车载Ad Hoc网络媒体访问控制与信息广播技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车载Ad Hoc网络能够实现车辆之间相互通信,并且提供安全相关业务来减少交通事故,以及多媒体业务来向用户提供信息、娱乐服务,近些年已经逐渐成为无线通信领域研究热点。作为智能交通系统(ITS)不可或缺的一部分,车载Ad Hoc网络能够完全以自组织、分布式的方式运行,并且不需要路边无线通信设备的介入。但是,由于车辆的高速移动、拓扑的快速变化、路边基础设备的缺失、以及恶劣的数据通信环境,使得车载Ad Hoc网络无线资源分配面临相当大的挑战。此外,多跳无线传输面临媒体访问控制(MAC)层的暴露终端、隐藏终端、公平性、可靠性问题,以及网络层的广播风暴问题,使得车载Ad Hoc网络难以满足各种业务的服务质量(QoS)要求,例如,安全相关的业务需要快速、可靠的数据传输,而多媒体业务需要高的吞吐量以及公平性。因此,设计高效的通信协议以满足车载Ad Hoc网络中各种业务QoS需求是迫切需要的。本文的研究成果总结如下:
     (1)设计多信道令牌环媒体访问控制协议MCTRP。
     当节点密度增高时,传统的Ad Hoc网络采用的IEEE802.11协议分布式管理功能(DCF)使得数据帧碰撞不断增加,延长了数据信道访问时间,因而DCF难以保证车载Ad Hoc网络中对时延有严格要求的安全类业务QoS需求。尽管目前许多研究工作致力于减少安全信息的信道访问延迟,但是这些工作往往以降低信道利用率为代价,难以同时保证多媒体业务高吞吐量与安全业务低延迟。本文针对车载Ad Hoc网络特点和应用业务QoS需求,设计了一种多信道令牌环媒体访问协议MCTRP。该协议采用IEEE802.11p的多信道结构,通过自适应的令牌环管理以及动态的信道调度,车辆能够被组织到工作在不同信道的令牌环。此外,本文建立了马尔可夫链数学模型来动态跟踪环内节点数量的变化,并且以此为基础来分析MCTRP的性能,例如,平均环建立延迟、安全消息延迟、环的吞吐量等。最后,本文做了大量仿真实验来验证数学模型,并与其它MAC协议作了性能比较。数学分析与仿真结果表明,MCTRP能够快速、有效地传递安全消息,进一步提升多媒体业务的数据吞吐量,满足了车载Ad Hoc网络不同业务的QoS需求。
     (2)提出基于地理位置的单路由判据多跳广播协议PMBP。
     为了让车载Ad Hoc网络中的远距离节点能够尽快地接收到安全类信息,本文提出了一种基于地理位置的多跳广播协议(PMBP)来快速广播安全消息,从而实现车载Ad Hoc网络的辅助驾驶。PMBP在MAC层采用跨层的方法,在信息传播方向上选择传输距离范围内最远的邻居节点作为中继节点,从而使得安全消息能够以最快速度传递到远处节点。此外,本文建立了数学模型来分析PMBP的性能,例如,单跳内接收节点数量、端到端延迟、广播节点与接收节点的比例等。相对于IEEE802.11DCF的广播机制,PMBP能够克服多跳信息广播所面临的诸多难题,例如,信息冗余、链路的不可靠性、隐藏终端、广播风暴等问题,极大地提高了网络的性能。
     (3)设计基于信道质量、移动速度、以及地理位置的多路由判据多跳广播协议CLBP
     车载Ad Hoc网络中,恶劣的通信环境、信号的路径衰落、以及车辆的快速移动,使得数据帧的误包率大大提高。发送节点往往因为没有收到确认信息而不断重传数据帧来增加信息的可靠性,从而延长了链路层的传输时间。因此,对于多跳信息广播,当信道质量较差时误包率较高的远距离邻居节点并不是理想的中继节点。为了适应车载Ad Hoc网络物理信道特点,本文提出了一种多跳跨层广播协议(CLBP)来传输安全类信息。首先,一个新颖的复合式的中继向量被提出用来进行下一跳中继选择,该中继向量综合考虑了车辆的地理位置、物理信道状态、车辆的移动速度。基于此中继向量,本文设计了一个分布式的中继节点选择协议,以此在消息传播方向上选择唯一的节点来可靠地中继安全消息。同时,该协议改进基于优先级的IEEE802.11e EDCA机制用来保证安全类业务QoS要求。此外,本文建立了数学模型来分析CLBP的性能,并在此基础上计算误包率、中继节点选择延迟、安全消息访问延迟等性能指标。数学分析与仿真结果表明,CLBP不仅能够减少车载Ad Hoc网络中广播消息的信息冗余,而且能够快速、可靠地传递安全消息。
Vehicular ad hoc network (VANET) enabling vehicles to communicate with each other, and providing safety services to reduce traffic accidents on the road as well as multimedia services to supply information and entertainment to traveling people, has become hot research area in wireless communications. As an indispensable part of intelligent transportation system (ITS), VANET can operate autonomously in self-organized, distributed mode without the support of roadside wireless communication equipments. However, the lack of infrastructure support, high mobility of vehicles, dynamic topology changes, and hostile wireless communication environment make the wireless resource allocation of VANET extremely challenging. In addition, exposed terminal, hidden terminal, fairness, reliability problems on the MAC layer, and broadcast storm problem on the network layer, make VANET difficult to guarantee quality of service (QoS) requirements of various applications. For instance, safety related services demand quick and reliable message delivery, while multimedia services usually require high throughput and good fairness performance. Therefore, it is very important to design efficient protocols to meet different QoS requirements of vehicular applications in VANET. The contributions of the thesis are concluded as follows:
