomography in esophageal cancer[J]. J Clin Oncol,2004,22 (18):3805-3812
    [15]H. Kato, H. Kuwano, M. Nakajima,et al. Comparison between positron emission tomography and computed tomography in the use of the assessment of esophageal carcinoma[J]. Cancer,2002, 94 (4):921-928
    [16]V. Gondi, K. Bradley, M. Mehta,et al. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer[J]. Int J Radiat Oncol Biol Phys,2007,67 (1):187-195
    [17]R. J. Cerfolio, A. S. Bryant, B. Ohja,et al. The accuracy of endoscopic ultrasonography with fine-needle aspiration, integrated positron emission tomography with computed tomography, and computed tomography in restaging patients with esophageal cancer after neoadjuvant chemoradiotherapy[J]. J Thorac Cardiovasc Surg,2005,129 (6):1232-1241
    [18]C. T. Muijs, J. C. Beukema, J. Pruim,et al. A systematic review on the role of FDG-PET/CT in tumour delineation and radiotherapy planning in patients with esophageal cancer[J]. Radiother Oncol,2010,97 (2):165-171
    [19]B. J. Krause, K. Herrmann, H. Wieder,et al.18F-FDG PET and 18F-FDG PET/CT for assessing response to therapy in esophageal cancer[J]. J Nucl Med,2009,50 Suppl 1:89S-96S
    [1]韩春,王澜,祝淑钗等.非手术治疗食管癌临床分期标准对225例放疗患者的预后评价[J].中华放射肿瘤学杂志,2011,20(2):109-112
    [2]B. Sanghera, W. L. Wong, M. A. Lodge,et al. Potential novel application of dual time point SUV measurements as a predictor of survival in head and neck cancer[J]. Nucl Med Commun, 2005,26 (10):861-867
    [3]R. J. Downey, T. Akhurst, M. Gonen,et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection[J]. J Clin Oncol,2004,22 (16):3255-3260
    [4]R. J. Cerfolio, A. S. Bryant, B. Ohja,et al. The accuracy of endoscopic ultrasonography with fine-needle aspiration, integrated positron emission tomography with computed tomography, and computed tomography in restaging patients with esophageal cancer after neoadjuvant chemoradiotherapy[J]. J Thorac Cardiovasc Surg,2005,129 (6):1232-1241
    [5]R. M. Kwee. Prediction of tumor response to neoadjuvant therapy in patients with esophageal cancer with use of 18F FDG PET:a systematic review[J]. Radiology,2010,254 (3):707-717
    [6]R. J. Cerfolio, A. S. Bryant. Maximum standardized uptake values on positron emission tomography of esophageal cancer predicts stage, tumor biology, and survival [J]. Ann Thorac Surg,2006,82 (2):391-394,394-395
    [7]Rest C. Cheze-Le, J. P. Metges, P. Teyton,et al. Prognostic value of initial fluorodeoxyglucose-PET in esophageal cancer:a prospective study[J]. Nucl Med Commun,2008, 29 (7):628-635
    [8]A. Stahl, J. Stollfuss, K. Ottet al. FDG PET and CT in locally advanced adenocarcinomas of the distal oesophagus. Clinical relevance of a discordant PET finding[J]. Nuklearmedizin,2005, 44 (6):249-255, N55-N56
    [9]J.l. Geh, S. J. Bond, S. M. Bentzen,et al. Systematic overview of preoperative (neoadjuvant) chemoradiotherapy trials in oesophageal cancer:evidence of a radiation and chemotherapy dose response[J]. Radiother Oncol,2006,78 (3):236-244
    [10]K. L. Zhao, X. H. Shi, G. L. Jiang,et al. Late course accelerated hyperfractionated radiotherapy plus concurrent chemotherapy for squamous cell carcinoma of the esophagus:a phase III randomized study[J]. Int J Radiat Oncol Biol Phys,2005,62 (4):1014-1020
    [11]刘俊,吕长兴,王家明.同步放化疗治疗不能手术的食管癌临床结果[J].中华放射肿瘤学杂志,2006,15(3):185-187
    [12]P. Flamen, A. Lerut, E. Van Cutsem,et al. Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma[J]. J Clin Oncol,2000,18(18): 3202-3210
    [13]T. Fukunaga, S. Okazumi, Y. Koide,et al. Evaluation of esophageal cancers using fluorine-18-fluorodeoxyglucose PET[J]. J Nucl Med,1998,39 (6):1002-1007
    [14]M. D. Taylor, P. W. Smith, W. K. Brix,et al. Correlations between selected tumor markers and fluorodeoxyglucose maximal standardized uptake values in esophageal cancer[J]. Eur J Cardiothorac Surg,2009,35 (4):699-705
    [15]L. Pan, P. Gu, G. Huang,et al. Prognostic significance of SUV on PET/CT in patients with esophageal cancer:a systematic review and meta-analysis[J]. Eur J Gastroenterol Hepatol,2009, 21 (9):1008-1015
    [16]H. Kato, M. Nakajima, M. Sohda,et al. The clinical application of (18)F-fluorodeoxyglucose positron emission tomography to predict survival in patients with operable esophageal cancer[J]. Cancer,2009,115 (14):3196-3203
    [17]H. L. van Westreenen, J. T. Plukker, D. C. Cobben,et al. Prognostic value of the standardized uptake value in esophageal cancer[J]. AJR Am J Roentgenol,2005,185 (2):436-440
    [18]D. Hong, S. Lunagomez, E. E. Kim,et al. Value of baseline positron emission tomography for predicting overall survival in patient with nonmetastatic esophageal or gastroesophageal junction carcinoma[J]. Cancer,2005,104 (8):1620-1626
    [19]潘中允PET-CT诊断学[M].北京:人民卫生出版社,2009.168.
