堆肥微生物群落演替及木质素降解功能微生物强化堆肥机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆肥技术作为一项经济有效的有机固体废物处理与资源化利用技术,是备受关注的重要研究课题之一。但传统堆肥法常因含难降解有机物木质素而堆制效果不佳,且因成品中重金属的潜在威胁而应用受限,阻碍了堆肥资源化技术的发展,故改进堆肥技术以提高堆肥效率、降低重金属毒性非常重要。由于堆肥过程中木质素等有机物的降解主要依赖于微生物群落的共同作用,了解微生物群落演替的基本信息,是发展堆肥新方法与理论的重要基础。因此,以微生物群落演替研究为依据,针对传统堆肥法存在的木质素难降解、重金属污染需控制这两个问题,开发能同时实现高效堆肥和降低成品重金属毒性的堆肥新方法与机理,对推动堆肥技术大跨度发展,实现高效快速堆肥处理具有重要的理论价值与现实意义。
     本文探讨了堆肥过程中微生物群落的演替规律,系统地研究了高效木质素降解功能微生物与其胞外酶的行为机制及对堆肥微生物群落结构与活性、木质素降解、腐殖质形成的作用机理,并考察强化堆肥法对堆肥重金属毒性的影响,发展了新型高效的基于木质素降解功能微生物、复合酶的强化堆肥技术与理论。本文的具体研究工作及成果包括以下4个部分内容:
     第1部分为堆肥过程微生物群落结构变化与木质纤维素降解的相关性研究。(1)采用醌指纹法研究了堆肥过程中微生物群落的演替。发现微生物群落结构发生了明显改变。高温阶段,Q-9(H2)、Q-10(H2)表征的真菌是半纤维素、纤维素的主要降解者,MK-7、Q-10分别表征的细菌、嗜热真菌是主要木质素降解者,而Q-9表征的黑曲霉、青霉等嗜温木质素降解真菌量少,降解作用有限。降温阶段,Q-9和长链甲基萘醌增多,其与优势醌MK-7分别表征的真菌、放线菌、细菌协同作用,促使木质素大量降解,并呈较高的纤维素降解率。(2)含MK-9(H2)的放线菌分别与MK-9、MK-9(H6)、MK-10(H6)表征的放线菌有良好共存性,含MK-5(H2)的细菌分别与MK-9、MK-9(H2)表征的放线菌友好共存,互促生长繁殖。限制性片段长度多态性分析显示,细菌在高温期最活跃,堆肥过程细菌群落基因多样性变化小。(3)结合主成分、相关性分析等探讨了木质素降解微生物群落的组成及其与木质纤维素降解的相关性。发现Q-9、MK-7、MK-8(H2)、MK-9、 MK-9(H2)、MK-9(H6)、MK-9(H8)和MK-10(H6)表征的嗜温真菌、细菌和放线菌组成的特定群落是起关键作用的木质素降解群落,与木质素降解正相关,含后7种醌的微生物群落还与纤维素降解正相关。(4)证实了木质素的降解显著影响半纤维素、纤维素降解,指出堆肥过程木质素降解真菌的劣势地位限制了木质素的降解,可通过接种木质素降解真菌促进木质素降解、提高堆肥效率。
     第2部分着重研究木质素降解功能微生物、胞外酶强化堆肥技术及机理。(1)针对高效木质素降解功能微生物白腐真菌特性与降解机理展开研究。发现温度和含水率是影响该菌固态发酵产酶和降解能力的最主要因素,确定最佳工艺参数:菌种驯化5d,接种量0.8%,吐温80添加量0.3%,温度37℃,含水率85%。证实该菌能严重破坏木质素结构,使苯环开环,难降解的大分子长键烃断裂成易降解的小分子短键烃。提出了用关联分析思想判别白腐菌产酶过程最显著影响因素,建立了GM(1,1)模型预测日产酶量,发现在最显著影响因素含水率不变时,GM(1,1)模型能快速准确地预测产酶,减少实验工作量。(2)建立了木质素降解功能微生物强化堆肥法处理木质纤维素类废物。证实强化堆肥法可增加微生物活性,提高木质素降解率至43.9%,使有机物降解更彻底。(3)进一步研究强化堆肥过程中的微生物群落演替和腐殖质形成。发现强化堆肥法显著提高了成品腐殖化程度(54.1%)和总微生物量,但降低了群落多样性指数、均匀性指数,使Q-9、长链甲基萘醌分别表征的木质素降解真菌、放线菌增多,尤其木质素降解真菌成为优势菌,Q-8、MK-7分别表征的固氮细菌、木质素降解细菌增多,而其它微生物减少。聚类分析和主成分分析显示,强化堆肥法明显改变了微生物群落结构组成,尤其在16~28d影响最大,大大加强了木质素降解真菌、放线菌在整个堆肥体系中的影响力,利于木质素降解。(4)制备了木质素降解功能复合酶,考察了其在稻草、米糠、蔬菜残余、土壤4种典型堆肥基质表面的传输行为与附着性能,并研究其降解天然木质素机理。发现复合酶在稻草、米糠中传输性能最佳,可传输至基质柱深层;在4种基质表面的附着都属有利吸附,利于酶与基质的有效接触。复合酶酶解木质素时,通过氧化苯甲醇单元、脱甲氧基和甲基、断裂部分碳碳双键、醚键与Ca-Cβ键并氧化Ca侧链成羧酸、芳环开环及芳环取代等一系列反应,导致木质素结构中醇羟基、亚甲基、甲氧基、甲基、醚键、碳碳双键、苯环等减少,香草酸、阿魏酸等酯型结构被分解,木质素二聚体解聚成低分子物质,羰基、取代芳环等增多。(6)研究了功能复合酶强化堆肥法对微生物群落碳源代谢、木质素降解的影响。结果显示,添加复合酶显著增强了总有机质的降解和微生物群落碳源代谢能力。Biolog分析表明,复合酶主要影响了微生物群落对17种碳源的利用,大大提高了丙酮酸甲酯、a-环式糊精、D-甘露醇、D-半乳糖醛酸、衣康酸、L-天冬酰胺的利用,降低了D,L-a-磷酸甘油、L-苏氨酸、甘氨酰-L-谷氨酸、腐胺的利用。复合酶显著促进了木质素降解,可能与其既能催化木质素分解,又能增强微生物对酚类化合物、羧酸类等木质素降解中间产物的代谢有关。
     第3部分为木质素降解功能微生物强化堆肥法处理Pb污染基质及过程机理研究。(1)探讨了Pb胁迫下木质素降解功能微生物白腐菌的反应行为和降解能力。结果表明,该菌通过菌丝缠绕更致密及分泌胞外物质2种反应行为来抵御Pb毒性,在含400mg L-1Pb2+的液态培养基中能较好生长。Pb污染固态基质处理中,白腐菌定殖能力与水溶交换态Pb减少率(含量高于8.2mg kg-1时)正相关;不同浓度Pb对纤维素酶活、纤维素降解有抑制作用,而低浓度Pb使木聚糖酶、木质素降解酶活性和半纤维素、木质素降解增强。(2)系统研究了黄孢原毛平革菌处理不同浓度Pb污染木质纤维素废物的整个过程,探讨了它对Pb的钝化机制。发现即使初始Pb浓度为400mg kg-1干基质时,该菌仍能降解43.1%的木质纤维素,并形成腐殖质,大大减少游离态Pb。初始Pb浓度为30mg kg-1时,木质纤维素、有机质降解率高达56.8%、64.0%,木质素降解选择性指数较高。经扫描电镜与能谱分析发现,该菌对Pb的钝化可能主要通过:菌丝表面的吸附与离子交换作用,及该菌代谢物的络合作用。(3)研究了木质素降解功能微生物强化堆肥法处理Pb污染垃圾及机理。发现强化堆肥法能经济有效地处理Pb污染垃圾,堆制过程中有较高的微生物量、CO2释放量,使成品中水溶交换态Pb含量为0%、毒性小。且指出水溶性有机C/N变化不宜作为重金属垃圾堆肥的腐熟度评价指标,可考虑改用木质素、粗纤维余量。(4)研究了木质素降解功能微生物强化堆肥法修复Pb污染土壤及机理。发现由于微生物菌丝体对Pb离子的强吸附作用及堆肥过程中生成腐殖质的络合作用,污染土壤经强化堆肥法修复后,土壤微生物活性和群落碳源代谢能力增强,游离态Pb转为以残留态和铁锰氧化物结合态存在。
     第4部分着重开展关键生物酶活性及微生物群落演替与木质素降解的映射模型的构建。(1)构建了木质纤维素废物处理体系中酶活与木质素降解率关系的人工神经网络(ANN)模型,该模型中输入酶活值能准确预测木质素的降解。(2)构建了堆肥过程中微生物群落演替与木质素降解率关系的ANN模型,该模型中输入群落信息能有效预测木质素降解。ANN模型在复杂关系解析中具优越性,为定量分析关键酶、微生物群落对木质素降解的影响提供了技术支持,可高效指导有关复合酶、复合菌剂的开发和应用。
     本论文研究揭示了堆肥微生物群落演替及木质素降解功能微生物强化堆肥机理,可为科学认识堆肥反应本质提供微生物群落信息,为微生物选育、复合生物促进剂等相关研究的合理开展提供依据;并为高效快速堆肥新方法的发展奠定基础,以克服传统堆肥法处理效率低、腐熟程度差等不足。
Composting, as an economic and effective technology for solid waste treatment, is one of important research subjects. But the application of traditional composting are limited due to the biodegradative recalcitrance of lignin and the stresss of heavy metal in composting materials. So the improvement of composting efficiency and heavy metal control are very important. Since microbial community are responsible for organic matter degradation during composting, the study on microbial community succession is a basis of composting technology and theory researches. To improve composting efficiency and control heavy metal pollution, exploring a new composting technology and theory based on microbial community study are needed. It would promote the development of composting technology, and be of theoretical and practical value for efficient and rapid composting treatment.
     This dissertation discussed microbial community succession, and investigated the effects of ligninolytic microorganisms and enzymes on microbial activities, lignin degradation and humus formation in composting. The control of heavy metal are also considered in this study. According to these researches, we developed a new and efficient composting techonology based on ligninolytic microorganisms or enzymes. This dissertation is composed of four sections.