     (1) Propose a multi-channel token ring media access control (MAC) protocol MCTRP.
     The traditional Ad Hoc networks adopt the distributed coordination function (DCF) of IEEE802.11, and the packet collisions increase when the node density goes up, which prolongs the channel access delay of data packets. Therefore, DCF is diffucult to guarantee the QoS requirements of safety services, which have stringent delay requirement. Although most current research works aim to reduce the channel access delay of safety messages at the cost of decreasing the efficiency of channel resource, they cannot guarantee high throughput for multimedia services and low delay for safety services simultaneously. Based on the characteristics of VANET and QoS requirements of its services, we design a multi-channel token ring MAC protocol MCTRP. The protocol adopts the IEEE802.11p multi-channel structure, and through adaptive ring coordination and dynamic channel scheduling, vehicles are autonomously organized into multiple rings operating on different service channels. In addition, a Markov chain model is developed to dynamically keep track of the number of nodes in a ring, and further evaluate the performance of MCTRP in terms of the average full ring delay, emergency message delay, and ring throughput, etc. Extensive simulations are conducted to validate the analytical model, and performance comparisons with other MAC protocols are also performed. Analysis and simulation results show that MCTRP can quickly and effectively deliver safety messages, improve the throughput for multimedia services, and finally guarantee the QoS requirements of various services in VANET.
     (2) Propose a single relaying metric multi-hop broadcast protocol PMBP based on geographical position.
     In order to make safety messages be received by remote nodes as fast as possible in VANET, a position based on multi-hop broadcast protocol (PMBP) is proposed to deliver safety messages, and thus achieve cooperative driving in VANET. PMBP adopts a cross-layer approach on the MAC layer, and selects the neighboring node with the farthest distance from the source node in the message propagation direction as the next relaying node, which ensures emergency messages can be delivered to remote nodes with low time latency。 Furthermore, a mathematical model is developed to analyze the performance of PMBP, such as number of receiving nodes at each hop, end to end delay, ratio of informed vehicles to broadcasting vehicles, etc. Compared with the mechanism of DCF in IEEE802.11, PMBP is able to overcome several challenging problems of multi-hop information broadcast, for instance, message redundancy, unreliable link, hidden terminal, broadcast storm problems, and greatly improve the performance of the network.