    [20]N. Avril, S. Bense, S. I. Ziegler,et al. Breast imaging with fluorine-18-FDG PET:quantitative image analysis[J]. J Nucl Med,1997,38 (8):1186-1191
    [21]S. H. Hyun, J. Y. Choi, Y. M. Shim,et al. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma[J]. Ann Surg Oncol,2010,17 (1):115-122
    [22]M. Hatt, D. Visvikis, N. M. Albarghach,et al. Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology[J]. Eur J Nucl Med Mol Imaging,2011,38 (7):1191-1202
    [23]周志国,高献书,张萍等.食管癌放疗后Cox模型多引素分析[J].中华放射医学与防护杂志,2006,26(5):496-498
    [24]J. Y. Choi, K. H. Lee, Y. M. Shim,et al. Improved detection of individual nodal involvement in squamous cell carcinoma of the esophagus by FDG PET[J]. J Nucl Med,2000,41 (5) 808-815
    [1]S. Ekman, M. Dreilich, J. Lennartsson,et al. Esophageal cancer:current and emerging therapy modalities[J]. Expert Rev Anticancer Ther,2008,8 (9):1433-1448
    [2]J. S. Cooper, M. D. Guo, A. Herskovic,et al. Chemoradiotherapy of locally advanced esophageal cancer:long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group[J]. JAMA,1999,281 (17):1623-1627
    [3]A. Abramyuk, S. Tokalov, K. Zophel,et al. Is pre-therapeutical FDG-PET/CT capable to detect high risk tumor subvolumes responsible for local failure in non-small cell lung cancer?[J]. Radiother Oncol,2009,91 (3):399-404
    [4]P. Flamen, A. Lerut, E. Van Cutsem,et al. Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma[J]. J Clin Oncol,2000,18(18): 3202-3210
    [5]S. G. Swisher, J. Erasmus, M. Maish,et al.2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma[J]. Cancer,2004,101 (8):1776-1785
    [6]H. A. Wieder, B. L. Brucher, F. Zimmermann,et al. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment[J]. J Clin Oncol,2004,22 (5):900-908
    [7]B. M. Smithers, G. C. Couper, J. M. Thomas,et al. Positron emission tomography and pathological evidence of response to neoadjuvant therapy in adenocarcinoma of the esophagus[J]. Dis Esophagus,2008,21 (2):151-158
    [8]N. K. Sharma, J. S. Silverman, T. Li,et al. Decreased Posttreatment SUV on PET Scan Is Associated With Improved Local Control in Medically Inoperable Esophageal Cancer[J]. Gastrointest Cancer Res,2011,4 (3):84-89
    [9]B. D. Minsky, T. F. Pajak, R. J. Ginsberg,et al. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer:high-dose versus standard-dose radiation therapy[J]. J Clin Oncol,2002,20 (5):1167-1174
    [10]Z. Liao, J. D. Cox, R. Komaki. Radiochemotherapy of esophageal cancer[J]. J Thorac Oncol, 2007,2 (6):553-568
    [11]C. R. Johnson, H. D. Thames, D. T. Huang,et al. The tumor volume and clonogen number relationship:tumor control predictions based upon tumor volume estimates derived from computed tomography[J]. Int J Radiat Oncol Biol Phys,1995,33 (2):281-287
    [12]P. Okunieff, M. Hoeckel, E. P. Dunphy,et al. Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone[J]. Int J Radiat Oncol Biol Phys,1993,26 (4):631-636
    [13]La TH, E. J. Filion, B. B. Turnbull,et al. Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer[J]. Int J Radiat Oncol Biol Phys,2009,74 (5):1335-1341
    [14]C. Parlak, E. Topkan, C. Onal,et al. Prognostic value of gross tumor volume delineated by FDG-PET-CT based radiotherapy treatment planning in patients with locally advanced pancreatic cancer treated with chemoradiotherapy[J]. Radiat Oncol,2012,7 (1):37
    [15]H. Keller, J. S. Goda, D. C. Vines,et al. Quantification of local tumor response to fractionated radiation therapy for non-Hodgkin lymphoma using weekly 18F-FDG PET/CT imaging[J]. Int J Radiat Oncol Biol Phys,2010,76 (3):850-858