     The first section describes the research on the relationship between microbial community successtion and lignocellulose degradation.(1) Microbial populations and their relationship to bioconversion during composting were studied by quinone profiling. The obvious changes in microbial population were observed. Fungi indicated by Q-9(H2) and Q-10(H2) were considered to be the most important hemicellulose and cellulose-degrading microorganisms during thermophilic stage. MK-7and Q-10, indicative of certain bacteria and fungi respectively, were responsible for lignin degradation at the thermophilic stage, whereas the mesophile ligninolytic fungi (Aspergillus niger, Penicillium, and etc.) indicated by Q-9is limited. The highest lignin degradation ratio and good cellulose degradation were found at the cooling stage and were correlated with Q-9, MK-7and long-chain menaquinones attributed to mesophilic fungi, bacteria and actinomycetes, respectively.(2) MK-9(H2) positively correlated with MK-9MK-9(H6) and MK-10(H6) respectively, which suggests coexistence and possibly even cooperativity among the corresponding microorganisms. Significant positive correlation was also suggested for the bacteria indicated by MK-5(H2) and the actinomycetes containing MK-9or MK-9(H2) as major quinone. RFLP analysis showed there were no obvious changes in genetic diversity of bacterial community during composting, and bacterial community is very active during thermophilic stage.(3) Principal component and correlation analyses showed a significant positive correlation between lignin degradation ratio and the total content of Q-9、MK-7、MK-8(H2)、MK-9、MK-9(H2)、MK-9(H6)、MK-9(H8)和MK-10(H6), which indicated that the microbial community consisting of mesophilic fungi, bacteria and actinomycetes played a key role in lignin degradation. And a positive correlation between the latter7quinones and cellulose degradation was found.(4) Lignin degradation significantly affected hemicellulose and cellulose degradation. The inferior position of ligninolytic fungi in composting might be responsible for slow degradation of lignin. It is expected that inoculating ligninolytic fungi would accelerate lignin degradation and promote composting efficiency.
     The second section focuses on the study of mechanisms of the composting technology by adding ligninolytic microorganism or enzymes.(1) The characteristics and degradation ability of ligninolytic fungus (white-rot fungus) were studied. Temperature and substrate moisture were confirmed to be the main effect factors. The optimal treament conditions are:5days of fungi incubation,0.8%of inoculum,0.3%of Tween80addition,37℃and85%of water content of substrate. This fungus could destroy lignin structure by the cleavage of aromatic ring and the transformation of long-bond hydrocarbons of giant molecule to the short-bond. The study also applied relational analysis to the enzyme production process of white-rot fungi, and constructed GM(1,1) model which could be used to predicted enzyme production to reduce experimental quantity.(2) Composting of lignocellulosic waste by ligninolytic fungi was studied. By this composting method, microbial activities were enhanced, and lignin degradation ratio reached43.9%, and more completed degradation of organic matter was also found.(3) The higher humification degree (54.1%) and total microbial biomass were observed during the composting process with the inocula of ligninolytic fungi than those in tradition composting. While the low diversity and evenness of microbial community were found. It might be because the lignin-degrading fungi and actinomycetes respectively indicated by Q-9and long-chain menaquinones increased, and bacteria with nitrogen fixation and lignin-degrading bacteria indicated by Q-8and MK-7increased, whereas other microorganisms decreased. Composting method with fungi inocula changed microbial community structure obviously, especially from day16to28, enhanced the effect of lignin-degrading fungi and actinomycetes.(4) The transfer and adsorption behaviours and degradation mechanisms of ligninolytic enzymes (LiP-MnP) were studied. The transfer abilities of ligninolytic enzymes on straw and chaff are better than vegetable residues and soil. The adsorption on these four substrates belonged to favourable adsorption, which ensured the effective contact between enzymes and substrates. Degradation mechanisms of ligninolytic enzymes included:benzyl alcohol unit oxidation, methoxy and methyl group removal, C=C and ether bond and Ca-Cβ cleavage, and aromatic ring cleavage and replacement. Therefore, alcohol hydroxyl,-CH2,-OCH3,-CH3, ether bond, C=C, and aromatic ring in lignin decreased. Vanillic acid and ferulic acid unit in lignin were decomposed, and lignin dimers were degraded into low-weight matters.(6) Carbon source utilization and lignin degradation by microbial community were studied during composting with LiP-MnP enzymes. Addition of LiP-MnP enzymes significantly promoted organic matter degradation and carbon source utilization. It was found by Biolog analysis that the enzymes mainly affected the utilization of17carbon source. The utilization of pyruvic acid methyl ester, a-cyclodextrin, D-mannitol, D-galacturonic acid, itaconic acid and L-asparagine were enhanced, whereas the utilization of D,L-a-glycerol phosphate, L-threonine, glycyl-L-glutamic acid and putrescine were weakened. Lignin degradation was significantly promoted by LiP-MnP enzymes. There might be two reasons:the enzymes catalyzed lignin degradation, and enhanced the utilization of lignin degradation products such as phenolic compound and carboxylic acid.
     The third section describes the research on composting of Pb-polluted substrates by inocula of ligninolytic fungi.(1) Mycelial growth and the degradation of lignocellulosic waste by ligninolytic fungus Phanerochaete chrysosporium under lead stress were studied. P. chrysosporium could grow in liquid media with400mg L-1Pb(II), which might be due to its two possible responses:dense and tight twist of hyphae, and secretion from mycelia to resist Pb. During solid-state fermentation, fungal colonization capability was positively correlated with the removal efficiency of soluble-exchangeable Pb when its content was higher than8.2mg kg"1dry mass. Carboxymethyl cellulase activity and cellulose degradation were inhibited at different initial Pb concentrations, whereas low initial Pb concentrations strengthened xylanase and ligninolytic-enzyme activities and the hemicellulose and lignin degradation.(2) Degradation of Pb-polluted lignocellulosic waste and the restrain of Pb hazards by P. chrysosporium were studied. P. chrysosporium degraded43.1%of lignocellulose, formed humus and reduced active Pb ions, even at the concentration of400mg kg-1dry mass of Pb. The highest lignocellulose degradation (56.8%) and organic matter loss (64.0%) were found at Pb concentration of30mg kg-1, and selective lignin biodegradation was enhanced. Scanning electron micrographs with energy spectra showed that Pb was immobilized via two possible routes:adsorption and cation exchange on hypha, and the chelation by fungal metabolite.(3) Treatment of Pb-polluted solid waste by composting with ligninolytic fungi was studied. Microbial biomass and CO2production increased, whereas soluble-exchangeable Pb content was reduced to0%. water-soluble organic C/N ratio might be not a suitable evaluating indicator for the composting of metal-polluted waste, while lignin and coarse fibre were suggested.(4) Pb-polluted soil could be remediated by composting with ligninolytic fungi, and microbial activities and carbon source utilization were enhanced. Active Pb form was transformed into the residual and Fe-Mn oxidation forms. It might be due to adsorption on fungi mycelia and complexation of humus.
     The four section focuses on the model construction for relationship between enzyme activities, microbial community and lignin degradation respectively.(2) It was confirmed that ANN model could be used to predicted lignin degradation by the input of LiP and MnP activities.(2) ANN model could predicted lignin degradation by the input of community information. These showed the advantage of ANN application in complex relationship resolution, which could be a reference for quantification of effect of enzymes and microorganisms on lignin degradation.
     This dissertation revealed microbial community succession and the mechanisms of solid waste composting by ligninolytic microorganisms, which could provide microbial information for the understanding of composting process and benefit the studies of complex microbial inoculants. It is expected to lay the foundation for the development of a new composting method with high efficiency, which could conquer some deficiency existed in traditional composting technology.
引文
[1]Hassen A, Belguith K, Jedidi N, et al. Microbial characterization during composting of municipal solid waste. Bioresource Technology,2001,80(3): 217-225
    [2]Tien M, Kirk T K. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium burds. Science,1983,221(4611):661-663
    [3]Ghita A B, Mohamed H, Juan C, et al. Characterization of fulvic acids by elemental and spectroscopic (FTIR and 13C-NMR) analyses during composting of olive mill wastes plus straw. Bioresource Technology,2004,93(3):285-290
    [4]郝吉明,马广大.大气污染控制工程.第2版.北京:高等教育出版社,2002,1-28
    [5]Barker A V, Bryson G M. Bioremediation of heavy metals and organic toxicants by composting. The Scientific World Journal,2002,2(3):407-420
    [6]任南琪,马放.污染控制微生物学原理与应用.北京:化学工业出版社,2003,145-164
    [7]李玉春,李彦富,荣波,等.北京市生活垃圾堆肥现状及存在问题分析.环境卫生工程,2005,13(4):62-67
    [8]Paola C, Guido A, Roberto M, et al. Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Management,2005, 25(2):209-213
    [9]宁平.固体废物处理与处置.北京:高等教育出版社,2007,1-6
    [10]Iyengar S R, Bhave P P. In-vessel composting of household wastes. Waste Management,2006,26(10):1070-1080
    [11]Sanchez-Monedero M, Roig A, Cegarra J, et al. Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresource Technology,1999, 70(2):193-201
    [12]Goyal S, Dhull S K, Kapoor K K. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technology,2005,96(14):1584-1591