     (3) Propose a mutiple relaying metrics multi-hop broadcast protocol CLBP based on channel conditions, moving velocities, and geographical location.
     In VANET, hostile communication environment, pass loss of signal, and fast movement of vehicles increase the packet error rate (PER). The transmitting node always repeadly transmits data packets to increase the message reliability due to the lack of acknowledgement, which prolongs the delay on the link layer. Therefore, under bad channel conditions, the farthest neighboring node with high PER is not the ideal relaying node for multi-hop information broadcast. To adapt the characteristics of physical channel in VANET, a cross layer broadcast protocol (CLBP) is proposed to deliver safety messages. A novel composite relaying metric is firstly designed for next hop relaying node selection, which jointly considers geographical locations of vehicles, physical layer channel conditions, and moving velocities of vehicles. Based on the designed relaying metric, a distributed relay selection scheme is proposed to assure a unique relay is selected to reliably forward the safety message in the information propagation direction, and IEEE802.11e EDCA MAC is further revised to guarantee QoS provisioning to safety services. In addition, a mathematical model is developed to study the performance of the proposed CLBP, and performance metrics PER, relay selection delay, emergency message access delay are thus calculated. Mathematical analysis and simulation results show that CLBP can not only reduce the broadcast message redundancy, but also quickly and reliably deliver safety messages in VANET.
引文
1. National Safety Council, Injury Facts,2009 edition, http://www.nsc.org/ news_resources/injury_and_death_statistics/Pages/HighlightsFromInjuryFacts.as px.
    2. Margie Peden, Richard Scurfield, David Sleet, Dinesh Mohan, Adnan A. Hyder, Eva Jarawan, and Colin Mathers, World Report on Road Traffic Injury Prevention, Apr.2004,33-40.
    3. CAR 2 CAR Communication Consortium Manifesto, http://www.car-to-car.org/.
    4. J. Zhang, K. H. Liu, and X. Shen, A novel overlay token ring protocol for inter-vehicle communication[C], EEE International Conference on Communications, May 2008,4904-4909.
    5. FCC Report and Order 03-324:Amendment of the Commission's Rules Regarding Dedicated Short-Range Communication Services in the 5.850-5.925 GHz Band, Dec.2003.
    6. FCC Report and Order 06-110:Amendment of the Commission's Rules Regarding Dedicated Short-Range Communication Services in the 5.850-5.925 GHz Band, Jul.2006.
    7. Daniel Jiang, Luca Delgrossi, IEEE 802.11p:Towards an International Standard for Wireless Access in Vehicular Environments[C], IEEE Vehicular Technology Conference, May 2008,2036-2040.
    8. IEEE P802.11p/D3.0, Draft Amendment to Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks Specific Requirements — Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications — Amendment 7:Wireless Access in Vehicular Environments, 2007.
    9. S. Biddlestone, K. A. Redmill, A GNU Radio Based Testbed Implementation with IEEE 1609 WAVE Functionality[C], IEEE Vehicular Networking Conference, Oct.2009,1-7.
    10. Takaaki Hasegawa, Kiyoshi Mizui, Haruki Fujii, and Kaoru Seki, A Concept Reference Model for Inter-Vehicle Communications (Report 2) [C],2004 IEEE Intelligent Transportation Systems Conference, Oct.2004,810-815.
    11. Wei Bin Zhang, S. E. Shladover, PATH Innovative Research on ITS Technologies and Methodologies for Multimodal Transportation Solutions[C], IEEE Intelligent Transportation Systems Conference, Sept.2006,23-29.
    12. Dirk Reichardt, Maurizio Miglietta, Lino Moretti, Peter Morsink, Wolfgang Schulz, CarTALK 2000:Safe and Comfortable Driving Based Upon Inter-Vehicle-Communication[C], IEEE Intelligent Vehicle Symposium, Jun. 2002,545-550.
    13. Wilfried Enkelmann, FleetNet-Applications for Inter-Vehicle Communication[C], IEEE Intelligent Vehicles Symposium. Jun.2003,162-167.