    [16]C. Schutze, R. Bergmann, A. Yaromina,et al. Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice[J]. Radiother Oncol, 2007,83 (3):311-315
    [17]L. F. de Geus-Oei, J. H. van Krieken, R. P. Aliredjo,et al. Biological correlates of FDG uptake in non-small cell lung cancer[J]. Lung Cancer,2007,55 (1):79-87
    [18]J. B. Ma, Y. P. Song, J. M. Yu,et al. Linear correlation between patient survival and decreased percentage of tumor [(18)F]fluorodeoxyglucose uptake for late-course accelerated hyperfractionated radiotherapy for esophageal cancer[J]. lnt J Radiat Oncol Biol Phys,2012,82 (4):1535-1540
    [1]S. Zhao, Y. Kuge, T. Mochizuki,et al. Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor[J]. J Nucl Med,2005,46 (4):675-682
    [2]A. Abramyuk, S. Tokalov, K. Zophel,et al. Is pre-therapeutical FDG-PET/CT capable to detect high risk tumor subvolumes responsible for local failure in non-small cell lung cancer?[J]. Radiother Oncol,2009,91 (3):399-404
    [3]J. F. Eary, F. O'Sullivan, J. O'Sullivan,et al. Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome[J]. J Nucl Med,2008,49 (12):1973-1979
    [4]A. Herskovic, K. Martz, M. Al-Sarraf,et al. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus[J]. N Engl J Med, 1992,326 (24):1593-1598
    [5]B. D. Minsky, T. F. Pajak, R. J. Ginsberg,et al. INT 0123 (Radiation Therapy Oncology Group 94-05) phase Ⅲ trial of combined-modality therapy for esophageal cancer:high-dose versus standard-dose radiation therapy[J].J Clin Oncol,2002,20 (5):1167-1174
    [6]L. J. Bos, E. M. Damen, R. W. de Boer,et al. Reduction of rectal dose by integration of the boost in the large-field treatment plan for prostate irradiation[J]. Int J Radiat Oncol Biol Phys, 2002,52 (1):254-265
    [7]J. Welsh, M. B. Palmer, J. A. Ajani,et al. Esophageal cancer dose escalation using a simultaneous integrated boost technique[J]. Int J Radiat Oncol Biol Phys,2012,82 (1):468-474
    [8]M. E. Montejo, D. C. Shrieve, B. G. Bentz,et al. IMRT with simultaneous integrated boost and concurrent chemotherapy for locoregionally advanced squamous cell carcinoma of the head and neck[J]. Int J Radiat Oncol Biol Phys,2011,81 (5):e845-e852
    [9]M. Hatt, Rest C. Cheze-le, A. van Baardwijk,et al. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation[J]. J Nucl Med,2011,52 (11):1690-1697
    [10]D. Zhu, T. Ma, Z. Niu,et al. Prognostic significance of metabolic parameters measured by (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with small cell lung cancer[J]. Lung Cancer,2011,73 (3):332-337
    [1]G. Meijer, J. Steenhuijsen, M. Bal,et al. Dose painting by contours versus dose painting by numbers for stage Ⅱ/Ⅲlung cancer:practical implications of using a broad or sharp brush[J]. Radiother Oncol,2011,100 (3):396-401
    [2]H. J. Aerts, A. A. van Baardwijk, S. F. Petit,et al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18)Fluorodeoxyglucose-PET-CT scan[J]. Radiother Oncol,2009,91 (3):386-392
    [3]M. Piert, H. J. Machulla, M. Picchio,et al. Hypoxia-specific tumor imaging with 18F-fl uoro-azomycin arabinoside[J]. J Nucl Med,2005,46 (1):106-113
    [4]S. M. Bentzen. Theragnostic imaging for radiation oncology:dose-painting by numbers[J]. Lancet Oncol,2005,6 (2):112-117
    [5]N. Dogan, S. King, B. Emami,et al. Assessment of different IMRT boost delivery methods on target coverage and normal-tissue sparing[J]. Int J Radiat Oncol Biol Phys,2003,57 (5) 1480-1491