    [13]Fricke K, Santen H, Wallmann R. Comparison of selected aerobic and anaerobic procedures for MSW treatment. Waste Management,2005,25(9):799-810
    [14]Macklin K S, Hess J B, Bilgili S F, et al. Effects of inhouse composting of litter on bacterial levels. The Journal of Applied Poultry Research,2006,15(4): 531-537
    [15]杨渤京,王洪涛.农业固体废物堆肥生产复混肥的工艺试验研究.环境科学,2006,27(7):1464-1468
    [16]李国学,张福锁.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社,2000,22-25
    [17]Zmora-Nahum S, Hadar Y, Chen Y. Physico-chemical properties of commercial composts varying in their source materials and country of origin. Soil Biology & Biochemistry,2007,39(10):1263-1276
    [18]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制.北京:科学出版社,2006,1-21
    [19]全燮.环境科学与工程实验教程.大连:大连理工大学出版社,2007,24-38
    [20]柴晓利,张华,赵由才.固体废物堆肥原理与技术.北京:化学工业出版社,2005,20-23
    [21]Beffa T, Blanc M, Lyon P F, et al. Isolation of Thermus strains from hot compost (60-80℃). Applied and Environmental Microbiology,1996,62(5):1723-1727
    [22]Charert M H, Antoun H, Beauchamp C S. Dynamics of watersoluble carbon substances and microbial populations during the composting of de-inking paper sludge. Bioresource Technology,2004,91(1):63-67
    [23]黄得扬,陆文静,王洪涛.高效纤维素分解菌在蔬菜—花卉秸秆联合好氧堆肥中的应用.环境科学,2004,25(2):146-149
    [24]Ejechi B O, Obuekwe C O, Ogbimi A O. Microchemical studies of wood degradation by brown rot and white rot fungi in two tropical timbers. International Biodeterioration and Biodegradation,1996,38(2):119-122
    [25]Benito M, Masaguer A, Moliner A, et al. Chemical and microbiological parameters for the characterization of the stabilizing and maturing of pruning waste compost. Biology and Fertility of Soils,2003,37(3):184-189
    [26]Danon M, Chen Y, Hadar Y. Ascomycete communities associated with suppression of Sclerotium rolfsii in compost. Fungal Ecology,2010,3(1):20-30
    [27]徐建玲.现代环境卫生学.北京:北京大学出版社,2009,105-130
    [28]李艳霞,王敏健,王菊思,等.城市固体废弃物堆肥化处理的影响因素.土壤与环境,1999,8(1):61-65
    [29]Fogarty A M, Tuovinen O H. Microbiological degradation of pesticides in yard waste composting. Microbiological Reviews,1991,55(2):225-233
    [30]Felsot A S, Racke K D, Hamilton D J. Disposal and degradation of pesticide waste. Reviews of Environmental Contamination and Toxicology,2003,177: 123-200
    [31]Mangkoedihardjo S. Revaluation of maturity and stability indices for compost. Journal of Applied Sciences and Environmental Management,2006,10(3): 83-85
    [32]Ishii K, Fukui M, Takii S, et al. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. Journal of Applied Microbiology,2000,89(5):768-777
    [33]Yung C, Hudson H J. The fungi of wheat straw compost I ecological studies. Transactions of the British Mycological Society,1967,50:646-666
    [34]Ryckeboer J, Mergaert J, Coosemans J, et al. Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of Applied Microbiology,2003,94(1):127-137
    [35]Saludes R B, Iwabuchi K, Miyatake F, et al. Characterization of dairy cattle manure/wallboard paper compost mixture. Bioresource Technology,2008, 99(15):7285-7290
    [36]Jimenez E I, Garcia V P. Composting of domestic refuse and sewage sludge. I. evalution of temperature, pH, C/N ratio and cation exchange capacity. Resources, Conservation and Recycling,1991,6:45-60
    [37]Wei S, Jeanette M N, Bruce E M, et al. Effects of aeration and moisture during windrow composting on the nitrogen fertilizer values of dairy waste composts. Applied Soil Ecology,1999,11(1):17-28
    [38]陈同斌,黄启飞,高定,等.城市污泥堆肥温度动态变化过程及层次效应.生态学报,2002,22(5):736-741
    [39]Soumare M, Demeyer A, Tack F M G, et al. Chemical characteristics of Malian and Belgian solid waste composts. Bioresource Technology,2002,81(3):97-101
    [40]Mondini C, Farnasier F, Sinicco T. Enzymatic activity as a parameter for the characterization of the composting process. Soil Biology & Biochemistry,2004, 36(10):1587-1594
    [41]Herrmann R F, Shann J F. Microbial community changes during the composting of municipal solid waste. Microbial Ecology,1997,33(1):78-75
    [42]Lei F, VanderGheynst J S. The effect of microbial inoculation and pH on microbial community structure changes during composting. Process Biochemistry,2000,35(9):923-929
    [43]Medeiros P M, Fernandes M F, Dick R P, et al. Seasonal variations in sugar contents and microbial community in a ryegrass soil. Chemosphere,2006,65(5): 832-839
    [44]王伟东,王小芬,朴哲,等.堆肥化过程中微生物群落的动态.环境科学,2007,28(11):2591-2597
    [45]McMahon V, Garg A, Aldred D, et al. Composting and bioremediation process evaluation of wood waste materials generated from the construction and demolition industry. Chemosphere,2008,71(9):1617-1628
    [46]Vance E D, Brooks P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry,1987,19(3):703-707
    [47]Anderson T H, Joergensen R G. Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH. Soil Biology & Biochemistry.1997,29(7):1033-1042
    [48]Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. FEMS Microbiology Review,1995,59(1):143-169
    [49]Howeler M, Ghiorse W C, walker L P. A quantitative analysis of DNA extraction and purification from compost. Journal of Microbiological Methods,2003,54(1): 37-45
    [50]Albrecht A, Witzenberger R, Bernzen U, et al. Detection of airborne microbes in a composting facility by cultivation based and cultivation-independent methods. Annals of Agricultural and Environmental Medicine,2007,14(1):81-85
    [51]Cordova-Kreylos A L, Cao Y, Green P G, et al. Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments. Applied and Environmental Microbiology,2006,72(5):3357-3366
    [52]Schaefer M, Petersen S O, Filser J. Effects of Lumbricus terrestris, Allolobophora chlorotica and Eisenia fetida on microbial community dynamics in oil-contaminated soil. Soil Biology and Biochemistry,2005,37(11): 2065-2076
    [53]Morten K, Erland Baath. Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiology Ecology,1998,27(1):9-20
    [54]VanderGheynst J S, Lei F. Microbial community structure dynamics during aerated and mixed composting. Transactions of the ASAE,2003,46(2):577-584
    [55]Klamer M, Baath E. Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiology Ecology,1998,27(1):9-20
    [56]Herrmann R F, Shann J F. Microbial community changes during the composting of municipal solid waste. Microbial Ecology,1997,33(1):78-75
    [57]唐景春,Katayama Arata.醌类图谱分析在环境微生物生态测定中的应用.应用与环境生物学报,2004,10(4):530-536
    [58]胡洪营,童中华.微生物醌指纹法在环境微生物群体组成研究中的应用.微生物学通报,2002,29(4):95-98
    [59]Katayama A, Funasaka K, Fujie K. Changes in the respiratory quinone profile of a soil. Water Science Technology,1998,38(8):69-76
    [60]Hiraishi A. Respiratory quinone profiles as tools for identifying different bacterial populations in activated sludge. Journal of General and Applied Microbiology,1988,34 (1):39-56
    [61]Miyuki N, Miho A S, Hiroshi S. Identification of isoprenoid quinones by firt-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. Journal of Microbiological Methods,1997,28(1):113-122
    [62]Tang J C, InoueY, Yasuta T, et al. Chemical and microbial properties of various compost products. Soil Science & Plant Nutrition,2003,49(2):273-280
    [63]Hu H Y, Fujie K, Nakagome H, et al. Quantitative analyses of the change in microbial diversity in a bioreactor for wastewater treatment based on respiratory quinones. Water Research,1999,33(15):3263-3270
    [64]Hiraishi A, Morishima Y, Takeuchi J. Numerical analysis of lipoquinone patterns in monitoring bacterial community dynamics in wastewater treatment systems. Journal of General and Applied Microbiology,1991,37(1):57-70
    [65]Kunihiro T, Hu H Y, Lim B R, et al. Analysis of the diferences in microbial community structures between suspended and sessile microorganisms in rivers based on quinone profile. Journal of General and Applied Microbiology,2002, 48(1):35-41
    [66]Fujie K, Hu H Y, Tanaka H, et al. Analysis of respiratory quinone profile in soil for characterization of microbiota. Soil Science and Plant Nutrition,1998,44(3): 393-404
    [67]Hiraishi A, Yamanaka Y, Narihiro T. Seasonal microbial community dynamics in a flowerpot-using personal composting system for disposal of household biowaste. Journal of General and Applied Microbiology,2000,46(3):133-146
    [68]Tang J C, Kanamori T, InoueY, et al. Changes in microbial community structure in thermophilie composting process of manure detected by quinone profile method. Process Biochemistry,2004,39(1):1999-2006
    [69]LaMontagne M G, Michel F C, Holden P A, et al. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. Journal of Microbiological Methods,2002,49(2): 255-264
    [70]Dees P M, Ghiorse W C. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiological Ecology,2001,35(2):207-216
    [71]Sabine P, Stefanie K, Frank S, et al. Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism based genetic profiles of small-subunit rRNA genes. Applied and Environment Microbiology,2000,66(3):930-936
    [72]李志岗,杨官品,朱艳红.水环境细菌16S rDNA限制性片断长度多型性及群落结构的分析.水生生物学报,2001,25(2):111-115
    [73]Rousseaux S, Olier M, Lemaitre J P, et al. Use of PCR-restriction fragment length polymorphism of inlA for rapid screening of Listeria monocytogenes strains deficient in the ability to invade Caco-2 Cells. Applied and Environmental Microbiology,2004,70(4):2180-2185
    [74]Muthumeenakshi S, Mills P R, Brown A E, et al. Intraspecific molecular variation among Trichoderma harzianum isolates colonizing mushroom compost in the British Isles. Microbiology,1994,140(4):769-777
    [75]滕齐辉,曹慧,崔中利,等.太湖地区典型菜地土壤微生物16S rDNA的PCR-RFLP分析.生物多样性,2006,14(4):345-351
    [76]Marshalll M N, Cocolin L, Mills D A, et al. Evaluation of PCR primers for denaturing gradient gel electrophoresis analysis of fungal communities in compost. Journal of Applied Microbiology,2003,95(5):934-948
    [77]Araya R, Tani K, Takagi T. Bacterial activity and community composition in stream water and biofilm from an urban river determined by flourescent in situ hybridization and DGGE analysis. FEMS Microbiology Ecology,2003,43(1): 111-119
    [78]王爱杰,任南琪,冯玉杰,等.环境中的分子生物学诊断技术.北京:化学工业出版社,2004,243-253
    [79]Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology,1991, 57(8):2351-2359
    [80]席劲瑛,胡洪营,钱易.Biolog方法在环境微生物群落研究中的应用.微生物学报,2003,43(1):138-141