    14. Network on Wheels Project, http://www.network-on-wheels.de.
    15. T. Ernst, V. Nebehaj, R. Srasen, CVIS:CALM Proof of Concept Preliminary Results[C], IEEE 9th International Conference on Intelligent Transport Systems Telecommunications, Oct.2009,80-85.
    16. M. Bohm, A. Frotscher, Data-Flow and Processing for Mobile In-Vehicle Weather Information Services COOPERS Service Chain for Co-operative Traffic Management[C], IEEE 69th Vehicular Technology Conference, Apr.2009,1-5.
    17. M. N. Mariyasagayam, H. Menouar, M. Lenardi, GeoNet: A Project Enabling Active Safety and IPv6 Vehicular Applications[C], IEEE International Conference on Vehicular Electronics and Safety, Sept.2008,312-316.
    18. M. Nekovee, Sensor Networks on the Road:the Promises and Challenges of Vehicular Ad Hoc Networks and Vehicular Grids[C], Workshop on Ubiquitous Computing and e-Research, May 2005.
    19. A. Zanella, E. Fasolo, C. F. Chiasserini, M. Meo, M. Franceschinis, M. A. Spirito, Inter-Vehicular Communication Networks:a Survey[C], The 2nd International NEWCOM Workshop, May 22,2006.
    20. Marc Torrent-Moreno, Hannes Hartenstein, Current View on VANETs, Report, Oct.2005.
    21. D. Anurag, Srideep Ghosh, Somprakash Bandyopadhyay, GPS based Vehicular Collision Warning System using IEEE 802.15.4 MAC/PHY Standard[C], ITS 8th International Conference on Telecommunications, Oct.2008,154-159.
    22. Daniel Jiang, Vikas Taliwal, Andreas Meier, Wieland Holfelder, Ralf Herrtwich, Design of 5.9 GHz DSRC-based Vehicular Safety Communication[J], IEEE Wireless Communication, Vol.13, No.5, Oct.2006,36-43.
    23. Y. Toor, P. Muhlethaler, A. Laouiti, Vehicle Ad Hoc networks:Applications and Related Technical Issues, IEEE Communications Surveys and Tutorials[J], Vol. 10, No.3, Sept.2008,74-88.
    24. Panos Papadimitratos, Arnaud De La Fortelle, Knut Evenssen, Roberto Brignolo, Stefano Cosenza, Vehicular Communication Systems:Enabling Technologies, Applications, and Future Outlook on Intelligent Transportation[J], IEEE Communications Magazine, Vol.47, No.11, Nov.2009,84-95.
    25. J. Jakubiak, and Koucheryavy, State of the Art and Research Challenges for VANETs[C], IEEE Consumer Communications and Networking Conference, Jan. 2008,912-916.
    26. Hannes Hartenstein, Kenneth P. Laberteaux, A Tutorial Survey on Vehicular Ad Hoc Networks[J], IEEE Communications Magazine, Vol 48, No.6, Jun.2008, 164-171.
    27. Cheng-Xiang Wang, Xiang Cheng, David I. Laurenson, Vehicle-to-Vehicle Channel Modeling and Measurements: Recent Advances and Future Challenges[J], IEEE Communications Magazine Vol.47, No 11, Nov.2009, 96-103.
    28. Sushant Jain, Kevin Fall, Rabin Patra, Routing in a Delay Tolerant Network[C], ACM Special Interest Group on Data Communication, Aug./Sept.,2004, 145-158.
    29. S. Farrell and V. Cahill, DTN:An Architectural Retrospective, IEEE Journal on Selected Areas in Communications[J], Vol.26, No.5, Jun.2008,828-836.
    30. M. Pitkanen, M. Keranen, and J. Ott, Message Fragmentation in Opportunistic DTNs[C], IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks, Jun.2008,1-7.
    31. T. Spyropoulos, K. Psounis, and C. S. Raghavendra, Efficient Routing in Intermittently Connected Mobile Networks:The Single-Copy Cast[J], IEEE/ACM Transactions on Networking, Vol.16, No.1, Feb.2008,63-76.