    [6]M. Hatt, D. Visvikis, N. M. Albarghach,et al. Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology [J]. Eur J Nucl Med Mol Imaging,2011,38 (7):1191-1202
    [7]N. K. Sharma, J. S. Silverman, T. Li,et al. Decreased Posttreatment SUV on PET Scan Is Associated With Improved Local Control in Medically Inoperable Esophageal Cancer[J]. Gastrointest Cancer Res,2011,4 (3):84-89
    [8]G. Bosmans, A. van Baardwijk, A. Dekker,et al. Intra-patient variability of tumor volume and tumor motion during conventionally fractionated radiotherapy for locally advanced non-small-cell lung cancer:a prospective clinical study[J]. Int J Radiat Oncol Biol Phys,2006,66 (3):748-753
    [9]H. J. Aerts, G. Bosmans, A. A. van Baardwijk,et al. Stability of 18F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC:a prospective study[J]. Int J Radiat Oncol Biol Phys,2008,71 (5):1402-1407
    [10]M. Mamede, Fakhri G. El, P. Abreu-e-Lima,et al. Pre-operative estimation of esophageal tumor metabolic length in FDG-PET images with surgical pathology confirmation[J]. Ann Nucl Med,2007,21 (10):553-562
    [11]X. Zhong, J. Yu, B. Zhang,et al. Using 18F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus[J]. Int J Radiat Oncol Biol Phys,2009,73 (1):136-141
    [12]J. F. Daisne, M. Sibomana, A. Bol,et al. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios:influence of reconstruction algorithms[J]. Radiother Oncol,2003,69 (3):247-250
    [1]Tohma T, Okazumi S, Makino H, et al. Relationship between glucose transporter, hexokinase and FDG-PET in esophageal cancer. Hepatogastr oenterol,2005,52:486-490.
    [2]Roedl JB, Colen RR, King K, et al. Visual PET/CT scoring for nonspecific F-18-FDG uptake in the differentiation of early malignant and benign esophageal lesions. Am J Roentgenol,2008,191:515-521.
    [3]Kato H, Miyazaki T, Nakajima M, et al. The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer, 2005,103:148-156.
    [4]Puli SR, Reddy JB, Bechtold ML, et al. Staging accuracy of esophageal cancer by endoscopic ultrasound:a meta-analysis and systematic review. World J Gastroenterol,2008, 14:1479-1490.
    [5]Kato H, Kimura H, Nakajima M, et al. The additional value of integrated PET-CT over PET in initial lymph node staging of esophageal cancer. Oncol Rep,2008,20:857-862.
    [6]van Vliet EP, Heijenbrok-Kal MH, Hunink MG, et al. Staging investigations for oesophageal cancer:a meta-analysis. Br J Cancer,2008,98:547-557.
    [7]Walker AJ, Spier BJ, Perlman SB, et al. Integrated PET-CT fusion imaging and endoscopic ultrasound in the pre-operative staging and evaluation of esophageal cancer. Mol Imaging Biol,2011,13:167-171.
    [8]Hu Q, Wang W, Zhong X, et al. Dual-time-point FDG PET for the evaluation of locoregional lymph nodes in thoracic esophageal squamous cell cancer. Eur J Radioi, 2009,70:320-324.
    [9]Bar-Shalom R, Guralnik L, Tsalic M, et al. The additional value of PET-CT over PET in FDG imaging of oesophageal cancer. Eur J Nucl Med Mol Imaging,2005,32:918-924.
    [10]Konski A, Doss M, Milestone B, et al. The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma.Int J Radiat Oncol Biol Phys,2005,61:1123-1128.
    [11]任瑞美,付正,于金明,等.FDG PET-CT在食管癌放疗靶区勾画中的作用.中华放射肿瘤学杂志,2009,18:429-430.
    [12]Muijs CT, Schreurs LM, Busz DM, et al. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer. Radiother Oncol,2009;93:447-453.