    [81]郑华,欧阳志云,方治国,等.Biolog在土壤微生物群落功能多样性研究中的应用.土壤学报,2004,41(3):456-461
    [82]Mondini C, Insam H. Community level physiological profiling as a tool to evaluate compost maturity:a kinetic approach. European Jouranal of Soil Biology,2003,39(1):141-148
    [83]Laine M M, Haario H, J(?)rgensen K S. Microbial functional activity during composting of chlorophenol-contaminated sawmill soil. Journal of Microbiological Methods,1997,30(1):21-32
    [84]冯宏,张新明,李华兴,等.接种菌剂对堆肥微生物利用碳源能力的影响.华南农业大学学报,2005,26(4):19-22
    [85]Fang M, Wong J W C. Changes in thermophilic bacteria population and diversity during composting of coal fly ash and sewage sludge. Water Air and soil Polution,2000,124(3-4):333-343
    [86]Buyer J S, Roberts D P, Millner P, et al. Analysis of fungal communities by sole carbon source utilization profiles. Journal of Microbiological Methods,2001, 45(1):53-60
    [87]张继澍.植物生理学.北京:高等教育出版社.2006,16-18
    [88]强胜.植物学.北京:高等教育出版社,2008,17-20
    [89]Sjostrom E. Wood Chemistry, Fundamentals and Applications,2nd ed. New York/London:Academic Press,1993
    [90]陈坚.环境生物技术.北京:中国轻工业出版社,2000:42-67
    [91]Kirk T K, Higuchi T, Chang H-M. Lignin biodegradation:microbiology, chemistry, and potential applications. Boca Raton, Florida:CRC Press,1980
    [92]Bridgwater A V, Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal,2003,91(1):87-102
    [93]Gardner K H, Blackwell J. The structure of native cellulose. Biopolymer,1974, 13(10):1975-2001
    [94]Ander P. The cellobiose-oxidizing enzymes CBQ and CBO as related to lignin and cellulose degradation-A review. FEMS Microbiology Reviews,1994, 13(2-3):297-312
    [95]Feng Y, Duan C J, Pang H, et al. Cloning and identification of novel cellulose genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Applied Microbiology and Biotechnology,2007,75(2): 319-328
    [96]陈洪章,李佐虎.纤维素原料微生物与生物量全利用.生物技术通报,2002,2:25-29
    [97]蒋挺大.木质素.北京:化学工业出版社,2001:45-56
    [98]Boerjan W, Ralph J, Baucher M. Lignin Biosynthesis. Annual Reviews in Plant Biology,2003,54(1):519-546
    [99]Reid I D. Biodegradation of lignin. Canadian Journal of Botany,1995,73(S1): 1011-1018
    [100]Shingo K, Masanori A, Noriko O, et al. Degradation of a non-phenolic L-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole. FEMS Microbiology Letters,1999,170(1):51-57
    [101]Kuhad R C, Singh A, Eriksson K E L. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Advances in Biochemical Engineering Biotechnology,1997,57(1):45-125
    [102]Tuomela M, Annele H, Raiskila S, et al. Biodegradation of radiolabelled synthetic lignin (14C-DHP) and mechanical pulp in a compost environment. Applied Microbiology and Biotechnology,2001,55(4):492-499
    [103]Kamoda S, Saburi Y. Structural and enzymatical comparison of iignostilbene-a,B-dioxygenase isozymes,Ⅰ,Ⅱ, and Ⅲ, from Pseudomonas paucimobilis TMY1009. Bioscience Biotechnology & Biochemistry,1993,57(6):931-934
    [104]Carol A C. Bacterial Associations with Decaying Wood:a Review. International Biodetertoration & Biodegradation,1996,37(1):101-107
    [105]Gonzalez J M, Moran M A. Numerical dominance of a group of marine bacteria in the subclass of Proteobacteria in coastal seawater. Applied and Environmental Microbiology,1997,63(11):4237-4242
    [106]Lokesh K V. (14)C-lignin-lignocellulose biodegradation by bacteria isolated from polluted soil. Indian Journal of Experimental Biology,2001,39(6): 584-589
    [107]Godden B, Ball A S, Helvenstein P, et al. Towards elucidation of the lignin degradation pathway in actinomycetes. Journal of General and Applied Microbiology,1992,138:2441-2448
    [108]Borneman W S, Hartley R D, Morrison W H, et al. Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Applied Microbiology and Biotechnology,1990,33(3):345-351
    [109]Hernandez M, Hernandez-Coronado M J, Montiel M D, et al. Pyrolysis/gas chromato-graphy/mass spectrometry as a useful technique to evaluate the ligninolytic action of streptomycetes on wheat straw. Journal of Analytical and Applied Pyrolysis,2001,58-59:539-551
    [110]Antai S P, Crawford D L. Degradation of soft wood, hardwood, and grass lignocelluloses by two Streptomyces strains. Applied and Environmental Microbiology,1981,42(2):378-380
    [111]Crawford J H, Composting of agricultural wastes:a review. Process Biochemistry,1983,18(1):14-18
    [112]Strom P F. Identification of thermophilic bacteria in solid waste composting. Applied and Environmental Microbiology,1985,50(4):906-913
    [113]Kukolya J D. Isolation and identification of thermophilic cellulolytic actinomycetes. Acta Phytopathologicaet Entomologica Hungarica,1997,32(1): 97-107
    [114]Mohammed R, Bernard B, Genevieve V, et al. Ultrastructural patterns of beech leaf degradation by Sporotrichum pulverulentum. European Journal of Soil Biology,2001,37(1):75-84
    [115]张甲耀,龚利萍,罗宇煊,等.嗜碱细菌复合碳源条件下对麦草木质素的降解.环境科学,2002,23(1):70-73
    [116]Kinya K, Shinya K, Masanori S. Degradation of lignin compounds by bacteria from termite guts. Biotechnology Letters,1998,20(5):459-462
    [117]Tanaka T, Yamada K, Tonosaki T, et al. Enzymatic degradation of alkylphenols, bisphenol A, syntheticestrogen and phthalic ester. Water Science and Technology,2000,42(7-8):89-95
    [118]Seifert K. Chemical changes in beechwood cell walls by soft rot (Chaetomium globosum). Holz Roh-u. Werkst.,1966,24:185-189
    [119]Temp U, Eggert C, Eriksson K L. A small-scale method for screening of lignin degrading microorganisms. Applied Microbiology and Biotechnology,1998, 64(4):1548-1549
    [120]王蔚,高培基.褐腐真菌降解木质纤维素降解机制的研究进展.微生物学通报,2002,29(3):90-93
    [121]Frederick G, Terry L H. Mechanism of brown-rot decay:paradigm or paradox. International Biodeterioration and Biodegradation,1997,39(2):113-124
    [122]Dey S, Maiti T K, Bhattacharyya B C. Production of some extracellular enzymes by a lignin peroxidase producing brown-rot fungus, Polyporus ostreiformis, and its comparative abilities for lignin degradation and dye decolorization. Applied and Environmental Microbiology,1994,60(11):4216-4218
    [123]Ferraz A, Duran N. Lignin degradation during softwood decaying by the ascomycete Chrysonilia sitophila. Biodegradation,1995,6(4):265-274
    [124]Regalado V, Rodriguez A, Perestele F, et al. Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Applied and Eenvironmental Microbiology,1997,63(9):3716-3718
    [125]Regalado V, Perestelo F, Rodriguez A, et al. Activated oxygen species and two extracellular enzymes:laccase and aryl-alcohol oxidase, novel for the lignin-degrading fungus Fusarium proliferatum. Applied Biochemistry and Microbiology,1999,51(3):388-390
    [126]张建军,罗勤慧.木质素酶及其化学模拟的研究进展.化学通报,2001,64(8):470-477
    [127]Berglund G, Carlsson G, Smith A, et al. The catalytic pathway of horseradish peroxidase at high resolution. Nature,2002,417(6887):463-468
    [128]Ferapontova E E, Castillo J, Gorton L. Bioelectrocatalytic properties of lignin peroxidase from Phanerochaete chrysosporium in reactions with phenols, catechols and lignin-model compounds. Biochimica et Biophysica Acta,2006, 1760(9):1343-1354
    [129]Higuchi T. Lignin biochemistry:biosyntheses and biodegredation. Wood Science and Technology,1990,24(1):23-63
    [130]Heinzkill M, Messner K. The ligninolytic system of fungi. In:Fungal Biotechnology. Weinheim:Chapman and Hall,1997,213-225
    [131]池玉杰,伊洪伟.木材白腐菌分解木质素的酶系统-锰过氧化物酶、漆酶和木质素过氧化物酶催化分解木质素的机制.菌物学报,2007,26(1):153-160
    [132]Hatakka A. Biodegradation of lignin. In:Hofrichter M, Steinbuchel A eds. Biopolymers. Vol.1-Lignin, humic substances and coal. Weinheim, Germany: Wiley-VCH.2001,129-180
    [133]Howard R L, Abotsi E, Jansen van Rensburg E L, Howard S. Lignocellulose biotechnology:issues of bioconversion and enzyme production. African Journal of Biotechnology,2003,2(12):602-619
    [134]Hong-Duk Y, Yung C H, Sa-Ouk K. Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiology Letters,1995,132(2):183-188
    [135]Bourbonnais R, Leech D, Paice M G. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochimica et Biophysica Acta-General Subjects,1998,1379(3):381-390
    [136]Eggert C, Temp U, Eriksson K E L. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Letters,1997,407(1): 89-92
    [137]Fu S Y, Yu H S, Buswell J A. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Pleurotus sajor-caju. FEMS Microbiology Letters,1997,147(1):133-137
    [138]Kersten P J, Stephens S K, Kirk T K. Glyoxal oxidase and the extracellular peroxidases. In:Kirk T K, Stoneham H M C. International Conference on Biotechnology in Pulp and Paper Industry. MA:Butterworth-Heinemann,1990, 457-463
    [139]Hammel K E. Extracellular free radical biochemistry of ligninolytic fungi. New journal of chemistry,1996,20(2):195-198
    [140]Hilden L, Johansson G, Pettersson G, et al. Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation? FEBS Letter,2000,477(1-2):79-83
    [141]李慧蓉.白腐真菌的研究进展.环境科学进展,1996,4(6):69-77
    [142]Collins P J, Field J A, Teunissen P, et al. Stabilization of lignin peroxidases in white rot fungi by tryptophan. Applied and Environmental Mirobiology,1997, 63(7):2543-2548
    [143]Ardon O, Kerem Z, Hadar Y. Enhancement of lignin degradation and laccase activity in Pleurotus ostreatus by cotton stalk extract. Canadian Journal of Microbiology,1998,44(7):676-680
    [144]Tuomela M, Oivanenl P, Hatakka A. Degradation of synthetic 14C-lignin by various white-rot fungi in soil. Soil Biology & Biochemistry,2002,34(11): 1613-1620
    [145]林鹿,陈嘉翔,余家鸾,等.高效产生降解木素酶和降解聚木糖酶的菌种选育.中国造纸学报,1996(增刊),11:61-68
    [146]Capelari M, Zadrazil F. Lignin degradation and in vitro digestibility of wheat straw treated with Brazilian tropical species of white rot fungi. Folia Microbiologica,1997,42(5):481-487
    [147]岑沛霖,蔡谨.工业微生物学.北京:化学工业出版社,2000:31-62
    [148]李慧蓉.白腐真菌生物学和生物技术.北京:化学工业出版社,2005:25-40
    [149]陈坚,任洪强,堵国成,等.环境生物技术应用与发展.北京:中国轻工业出版社,2001,294-300
    [150]Keyser P, Kirk T K, Zeikus J G. Ligninolytic enzyme system of Phanerochaete chrysosporium:synthesized in the absence of lignin in response to nitrogen slarvation. Journal of bacteriology,1978,135(3):790-797
    [151]李越中,高培基,王祖农.黄孢原毛平革菌合成木素过氧化物酶的营养调控.微生物学报,1994,34(1):29-36
    [152]邓振旭,王宜磊.碳源和氮源对毛栓菌菌丝体生长和漆酶分泌的影响.微生物学杂志,2000,20(2):60-61
    [153]Zacchi L, Burla G, Zuolong D, et al. Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase. Journal of Biotechnology,2000,78(2):185-192