    32. Lothar Stibor, Yunpeng Zang, Hans-Jurgen Reumerman, Evaluation of Communication Distance of Broadcast Messages in a Vehicular Ad-Hoc Network Using IEEE 802.11p[C], IEEE Wireless Communications and Networking Conference, Mar.2007,254-257.
    33. DSRC, Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems — 5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications, ASTM E2213-03,2003.
    34. Nuno Ferreira, Jose A. Fonseca, J. Sales Gomes, On the Adequacy of 802.11p MAC Protocols to Support Safety Services in ITS[C], IEEE 13th International Conference on Emerging Technologies and Factory Automation, Sept.2008, 1189-1192.
    35. Boangoat Jarupan, Eylem Ekici, Location and Delay-Aware Cross-Layer Communication in V2I Multihop Vehicular Networks[J], IEEE Communications Magazine, Vol.47, No.11, Nov.2009,112-118.
    36. A. Molisch, F. Tufvesson, J. Karedal, C. Mecklenbrauker, A Survey on Vehicle-to-Vehicle Propagation Channels[J], IEEE Wireless Communications, Vol 16, No.6, Dec.2009,12-22.
    37. IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks Specific Requirements Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.
    38. G. Bianchi, Performance Analysis of the IEEE 802.11 Distributed Coordination Function[J], IEEE Journal on Selected Areas in Communications, Vol.18, No.3, Mar.2000,535-547.
    39. Byung Jae Kwak, Nah Oak Song, and Leonard E. Miller, Performance Analysis of Exponential Backoff[J], IEEE/ACM Transactions on Networking, Vol.13, No. 2, Apr.2005,343-355.
    40. Omesh Tickoo and Biplab Sikdar, Modeling Queueing and Channel Access Delay in Unsaturated IEEE 802.11 Random Access MAC Based Wireless Networks[J], IEEE/ACM Transactions on Networking, Vol.16, No.4, Aug. 2008,878-891.
    41. IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks Specific Requirements Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 8:Medium Access Control (MAC) Quality of Service Enhancements, Nov.2005.
    42. Yang Xiao, IEEE 802.11e: QoS Provisioning at the MAC Layer[J], IEEE Wireless Communications, Vol.11, No.3, Jun.2004,72-79.
    43. Jeffrey W. Robinson and Tejinder S. Randhawa, Saturation Throughput Analysis of IEEE 802.11e Enhanced Distributed Coordination Function[J], IEEE Journal on Selected Areas in Communications, Vol.22, No.5, Jun.2004,917-928.
    44. Hui and M. Devetsikiotis, Performance Analysis of IEEE 802.11e EDCA by a Unified Model[C], IEEE Global Telecommunications Conference, Nov./Dec. 2004,754-759.
    45. Y. Xiao, Performance Analysis of Priority Schemes for IEEE 802.11 and IEEE 802.11e Wireless LANs[J], IEEE Transactions on Wireless Communications, Vol.4, No.4, Jul.2005,1506-1515.
    46. Y. Xiao, Performance Analysis of IEEE 802.11e EDCF under Saturation Condition[C], EEE International Conference on Communications, Jun.2004, 170-174.
    47. Xiaomin Ma, Xianbo Chen, Performance Analysis of IEEE 802.11 Broadcast Scheme in Ad Hoc Wireless LANs[J], IEEE Transactions on Vehicular Technology, Vol.57, No.6, Nov.2008,3757-3768.
    48. T. Murray, M. Cojocari, Huirong Fu, Measuring the Performance of IEEE 802.11p Using Ns-2 Simulator for Vehicular Networks[C], IEEE International Conference on Electro/Information Technology, May 2008,498-503.
    49. Yi Qian, Kejie Lu, and Nader Moayeri, A Secure VANET MAC Protocol for DSRC Applications[C], IEEE Global Telecommunications Conference, Nov./Dec.2008,1-5.