    [13]Gondi V,Bradley K.Mehta M,et al. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer.Int J Radiat Oncol Biol Phys.2007,67:187-195.
    [14]Vali FS, Nagda S, Hall W,et al. Comparison of standardized uptake value-based positron emission tomography and computed tomography target volumes in esophageal cancer patients undergoing radiotherapy. Int J Radiat Oncol Biol Phys,2010,78:1057-1063.
    [15]Mamede M, El Fakhri G, Abreue-Lima P, et al. Pre-operative estimation of esophageal tumor metabolic length in FDG-PET images with surgical pathology confirmation. Ann Nucl Med,2007,21:553-562.
    [16]Yu W, Fu XL, Zhang YJ, et al. GTV spatial conformity between different delineation methods by 18 FDG PET-CT and pathology in esophageal cancer. Radiother Oncol,2009,93:441-446.
    [17]Zhong X, Yu J, Zhang B, et al. Using (18)F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys,2009,73:136-141.
    [18]郭洪波,于金明,张百江,等.氟脱氧葡萄糖PET-CT确定食管癌淋巴结放疗靶区的可‘行性研究.中华放射肿瘤学杂志,2007,16:10-14.
    [19]Yu W, Fu XL, Zhang YJ, et al. A prospective evaluation of staging and target volume definition of lymph nodes by 18FDG PET-CT in patients with squamous cell carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys,2011,81(5):e759-765.
    [20]Vesprini D, Ung Y, Dinniwell R, et al. Improving observer variability in target delineation for gastro-oesophageal cancer-the role of (18F)fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Clin Oncol,2008,20:631-638.
    [21]Schreurs LM, Busz DM, Paardekooper GM, et al. Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer:reduction in geographic misses with equal inter-observer variability. Dis Esophagus,2010,23:493-501.
    [22]Madani I, Duthoy W, Derrie C, et al. Positron emission tomography guidedfocal dose escalation using intensity modulated radiotherapy for head andneck cancer. Int J Radiat Oncol Biol Phys,2007,68:126-135.
    [23]Han D, Yu J, Yu Y, et al. Comparison of (18)F-fluorothymidine and (18)F-fluorodeoxyglucose PET-CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys,2010,76:1235-1241.
    [24]韩大力,钟小军,于金明,等.18F-FLT和18F-FDG PET-CT对胸段食管癌淋巴结分期诊断的对比研究.中华核医学杂志,2010,30:383-386.
    [25]Gwyter SJ. Current standards for response evaluation by imaging techniques. Eur J Nucl Med Mol Imaging,2006,33:11-15.
    [26]Brucher BL, Weber W, Bauer M, et al. Neoadjuvant therapy of esophageal squamous cell carcinoma:response evaluation by positron emission tomography. Ann Surg,2001,233:300-309.
    [27]Cerfolio RJ, Bryant AS, Ohja B, et al. The accuracy of endoscopic ultrasonography with fine-needle aspiration, integrated positron emission tomography with computed tomography, and computed tomography in restaging patients with esophageal cancer after neoadjuvant chemoradiotherapy. J Thorac Cardiovasc Surg,2005,129:1232-1241.
    [28]Kwee RM. Prediction of tumor response to neoadjuvant therapy in patients with esophageal cancer with use of 18F FDG PET:a systematic review. Radiology,2010,254:707-717.
    [29]van Heijl M, Omloo JM, van Berge-Henegouwen MI, et al. Fluorodeoxyglucose positron emission tomography for evaluating early response during neoadjuvant chemoradiotherapy in patients with potentially curable esophageal cancer. Ann Surg,2011,253:56-63.
    [30]Ma J, Song Y, Yu J, et al. Linear correlation between patient survival and decreased percentage of tumor [18F]fluorodeoxyglucose uptake for late-course accelerated hyperfractionated radiotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys,2012,82(4):1535-1540.
    [31]Roedl JB, Colen RR, Holalkere NS, et al. Adenocarcinomas of the esophagus:response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET-CT comparison to histopathologic and clinical response evaluation. Radiother Oncol,2009,89:278-286.
    [32]Seung HH, Joon YC, Young MS, et al. Prognostic value of metabolic tumor volume measured by 18F-Fluorodeox-yglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg OncoI,2010,17:115-122.
    [33]Hatt M, Visvikis D, Albarghach N, et al. Prognostic value of 18 F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology. Eur J Nucl Med Mol Imaging,2011,38:1191-1202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700