    [154]赵华,齐刚,代彦.白腐菌液体深层培养条件的研究.生物技术,2003,13(6):21-24
    [155]李华钟,章燕芳,华兆哲,等.黄孢原毛平革菌选择性合成木质素过氧化物酶.过程工程学报,2002,2(2):137-141
    [156]柯世省,夏黎明,张朝晖,等.氧浓度对固定化黄孢原毛平革菌合成过氧化物酶的影响.林产化学与工业,2000,20(3):40-47
    [157]Anthony L, Pometto, Crawford D L. Effects of pH on lignin and cellulose degradation by Streptomyces viridosporus. Applied and Environmental Microbiology,1986,52(2):246-250
    [158]张朝晖,夏黎明,林建平,等.黄孢原毛平革菌培养合成木素过氧化物酶研究.浙江大学学报,1999,33(2):132-136
    [159]Vikman M, Karjomaa S, Kapane A, et al. The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions. Applied Microbiology and Biotechnology,2002,59(4-5):591-598
    [160]Ferraz A, Rodriguez J, Freer J, et al. Biodegradation of Pinus radiata softwood by white-and brown-rot fungi. World Journal of Microbiology and Biotechnology,2001,17(1):31-34
    [161]Chen D M, Taylor A F S, Burke R M, et al. Identification of genes for lignin peroxidases and manganese peroxidasesin ectomycorrhizal fungi. New Phytologist,2001,152(1):151-155
    [162]Krcmar P, Kubatova A, Votruba J, et al. Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World Journal of Microbiology and Biotechnology,1999,15(2):269-276
    [163]Kenneth E H. Extracellular free radical biochemistry of ligninolytic fungi. New Journal of Chemistry,1996,20(2):195-198
    [164]Bao W, Fukushima Y, Jensen K A, et al. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Letters, 1994,354(2):297-300
    [165]Setliff E C, Renata M, Granzow S G, et al. Biomechanical puplping with white-rot fungi. Tappi Journal,1990,73(8):141-147
    [166]吴涓,肖亚中,王怡平.挂膜生长的白腐真菌处理草浆造纸黑液废水.应用与环境生物学报,2004,10(3):370-374
    [167]Flachowsky G. Animal nutrition in conflict with current and future social expectations and demands. Animal Research and Development,1999,49(1): 63-104
    [168]陈谊.白腐真菌对稻草秸秆的降解及其有关酶活性的变化.菌物系统,2001,20(3):403-407
    [169]Nigam P, Armour G, Banat I M, et al. Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource Technology,2000,72(3):219-226
    [170]Chen H Z, Xu F J, Li Z H. Solid-state production of biopulp by Phanerochaete chrysosporium using steam-exploded wheat straw as substrate. Bioresource Technology,2002,81(3):261-263
    [171]池玉杰,于钢.6种木材白腐菌对山杨材木质紊降解能力的研究.林业科学,2002,38(5):115-120
    [172]席北斗,刘鸿亮,孟伟,等.垃圾堆肥高效复合微生物菌剂的制备.环境科学研究,2003,16(2):58-64
    [173]Baldrian P. Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology,2003,32(1):78-91
    [174]Li Q B, Wu S T, Liu G, et al. Simultaneous biosorption of cadmium (Ⅱ) and lead (Ⅱ) ions by pretreated biomass of Phanerochaete chrysosporium. Separation and Purification Technology,2004,34(1):135-142
    [175]Yetis U A, Dolek A, Dilek F B, et al. The removal of Pb(Ⅱ) by Phanerochaete chrysosporium. Water Research,2000,34(16):4090-4100
    [176]Iqbal M, Edyvean R G J. Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Minerals Engineering,2004,17(1):217-223
    [177]Ceribasi H, Yetis U. Biosorption of Ni(ii) and Pb(ii) by Phanerochaete chrysosporium from a binary metal system-Kinetics. Water SA,2001,27(1): 15-20
    [178]Gutierrez A, Martinez M J, Almendros G, et al. Hyphal-sheath polysaccharides in fungal deterioration. The Science of the Total Environment,1995,167(2): 315-328
    [179]Bernheisel J F. What's the status of municipal solid waste composting? Resource Recycling,1999,14(10):64-74
    [180]顾希贤,许月蓉.垃圾堆肥微生物接种实验.应用与环境生物学报,1995,1(3):274-278
    [181]Yu E K C, Deschatelets L, Louis-seize G, et al. Butanediol production from cellulose and hemicellulose by klebsiella pneumoniae grown in sequential coculture with trichoderma harzianum. Applied and Environmental Microbiology,1985,50(4):924-929
    [182]崔宗均,李美丹,朴哲,等.一组高效稳定纤维素分解菌复合系MC1的筛选及功能.环境科学,2002,23(3):36-39
    [183]Pu Y T, Zhong Y H, Zhou W L. The mixed culturing of nitrogen-fixation bacteria and cellulose decomposing organism and the effects on the household garbage. Environmental Science & Technology,1999,84(1):15-18
    [184]石春芝,蒲一涛,郑宗坤,等.垃圾堆肥接种固氮菌对堆肥含氮量的影响.应用与环境生物学报,2002,8(4):419-421
    [185]Ghosh S, Kapadnis B P, Singh N B. Composting of cellulosic hospital solid waste:a potentially novel approach. International Biodeterioration & Biodegradation,2000,45(1):89-92
    [186]Singh A, Sharma S. Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting. Bioresource Technology, 2002,85(2):107-111
    [187]Bari Q H, Koenig A, Guihe T. Kinetic analysis of forced aeration composting. Reaction rates and temperature. Waste Management and Research,2000,18(4): 303-312
    [188]Lasaridi K, Stentiford E I. Composting of source separated MSW:an approach to respirometric techniques and biodegradation kinetics. Acta Horticulturae, 2001,549(1):81-90
    [189]Kakezawa M, Mimura A, Takahara Y. Application of two-step composting process to rice straw compost. Soil Science and Plant Nutrition,1992,38(2): 43-50
    [190]Lopez M J, Elorrieta M A, Vargas-Garcia M C, et al. The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi. Bioresource Technology,2002,81(3):123-129
    [191]Taccari M, Stringini M, Comitini F, et al. Effect of Phanerochaete chrysosporium inoculation during maturation of co-composted agricultural wastes mixed with olive mill wastewater. Waste Management,2009,29(5): 1615-1621
    [192]Vargas-Garcia M C, Suarez F, Lopez M J, et al. Influence of microbial inoculation and co-composting material on the evolution of humic-like substances during composting of horticultural wastes. Process Biochemistry, 2006,41(6):1438-1443
    [193]Gaind S, Pandey A K, Lata. Biodegradation study of crop residues as affected by exogenous inorganic nitrogen and fungal inoculants. Journal of Basic Microbiology,2005,45(4):301-311
    [194]Heilmann-Clausen J, Boddy L. Inhibition and stimulation effects in communities of wood decay fungi:Exudates from colonized wood influence growth by other species. Microbial Ecology,2005,49(3):399-406
    [195]Mupondi L T, Mnkeni P N S, Brutsch M O. The effects of goat manure, sewage sludge and effective microorganisms on the composting of pine bark. Compost Science & Utilization,2006,14(3):201-210
    [196]Glavica J, Friedrich J, Pavko A. Enzyme activities during composting of waste microbial biomass from pharmaceutical industry. Acta Chimica Slovenica,2002, 49(4):885-890
    [197]Hofrichter M, Lundell T, Hatakka A. Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Applied and Environmental Microbiology,2001,67(10):4588-4593
    [198]Camarero S, Bocchini P, Galletti G C, et al. Compositional changes of wheat lignin by a fungal peroxidase analyzed by pyrolysis-GC-MS. Journal of Analytical and Applied Pyrolysis,2001, (58-59):413-423
    [199]Grgic I, Berovie M, Perdih A. The effect of sterilization on poly (ethylene glycol) used as the enzyme activity stimulator in the Phanerochaete chrysosporium culture. Polymer Degradation and Stability,2003,80(2): 369-372
    [200]Perez J, Munoz-Dorado J, de la Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin:an overview. International Microbiology,2002,5(2):53-63
    [201]Wang H L, Li Z Y, Guo W Y, et al. Cooperation between ligninolytic enzymes produced by superior mixed flora. Journal of Environmental Sciences,2005, 17(4):620-622
    [202]Gill P K, Arora D S. Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi. Journal of India Microbiology Biotechnology,2003,30(1):28-33
    [203]Reddy C A. An overview of the recent advances on the physiology and molecular biology of lignin peroxidase of P. chrysosporium. Biotechnology, 1993,30(1):91-107
    [204]Niemenmaa O, Uusi-Rauva A, Hatakka A. Wood stimulates the demethoxylation of [(OCH3)-C-14]-labeled lignin model compounds by the white-rot fungi Phanerochaete chrysosporium and Phlebia radiate. Archives of Microbiology, 2006,185(4):307-315
    [205]Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review. Bioresource Technology,2000,72(2):169-183
    [206]Komilis D P, Ham R K. The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Management,2003,23(5):419-423
    [207]Saebo A, Ferrini F. The use of compost in urban green areas-A review for practical application. Urban Forestry & Urban Greening,2006,4(3-4):159-169
    [208]Jouraiphy A, Amir S, ElGharous M, et al. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. International Biodeterioration & Biodegradation,2005,56(2): 101-108
    [209]Cogger C G. Potential compost benefits for restoration of soils disturbed by urban development. Compost Science & Utilization,2005,13(4):243-251
    [210]Bustamante M A, Paredes C, Marhuenda-Egea F C, et al. Co-composting of distillery wastes with animal manures:carbon and nitrogen transformation in the evaluation of compost stability. Chemosphere,2008,72(4):551-557
    [211]Belyaeva O N, Haynes R J. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash. Bioresource Technology,2009,100(21):5203-5209
    [212]Raut M P, Willam S P M, Bhattacharyya J K, et al. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste- a compost maturity analysis perspective. Bioresource Technology,2008,99(14), 6512-6519
    [213]Conghos M M, Aguirre M E, Santamaria R M. Sunflower hulls degradation by co-composting with different nitrogen sources. Environmental Technology,2006, 27(9):969-978
    [214]Kurisu F, Satoh H, Mino T, et al. Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method. Water Research,2002,36(2):429-438
    [215]Puglisi E, Nicelli M, Capri E, et al. A soil alteration index based on phospholipid fatty acid. Chemosphere,2005,6(11):1548-1557
    [216]Muyzer G, Brinkhoff T, Ulrich N, et al. Molecular Microbial Ecology Manual. Netherlands:Kluwer Academic Publishers Dordrecht,1998,1-27
    [217]Hiraishi A, Narihiro T, Yamanaka Y. Microbial community dynamics during start-up operation of flowerpot-using fed-batch reactors for composting of household biowaste. Environmental Microbiology,2003,5(9):765-776
    [218]Hu H Y, Lim B R, Goto N, et al. Characterization of microbial community in an activated sludge process treating domestic wastewater using quinine profiles. Water Science and Technology,2001,43(8):99-106
    [219]Katayama A, Funasaka K, Fujie K. Changes in the respiratory quinine profile of a soil treated with pesticides. Biology and Fertility of Soils,2001,33(6): 454-459
    [220]Van Soest P J, Rovertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science,1991,74(10):3583-3597