    50. G. Korkmaz, E. Ekici, and F. Ozguner, A Cross-Layer Multihop Data Delivery Protocol With Fairness Guarantees for Vehicular Networks[J], IEEE Transactions on Vehicular Technology, Vol.55, No.3, May 2006,865-874.
    51. M. J. Neely, E. Modiano, and C. Li, Fairness and Optimal Stochastic Control for Heterogeneous Networks[C], IEEE International Conference on Computer Communications, Mar.2005,1723-1734.
    52. A. Eryilmaz and R. Srikant, Joint Congestion Control, Routing and MAC for Stability and Fairness in Wireless Networks[J], IEEE Journal on Selected Areas in Communications, Vol.24, No.8, Aug.2006,1514-1524.
    53. A.V. Babu, L. Jacob, Fairness Analysis of IEEE 802.11 Multirate Wireless LANs[J], IEEE Transactions on Vehicular Technology, Vol 56, No.5, Sept. 2007,3073-3088.
    54. A. V. Babu, L. Jacob, Performance Analysis of IEEE 802.11 Multirate WLANs: Time Based Fairness vs Throughput Based Fairness[C], International Conference on Wireless Networks, Communications and Mobile Computing, Jun.2005,203-208.
    55. G. Berger-Sabbatel, A. Duda, O. Gaudoin, M. Heusse, F. Rousseau, Fairness and its Impact on Delay in 802.11 Networks[C], IEEE Global Telecommunications Conference, Nov./Dec.2004,2967-2973.
    56. C. L. Barrett, M. V. Marathe, D. C. Engelhart, A. Sivasubramaniam, Analyzing the Short-term Fairness of IEEE 802.11 in Wireless Multi-hop Radio Networks[C], IEEE 10th International Symposium Modeling, Analysis and Simulation of Computer and Telecommunications Systems, Oct.2002,137-144.
    57. C. Chigan, V. Oberoi, and J. Li, RPBMACn: A Relative Position Based Collision-Free MAC Nucleus for Vehicular Ad Hoc Networks[C], IEEE Global Telecommunications Conference, Nov./Dec.2006,1-6.
    58. Fan Bai, H. Krishnan, Reliability Analysis of DSRC Wireless Communication for Vehicle Safety Applications[C], IEEE Intelligent Transportation Systems Conference, Sept.2006,355-362.
    59. G. Korkmaz, E. Ekici, F. Ozguner, and U. Ozguner, Urban Multi-hop Broadcast Protocols for Inter-Vehicle Communication Systems[C], ACM 1st Workshop on Vehicular Ad Hoc Networks, Oct.2004,76-85.
    60. Shankar Yanamandram, Hamid Shahnasser, Analysis of DSRC based MAC protocols for VANETs[C], IEEE International Conference on Ultra Modern Telecommunications & Workshops, Oct.2009,1-6.
    61. IEEE P802.11p, Wireless Access in Vehicular Environments (WAVE), draft standard, IEEE Computer Society,2006.
    62. Xueyuan Su, S. Chan, J. H. Manton, Bandwidth Allocation in Wireless Ad Hoc Networks:Challenges and Prospects[J], IEEE Communications Magazine, Vol. 48, Nov.1, Jan.2010,80-85.
    63. B. Blaszczyszyn, P. Muhlethaler, Y. Toor, Performance of MAC Protocols in Linear VANETs under different Attenuation and Fading conditions[C], IEEE 12th International Conference on Intelligent Transportation Systems, Oct.2009, 1-6.
    64. Y. P. Zang, L. Stibor, B. Walke, H. J. Reumerman, and A. Barroso, Towards broadband vehicular ad-hoc networks - the Vehicular Mesh Network (VMESH) MAC Protocol[C], IEEE Wireless Communications and Networking Conference, Mar.2007,417-422.
    65. H. Su and X. Zhang, "Clustering-based Multi-channel MAC Protocols for QoS Provisionings over Vehicular Ad-hoc Networks [J], IEEE Transactions on Vehicular Technology, Vol.56, No.6, Nov.2007,3309-3323.