    [221]Jeon C O, Lee D S, Park J M. Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor. Water Research,2003,37(9):2195-2205
    [222]高孟春,杨敏,邵兵,等.固相萃取-LC-MS定性分析微生物呼吸鲲方法的建立.环境化学,2004,23(5):578-583
    [223]Adachi M, Matsubara T, Okamoto R, et al. Inhibition of cyst formation in the toxic dinoflagellate Alexandrium (Dinophyceae) by bacteria from Hiroshima Bay, Japan. Aquatic Microbial Ecology,2001,26(2):223-233
    [224]Hoti S L, Sridhar A, Das P K. Presence of wolbachia endosymbionts in microfilariae of wuchereria bancrofti (Spirurida:Onchocercidae) from different geographical regions in India. Memorias do Instituto Oswaldo Cruz,2003, 98:1017-1019
    [225]White D C, Geyer R, Peacock A D, et al. Phospholipid furan fatty acids and ubiquinone-8:lipid biomarkers that may protect Dehalococcoides strains from free radicals. Applied and Environmental Microbiology,2005,71(12): 8426-8433
    [226]Imhoff J F. Quinones of phototropic purple bacteria. FEMS Microbiology Letter, 2006,25(1):85-89
    [227]Lim B R, Ahn K H, Songprasert P, et al. Microbial community structure in an intermittently aerated submerged membrane bioreactor treating domestic wastewater. Desalination,2004,161(2):145-153
    [228]Matsuda H, Kohno S, Maesaki S, et al. Application of ubiquinone systems and electrophoretic comparison of enzymes to identification of clinical isolates of Aspergillus fumigatus and several other species of Aspergillus. Journal of Clinical Microbiology,1992,30(8):1999-2005
    [229]Christov L P, Prior B A. Repeated treatments with Aureobasidium pullulans hemicellulases and alkali enhance biobleaching of sulphite pulps. Enzyme and Microbial Technology,1996,18(4):244-250
    [230]Yaguchi T, Someya A, Udagawa S. A reappraisal of intrageneric classification of Talaromyces based on the ubiquinone systems. Mycoscience,1996,37(1):55-60
    [231]Collins M D, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiology Reviews,1981,45(2): 316-335
    [232]Suzuki D, Ueki A, Amaishi A, et al. Desulfobulbus japonicus sp. nov., a novel Gram-negative propionate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. International Journal of Systematic and Evolutionary Microbiology,2007,57(4):849-855
    [233]Deguchi T, Kakezawa M, Nishida T. Nylon biodegradation by lignindegrading fungi. Applied and Environmental Microbiology,1997,63(1):329-331
    [234]McCarthy A J, Broda P. Screening for lignin-degrading actinomycetes and characterization of their activity against [14C] lignin-labelled wheat lignocellulose. Journal of General Microbiology,1984,130:2905-2913
    [235]Komilisa D P, Hamb R K, Park J K. Emission of volatile organic compounds during composting of municipal solid wastes. Water Research,2004,38(7): 1707-1714
    [236]Stepanova E V, Koroleva O V, Vasilchenko L G, et al. Fungal decomposition of oat straw during liquid and solid-state fermentation. Applied Biochemistry and Microbiology,2003,39(1):65-74
    [237]Kumar A G, Sekaran G, Krishnamoorthy S. Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium. Bioresource Technology,2006,97(13):1521-1528
    [238]Daniel G, Vole J, Niku-Paavola M L. Cryo-FE-SEM & TEM immuno-techniques reveal new details for understanding white-rot decay of lignocellulose. C. R. Biologies,2004,327:861-871
    [239]Rodriguez C S, Rivela I, Munoz M R, et al. Ligninolytic enzyme production and the ability of decolourisation of Poly R-478 in packed-bed bioreactors by Phanerochaete chrysosporium. Bioprocess Engineering,2000,23(3):287-293
    [240]Swamy J, Ramsay J A. Effects of Mn2+ and NH4+ concentrations on laccase and manganese peroxidase production and Amaranth decoloration by Trametes versicolor. Applied Microbiology and Biotechnology,1999,51(3):391-396
    [241]Dosoretz C G, Chen H G, Grethlein H E. Effect of environmental conditions on extracellular protease activity in ligninolytic cultures of Phanerochaete chrysosporium. Applied and Environmental Microbiology,1990,56(2):395-400
    [242]Tien M, Kirk T K. Lignin peroxidase of Phanerochaete Chrysosporium. Methods in Enzymology,1988,161(2):238-249
    [243]Hofrichter M, Fritsche W. Depolymerization of low-rank coal by extracellular fungal enzyme systems. Ⅱ.The ligninolytic enzymes of the coal humic acid depolymerizing fungus Nematoloma frowardii b19. Applied Microbiology and Biotechnology,1997,47(4):419-424
    [244]Hiroyuki W, Khadar V, Michael H G. Manganese(Ⅱ) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. The Journal of Biological Chemistry,1992,267(33):23688-23694
    [245]Chandhry A S. Chemical and biological procedures to upgrade cereal straws for ruminants. Nutrition Abstracts and Reviews,1998,68(5):319-328
    [246]Higuchi T. Biosynthesis and biodegradation of wood components. Academic Press:Orlando F L,1985,557-578
    [247]Poll C, Thiede A, Wermbrer N, et al. Micro-scale distribution of microorganisms and microbial enzyme activities in a soil with long-term organic amendment. European Journal of Soil Science,2003,54(4):715-720
    [248]曾光明,杨春平,卓利.环境系统灰色理论与方法.北京:中国科学技术出 版社,1994,58-69
    [249]汪树玉,刘国华.系统分析.杭州:浙江大学出版社,2002,52-56
    [250]Chen C M, Lee H M. An Efficient Gradient Forecasting Search Method Utilizing the Discrete Difference Equation Prediction Model. Applied Intelligence,2002,16(1):43-58
    [251]Jean-Francois P. Humus forms in terrestrial ecosystems:a framework to biodiversity. Soil Biology and Biochemistry,2003,35(7):935-945
    [252]Leisola M S A, Garoia S. The mechanisation of lignin degradation. Lignocellulose Science Technology Development and Use,1992,89-99
    [253]Cullen D. Recent advances on the molecular genetic fungi. Biotechnology,1997, 53(2):273-289
    [254]Blanchette R A. Degradtion of lingno-cellulose complex in wood. Canadian Journal of Botany,1995,73(7):999-1010
    [255]Tengerdy R P, Szakacs G. Bioconversion of lignocellulose in solid substrate fermentation. Biochemical Engineering Journal,2003,13(3):169-179
    [256]Kissi M, Mountadar M, Assobhe O, et al. White-rot basidiomycete fungi in decolorisation and detoxification of olive mill waste water. Applied Microbiology and Biotechnology,2001,57(12):221-226
    [257]Jimenex E I, Garcia V P. Relationship between carbon and total organic matter in municipal solid waste and city refuse compost. Bioresource Technology,1992, 41(3):209-223
    [258]Martins O, Dewes T. Loss of nitrogenous compounds during composting of animal wastes. Bioresource Technology,1992,42(2):103-111
    [259]席北斗,孟伟,黄国和,等.生活垃圾堆肥接种技术.环境科学,2003,24(1):157-160
    [260]Lopez M J, Vargas-Garcia M C, Suarez-Estrella F, et al. Biodelignification and humification of horticultural plant residues by fungi. International Biodeterioration & Biodegradation,2006,57(1):24-30
    [261]Paterson R R M, Buddie A. Rapid determination of ubiquinone profiles in Penicillium by reversed phase high performance thin-layer chromatography. Letters in Applied Microbiol,2008,13(3):133-136
    [262]Kim D J, Wi-Hao H. Evaluation of toxicity of the pesticides, chlorpyrifos and arsenic, in the presence of compost humic substances in aqueous systems. Journal of Hazardous Materials,2003,103(1):93-105
    [263]Yavmetdinov I S, Stepanova E V, Gavrilova V P, et al. Isolation and Characterization of Humin-Like Substances Produced by Wood-Degrading White Rot Fungi. Applied Biochemistry and Microbiology,2003,39(3): 257-264
    [264]Tomati U, Madejon E, Galli E. Evaluation of humic acid molecular weight as an index of compost stability. Compost Science and Utilization,2000,8(2): 108-115
    [265]Bernal M P, Paredes C, Sanchez-Monedero M A, et al. Maturity and stability parameters of composts prepared with a wide range of organic waste. Bioresource Technology,1998,6(3):91-99
    [266]Hasanudin U, Fujita M, Kunihiro T, et al. The effect of clams (Tapes philippinarum) on changes in microbial community structure in tidal flat sediment mesocosms, based on quinone profiles. Ecological Engineering,2004, 22(3):185-196
    [267]Song D, Katayama A. Monitoring microbial community in a subsurface soil contaminated with hydrocarbons by quinone profile. Chemosphere,2005,59(3): 305-314
    [268]Lorenz N, Hintemann T, Kramarewa T, et al. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biology & Biochemistry,2006,38(6):1430-1437
    [269]Vivas A, Moreno B, Garcia-Rodriguez S, et al. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresource Technology,2009,100(3):1319-1326
    [270]Tiquia S M. Evolution of extracellular enzyme activities during manure composting. Journal of Applied Microbiology,2002,92(4):764-775
    [271]Hirai H, Sugiura M, Kawai S, et al. Characteristics of novel lignin peroxidases produced by white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiology Letters,2005,246(1):19-24
    [272]Hatakka A. Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiology Reviews, 1994,13(2-3):125-135
    [273]Ralph J P, Catcheside D E A. Involvement of lignin peroxidase, manganese peroxidase and other agents in the degradation of brown coal by Phanerochaete chrysosporium. Fuel and Energy Abstracts,1997,38(2):71-78
    [274]Jimenez-Tobon G, Kuratkowski W, Rozbicka B, et al. In situ localization of manganese peroxidase production in mycelial pellets of Phanerochaete chrysosporium. Microbiology,2003,149(11):3121-3127
    [275]Fustec E, Chauvet E, Gas G. Lignin Degradation and Humus Formation in Alluvial Soils and Sediments. Applied and Environment Microbiology,1989, 55(4):922-926
    [276]Kerem Z, Hadar Y. Effect of manganese on lignin degradation by Pleurotus ostreatus during solig-state fermentation. Applied and Environmental Microbiology,1993, 59(12):4115-4120
    [277]Tuor U, Winterhalter K, Fiechter A. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. Journal of Biotechnology,1995,41(1):1-17
    [278]Hofrichter M. Review:lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology,2002,30(4):454-466
    [279]Kluczek-Turpeinen B, Tuomela M, Hatakka A. Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. Applied Microbiology and Biotechnology,2003,61(4):374-379
    [280]Luo S, Wehr N B, Levine R L. Quantitation of protein on gels and blots by infrared Xuorescence of Coomassie blue and Fast Green. Analytical Biochemistry,2006,350(2):233-238
    [281]Raj A, Krishna Reddy M M, Chandra R. Identification of low molecular weight aromatic compounds by gas chromatography-mass spectrometry (GC-MS) from kraft lignin degradation by three Bacillus sp. International Biodeterioration & Biodegradation,2007,59(4):292-296
    [282]Pattersona K, Lisal M, Colina C M. Adsorption behavior of model proteins on surfaces. Fluid Phase Equilibria,2011,302:48-54
    [283]Annunciado T R, Sydenstricker T H D, Amico S C, et al. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin,2005,50(11):1340-1346
    [284]Gilli G, Gilli P. Towards an unified hydrogen-bond theory. Journal of molecular structure,2000,552(1-3):1-15
    [285]Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces. Advances in Colloid and Interface Science,2011,162(1-2): 87-106
    [286]Amir S, Hafidi M, Lemee L, et al. Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography-mass spectrometry. Process Biochemistry,2006,41(2): 410-422
    [287]Trindade W G, Hoareau W, Razera I A T, et al. Phenolic thermoset matrix reinforced with sugar cane bagasse fibers:attempt to develop a new fiber surface chemical modification involving formation of quinones followed by reaction with furfuryl alcohol. Macromol Material Engineering,2004,289(8): 728-736
    [288]de Bertoldi M, Civilini M. High rate composting with innovative process control. Compost Science & Utilization,2006,14(4):290-295
    [289]Vargas-Garcia M C, Suarez-Estrella F, Lopez M J, et al. Effect of inoculation in composting processes:modifications in lignocellulosic fraction. Waste Management,2007,27(9):1099-1107
    [290]Wei Z M, Xi B D, Zhao Y, et al. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. Chemosphere,2007, 68(2):368-374
    [291]Tanka H, Koike K, Itakura S, et al. Degradation of wood and enzyme production by Ceriporiopsis subvermispora. Enzyme and Microbial Technology,2009, 45(5):384-390
    [292]Kokol V, Doliska A, Eichlerov I, et al. Decolorization of textile dyes by whole cultures of Ischnoderma resinosum and by purified laccase and Mn-peroxidase. Enzyme and Microbial Technology,2007,40(7):1673-1677
    [293]Tamagawa Y, Hirai H, Kawai S, et al. Removal of estrogenic activity of endocrine-disrupting genistein by ligninolytic enzymes from white rot fungi. FEMS Microbiology Letters,2005,244(1):93-98
    [294]Baldrian P, Snajdr J. Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes. Enzyme and Microbial Technology,2006,39(5):1023-1029
    [295]Yu G C, Wen X H, Li R, et al. In vitro degradation of a reactive azo dye by crude ligninolytic enzymes from nonimmersed liquid culture of Phanerochaete chrysosporium. Process Biochemistry,2006,41(9):1987-1993
    [296]Cohen S, Belinky P A, Hadar Y, et al. Characterization of catechol derivative removal by lignin peroxidase in aqueous mixture. Bioresource Technology,2009, 100(7):2247-2253
    [297]Kela P W, Jason A G, Matthias G, et al. Data transformations in the analysis of community-level substrate utilization data from microplates. Journal of Microbiological Methods,2007,69(3):461-469
    [298]Gomez E, Ferreras L, Toresani S. Soil bacterial functional diversity as influenced by organic amendment application. Bioresource Technology,2006, 97(13):1484-1489
    [299]Leflaive J, Cereghino R, Danger M, et al. Assessment of self-organizing maps to analyze sole-carbon source utilization profiles. Journal of Microbiological Methods,2005,62(1):89-102
    [300]Choi K H, Dobbs F C. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. Journal of Microbiology Methods,1999,36(3):203-213
    [301]Harch B D, Correll R L, Meech W, et al. Using the Gini coefficient with Biolog substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. Journal of Microbiological Methods, 1997,30(1):91-101
    [302]Ibekwe A M, Kennedy A C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiology Ecology,1998,26(2):151-163
    [303]郑华,欧阳志云,方治国,等BIOLOG在土壤微生物群落功能多样性研究中的应用.土壤学报,2004,41(3):456-460
    [304]Eun J S, Beauchemin K A, Hong S H, et al. Exogenous enzymes added to untreated or ammoniated rice straw:Effects on in vitro fermentation characteristics and degradability. Animal Feed Science and Technology,2006, 131(1-2):86-101
    [305]Martinez A T, Speranza M, Ruiz-Duenas F J, et al. Biodegradation of lignocellulose:microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology,2005,81(2):95-204
    [306]Sachan A, Ghosh S, Mitra A. Transforming p-coumaric acid into p-hydroxybenzoic acid by the mycelial culture of a white rot fungus Schizophyllum commune. African Journal of Microbiology Research,2010,4(4): 267-273
    [307]Canas A I, Camarero S. Laccases and their natural mediators:Biotechnological tools for sustainable eco-friendly processes. Biotechnology Advances,2010, 28(6):694-705
    [308]Tanka H, Koike K, Itakura S, et al. Degradation of wood and enzyme production by Ceriporiopsis subvermispora. Enzyme and Microbial Technology,2009, 45(5):384-390
    [309]Mester T, Tien M. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. International Biodeterioration & Biodegradation,2000,46(1):51-59
    [310]Alam M Z, Mansor M F, Jalal K C A. Optimization of decolorization of methylene blue by lignin peroxidase enzyme produced from sewage sludge with Phanerocheate chrysosporium. Journal of Hazardous Materials,2009,162(2-3): 708-715
    [311]Malherbe S, Cloete T E. Lignocellulose biodegradation:fundamentals and applications. Reviews in Environmental Science & Biotechnology,2002,1(2): 105-114
    [312]Dorado J, Almendros G, Camarero S, et al. Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes. Enzyme Microbial. Technology,1999,25(7):605-612
    [313]Fragoeiro S, Magan N. Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ. Microbiol,2005,7():348-355
    [314]Wen X H, Jia Y N, Li J X. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium-A white rot fungus. Chemosphere,2009,75(8):1003-1007
    [315]Rossbach S, Kukuk M L, Wilson T L, et al. Cadmium-regulated gene fusions in Pseudomonas fluorescens. Environmental Microbiology,2000,2(4):373-382
    [316]Pages D, Sanchez L, Conrod S, et al. Exploration of intraclonal adaptation mechanisms of Pseudomonas brassicacearum facing cadmium toxicity. Environmental Microbiology,2007,9(11):2820-2835
    [317]Dollar N L, Souch C J, Filippelli G M, et al. Chemical fractionation of metals in wetland sediments:Indiana dunes national lakeshore. Environmental Science & Technology,2001,35(18):3608-3615
    [318]Rodrigues S M, Henriques B, Coimbra J, et al. Water-soluble fraction of mercury, arsenic and other potentially toxic elements in highly contaminated sediments and soils. Chemosphere,2010,78(11):1301-1312
    [319]Rio-Celestino M D, Font R, Moreno-Rojas R, et al. Uptake of lead and zinc by wild plants growing on contaminated soils. Industrial Crops and Products,2006, 24(3):230-237
    [320]Rotkittikhun P, Kruatrachue M, Chaiyarat R, et al. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environmental Pollution,2006,144(2):681-688
    [321]Baldrian P, in der Wiesche, C., Gabriel J, et al. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl. Environmental Microbiology,2000,66(6):2471-2478
    [322]Singhal V, Rathore VS. Effects of Zn2+ and Cu2+ on growth, lignin degradation and ligninolytic enzymes in Phanerochaete chrysosporium. World Journal of Microbiology and Biotechnology,2001,17(3):235-240
    [323]Tuomela M, Steffen KT, Kerko E, et al. Influence of Pb contamination in boreal forest soil on the growth and ligninolytic activity of litter-decomposing fungi. FEMS Microbiology Ecology,2005,53(1):179-186
    [324]Say R, Denizli A, Aryca M Y. Biosorption of cadmium(II), lead(II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresource Technology,2001,76(1):67-70
    [325]Wu J, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass carbon by fumigation-extraction, an automated procedure. Soil Biology and Biochemisty,1990,22(8):1167-1169
    [326]Ghose T K. Measurement of cellulase activities. Pure and Applied Chemisty, 1987,59(2):257-268
    [327]Saha B C, Iten B L, Cotta M A, et al. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemisty,2005,40(12):3693-3700
    [328]Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemisty,1979,51(7): 844-851
    [329]Falih A M. Influence of heavy-metals toxicity on the growth of Phanerochaete chrysosporium. Bioresource Technology,1997,60(1):87-90
    [330]Gabriel J, Kofronova O, Rychlovsky P, et al. Accumulation and effect of cadmium in the wood-rotting basidiomycete Daedalea quercina. Bulletin of Environmental Contamination & Toxicology,1996,57(4):383-390
    [331]Machuca A, Napoleao D, Milagres A M F. Detection of metal-chelating compounds from wood-rotting fungi Trametes versicolor and Wolfiporia cocos. World Journal of Microbiology and Biotechnology,2001,17(7):687-690
    [332]Mandal T K, Baldrian P, Gabriel J, et al. Effect of mercury on the growth of wood-rotting basidiomycetes Pleurotus ostreatus, Pycnoporus cinnabarinus and Serpula lacrymans. Chemosphere,1998,36(4):435-440
    [333]Canovas D, Cases I, de Lorenzo V. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environmental Microbiology,2003,5(12):1242-1256
    [334]Declerck S, de Boulois H D, Bivort C, et al. Extraradical mycelium of the arbuscular mycorrhizal fungus Glomus lamellosum can take up, accumulate and translocate radiocaesium under root-organ culture conditions. Environmental Microbiology,2003,5(6):510-516
    [335]Hatvani N, Mecs I. Effects of certain heavy metals on the growth, dye decolorization, and enzyme activity of Lentinula edodes. Ecotoxicology and Environmental Safe,2003,55(2):199-203
    [336]Dai J, Becquer T, Rouiller J H, et al. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Soil Biology & Biochemisty,2004,25(2):99-109
    [337]Baldrian P, Valaskova V, Merhautova V, et al. Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Research in Microbiology,2005,156(5-6):670-676
    [338]China Enviroment Yearbook Editional Committee. China Environment Yearbook. Beijing:China Environmental Yearbook Press,2000,714-720
    [339]Dupont L, Guillon E, Bouanda J, et al. EXAFS and XANES studies of retention of copper and lead by a lignocellulosic biomaterial. Environmental Science & Technology,2002,36(23):5062-5066.
    [340]Dupont L, Guillon E. Removal of hexavalent Chromium with a lignocellulosic substrate extracted from wheat bran. Environmental Science & Technology, 2003,37(18):4235-4241
    [341]Baldrian P. Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiology Ecology,2004,50(2):245-253
    [342]Iqbal M, Edyvean R G J. Loofa sponge immobilized fungal biosorbent:A robust system for cadmium and other dissolved metal removal from aqueous solution. Chemosphere,2005,61(4):510-518
    [343]Crawford R L. Lignin biodegradation and transformation. New York, John Wiley& Sons,1981
    [344]Kapat A, Dey S. An alternative approach to the detection of lignin:a note on the application of ELISA using polyclonal antibodies. Bioprocess and Biosystems Engineering,2000,22(1):75-77
    [345]Arora D S, Chander M, Gill P K. Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. International Biodeterioration & Biodegradation,2002,50(2):115-120
    [346]Jerzykiewicz M. Formation of new radicals in humic acids upon interaction Pb(II) ions. Geoderma,2004,122(3):305-309
    [347]KOhler S J, Cubillas P, Rodriguez-Blanco J D, et al. Removal of cadmium from wastewaters by aragonite shells and the influence of other divalent cations. Environmental Science & Technology,2007,41(1):112-118
    [348]Godelitsas A, Astilleros J M, Hallam K, et al. Interaction of calcium carbonates with lead in aqueous solutions. Environmental Science & Technology,2003, 37(15):3351-3360
    [349]Saglam A, Yalcinkaya Y, Denizli A, et al. Biosorption of mercury by carboxymethylcellulose and immobilized Phanerochaete chrysosporium. Microchemical Journal,2002,71(1):73-81
    [350]Marcote I, Hernandez T, Garcia C, et al. Influence of one or two successive annual applications of organic fertilisers on the enzyme activity of a soil under barley cultivation. Bioresource Technology,2001,79(2):147-154
    [351]Warman P R, Termeer W C. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage:Ca, Mg, S, Fe, Mn, Cu, Zn and B content of crops and soils. Bioresource Technology,2005,96(9):1029-1038
    [352]Palmans E, Mares G, Poppe J, et al. Biodegradation of xenobiotics by heavy metal resistant higher fungi. Medical Faculty Landbouww Universty Gent,1995, 60(2):2563-2568
    [353]Brady D, Duncan J R. Binding of heavy metals by the cell walls of Saccharomyces cerevisiae. Enzyme and Microbial Technology,1994,16(7): 633-638
    [354]Wong J W C, Fang M. Effects of lime addition on sewage sludge composting process. Water Research,2000,34(15):3691-3698
    [355]Zorpas A A, Constantinides T, Vlyssides A G, et al. Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresource Technology,2000,72(2):113-119
    [356]Zorpas A A, Arapoglou D, Panagiotis K. Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production. Waste Management,2003,23(1):27-35
    [357]Crecchio C, Curci M, Pizzigallo M D R, et al. Effects of municipal solid waste compost amendments on soil enzyme activities and bacterial genetic diversity. Soil Biology and Biochemisty,2004,36(10):1595-1605
    [358]Epstein E. The Science of Composting. USA, Pennsylvania:Technomic Publishing,1997
    [359]Gento K, Hiroshi O. The kinetics of reactions between pyrite and O2-bearing water revealed from in situ monitoring of DO, Eh and pH in a closed system. Geochimica et Cosmochimica Acta,2000,64(15):2585-2601
    [360]Garcia C, Hernandez T, Costa F. Changes in carbon fractions during composting and maturation of organic wastes. Environmental Management,1991,15(3): 433-439
    [361]Haug R T. The practical handbook of compost engineering. Lewis Publishers, 1993
    [362]Hwang E Y, Namkoong W, Park J S. Recycling of remediated soil for effective composting of diesel-contaminated soil. Compost Science & Utilization,2001, 9(2):143-148
    [363]Atkinson C F, Jones D D, Gauthier J J. Biodegradabilities and microbial activities during composting of municipal solid waste in bench-scale reactor. Compost Science & Utilization,1996,4(4):14-23
    [364]Mathur S P. Determination of compost biomaturity, I, literature review. Biology Agricalture and Horticulture,1993,10(1):65-85
    [365]Nakasaki K, Yaguchi H, Sasaki Y, et al. Effects of pH control on composting of garbage. Waste Management & Research,1993,11(2):117-125
    [366]Hirai M F, Chanyasak V, Kubota H. A standard measurement for compost maturity. Bicycle,1983,11(1):5-56
    [367]Petruzzelli G. Recycling wastes in agriculture:heavy metal bioavailability. Agriculture Ecosystem Environment,1989,27(3):493-503
    [368]Chanyasak V, Kubota H. Carbon/Organic nitrogen ratio in water extract as measure of composting degradation. Journal of Fermentation Technology,1981, 59(3):215-219
    [369]Wilke B M. Long-term effects of different inorganic pollutants on nitrogen transformations in a sandy cambisol. Biology and Fertility Soils,1989,7(3): 254-258
    [370]Kapetanios E G, Loizidou M, Valkanas G. Compost production from Greek domestic refuse. Bioresource Technology,1993,43(1):13-16
    [371]Contreras-Ramos S M, Alvarez-Bernal D, Trujillo-Tapia N, et al. Composting of tannery effluent with cow manure and wheat straw. Bioresource Technology, 2004,94(2):223-228
    [372]Baldrian P, Gabriel J. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiology Letters,2003,220(2):235-240
    [373]Nordgren A, Baath E, Soderstrom B. Evaluation of soil respiration characteristics to assess heavy metal effects on soil microorganisms using glutamic acid as a substrate. Soil. Biology and Biochemisty,1988,20(6): 949-954
    [374]Ranalli G, Bottura G, Taddei P, et al. Composting of solid and sludge residues from agricultural and food industries. Bioindicators of monitoring and compost maturity. Journal of Environmental Science and Health, Part A,2001,36(4): 415-436
    [375]Lin Z X, Harsbo K, Ahlgren M, et al. The source and fate of Pb in contaminated soils at the urban area of Falun in central Sweden. Science of the Total Environment,1998,209(1):47-58
    [376]Dollar N L, Souch C J, Filippelli G M, et al. Chemical Fractionation of Metals in Wetland Sediments:Indiana Dunes National Lakeshore. Environmental Science and Technology,2001,35(18):3608-3615
    [377]Halim C E, Scott J A, Amal R, et al. Evaluating the applicability of regulatory leaching tests for assessing the hazards of Pb-contaminated soils. Journal of Hazardous Materials, Part B,2005,120(1):101-111
    [378]Buatier M D, Sobanska S, Elsass F. TEM-EDX investigation on Zn-and Pb-contaminated soils. Applied Geochemisty,2001,16(9):1165-1177
    [379]Chen M, Ma L Q, Singh S P, et al. Field demonstration of in situ immobilization of soil Pb using P amendment. Advance in Environmental Research,2003,8(1): 93-102
    [380]Theodoratos P, Moirou A, Xenidis A, et al. The use of municipal sewage sludge for the stabilization of soil contaminated by mining activities. Journal of Hazardous Materials, Part B,2000,77(2):177-191
    [381]Cao R X, Ma L Q, Chen M, et al. Phosphate-induced metal immobilization in a contaminated site. Environmental Pollution,2003,122(1):19-28
    [382]Jou C-J G. An efficient technology to treat heavy metal-lead-contaminated soil by microwave radiation. Journal of Environmental Management,2006,78(1): 1-4
    [383]Chen Y H, Li X D, Shen Z G. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere,2004,57(3):187-196
    [384]Fritioff A, Kautsky L, Greger M. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environmental Pollution 2005,133(2): 265-274
    [385]Vig K, Megharaj M, Sethunathan N, et al. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review. Advances in Environmental Research,2003,8(1):121-135
    [386]Renella G, Mench M, Landi L, et al. Microbial activity and hydrolase synthesis in long-term Cd-contaminated soils. Soil Biology & Biochemisty,2005,37(1): 133-139
    [387]Brookes P C, Landman A, Puden G, et al. Chloroform fumigation and the release of soil nitrogen:a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry,1985,17(6):837-842
    [388]Wang W J, Dalal R C, Moody P W, et al. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biology & Biochemisty,2003,35(2):273-284
    [389]Kell J J, Tate R L. Use BIOLOG for the analysis of microbial communities from zinc-contaminated soil. Journal of Environmental Quality,1998,27(3):601-608
    [390]滕应,黄昌勇,骆永明,等.重金属复合污染下土壤微生物群落功能多样性动力学特征.土壤学报,2004,41(5):735-741
    [391]Lindstrom J E, Barry R P, Braddock J F. Microbial community analysis:a kinetic approach to constructing potential C source utilization patterns. Soil Biology & Biochemistry.1998,30(2):231-239
    [392]Basta N T, Ryan J A, Chaney R L. Trace element chemistry in residual-treated soil:key concepts and metal bioavailability. Journal of Environmental Quality, 2005,34(1):49-63
    [393]Appel C, Ma L. Concentration, pH, and surface charge effects on Cadmium and Lead sorption in three tropical soils. Journal of Environmental Quality,2002, 31(2):581-589
    [394]Brookes P C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility Soils,1995,19(4):269-279
    [395]Klose S, Werneckel K D, Makeschin F. Microbial activities in forest soils exposed to chronic depositions from a lignite power plant. Soil Biology & Biochemistry,2004,36(12):1913-1923
    [396]Rost U, Joergensen R G, Chander K. Effects of Zn enriched sewage sludge on microbial activities and biomass in soil. Soil Biology & Biochemistry 2001, 33(4):633-638
    [397]Chander K, Dyckmans J, Joergensen R G, et al. Different source of heavy metal and their long-term effects on soil microbial properties. Biology and Fertility Soils,2001,34(4):241-247
    [398]Giller K E, Witter E, McGrath S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:a review. Soil Biology & Biochemistry,1998,30(10-11):1389-1414
    [399]Kozdroj J, van Elsas J D. Structural diversity of microorganisms in chemically perturbed soils assessed by molecular and cytochemical approaches. Journal of Microbiological Methods,2001,43(3):197-212
    [400]Joergensen R G, Anderson T H, Wolters V. Carbon and nitrogen relationships in the microbial biomass in soils of beech (Fagus sylvatica L.) forest. Biology and Fertility of Soils,1995,19(2):141-147
    [401]Ellis R J, Neish B, Trett M W, et al. Comparison of microbial and meiofanual community analyses for determining impact of heavy metal contamination. Journal of Microbiological Methods,2001,45(3):171-185
    [402]Thompson D N, Hames B R, Reddy C A, et al. In vitro degradation of natural insoluble lignin in aqueous media by the extracellular peroxidases of Phanerochaete chrysosporium. Biotechnology and Bioengineering,1998,57(6): 704-717
    [403]Kurek B, Martinez-inigo M J, Artaud I, et al. Structural features of lignin determining its biodegradation by oxidative enzymes and related systems. Polymer Degradation & Stability,1998,59(1):359-364
    [404]Liang C, Das K C, McClendon R W. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresource Technology,2003,86(2):131-137
    [405]Liang C, Das K C, McClendon R W. Prediction of microbial activity during biosolids composting using artificial neural networks. Transactions of the ASABE,2003,46(6):1713-1719
    [406]Gutes A, Cespedes F, Alegret S, et al. Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Biosensors and Bioelectronics,2005,20(8S):1668-1673
    [407]Gutes A, Cespedes F, Alegret S, et al. Sequential injection system with higher dimensional electrochemical sensor signals:Part 1. Voltammetric e-tongue for the determination of oxidizable compounds. Talanta,2005,66(5):1187-1196
    [408]Rosenblatt F. The perceptron:A probabilistic model for information storage and organization in the brain. Psychological Review,1958,65(6):386
    [409]Gutes A, Ibanez A B, Cespedes F, et al. Simultaneous determination of phenolic compounds by means of an automated voltammetric "electronic tongue". Analytical and Bioanalytical Chemistry,2005,382(2):471-476
    [410]Looner C G. Pattern Recognition Using Neural Networks, Theory and Algorithms for Engineers and Scientists. New York:Oxford University Press, 1997,75-90
    [411]Bessant C, Saini S. Simultaneous determination of ethanol fructose and glucose at an unmodified platinum electrode using artificial neural networks. Analytical Chemistry,1999,71(14):2806-2813
    [412]Cybenko G. Approximation by superpositions of sigmoidal function. Mathematics of Control, Signals, and Systems,1989,2(4):303-314

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700