    66. Duke Lee, Roberto Attias, Anuj Puri, Raja Sengupta, Stavros Tripakiss, Pravin Varaiya, A Wireless Token Ring Protocol for Intelligent Transportation Systems[C], IEEE Intelligent Transportation System Conference, Aug.2001, 1152-1157.
    67. Mustafa Ergen, Duke Lee, Raja Sengupta, and Pravin Varaiya, WTRP-Wireless Token Ring Protocol[J], IEEE Transactions on Vehicular Technology, Vol.53, No.6, Nov.2004,1863-1881.
    68. M. Ergen, D. Lee, R. Sengupta, and P. Varaiya, Wireless Token Ring Protocol-Performance Comparison with IEEE 802.11[C], IEEE International Symposium on Computers and Communication, Jul.2003,710-710.
    69. Navneet Malpani,Yu Chen, Nitin H. Vaidya, Jennifer L. Welch, Distributed Token Circulation in Mobile Ad Hoc Networks[J], IEEE Transactions on Mobile Computing, Vol.4, No.2, Mar./Apr.2005,154-165.
    70. Zhenhua Deng, Yan Lu, Chunjiang Wang, Wenbo Wang, EWTRP:Enhanced Wireless Token Ring Protocol for Small-scale Wireless Ad Hoc Networks[C], IEEE International Conference of Communications, Circuits and Systems, Jun. 2004,398-402.
    71. Ray Guang Cheng, Ruei-I Chang, Improved Wireless Token Ring Protocol (IWTRP) for Wireless Metropolitan Area Networks[C], IEEE 65th Vehicular Technology Conference, Apr.2007,31-35.
    72. Ray Guang Cheng, Ruei-I Chang, and Kuo Lun Hua, IWTRP:Spatial-Reuse Enhancement of the Wireless Token Ring Protocol [J], IEEE Communications Letters, Vol 11, No.8, Aug.2007,701-703.
    73. F. Borgonovo, A. Capone, M. Cesana, and L. Fratta, ADHOC MAC:New MAC Architecture for Ad Hoc Networks Providing Efficient and Reliable Point-to-Point and Broadcast Services[J], Wireless Networks, Vol.10, No.4, Jul. 2004,359-366.
    74. Hamid Menouar, Fethi Filali, Massimiliano Lenardi, A Survey and Qualitative Analysis of MAC Protocols for Vehicular Ad Hoc Networks[J], IEEE Wireless Communications, Vol.13, No.5, Oct.2006.
    75. J. Peng and L. Cheng, A Distributed MAC Scheme for Emergency Message Dissemination in Vehicular Ad-hoc Networks[J], IEEE Transactions on Vehicular Technology, Vol.56, No.6, Nov.2007,3300-3308.
    76. F. Yu and S. Biswas, Self-configuring TDMA Protocols for Enhancing Vehicle Safety with DSRC Based Vehicle-to-Vehicle Communications [J], IEEE Journal on Selected Areas in Communications, Vol.25, No.8, Oct.2007,1526-1537.
    77. M. Torrent-Moreno, Inter-Vehicle Communications:Assessing Information Dissemination under Safety Constraints[C], IEEE/IFIP Conference on Wireless On demand Network Systems and Services, Jan.2007,59-64.
    78. C. Ho, K. Obraczka, G. Tsudik, and K. Viswanath, Flooding for Reliable Multicast in Multi-hop Ad-hoc Networks[C], The 3rd International Workshop on Discrete Algorithms and Methods, Aug.1999,64-71.
    79. L. X. Cai, X. Shen, J. W. Mark, L. Cai, and Y. Xiao, Voice Capacity Analysis of WLAN with Unbalanced Traffic[J], IEEE Transactions on Vehicular Technology, Vol.55, No.3, May 2006,752-761.
    80. The Network Simulator ns-2, http://www.isi.edu/nsnam/ns.
    81. J. W. Mark and W. Zhuang, Wireless Communications and Networking[M], Prentice Hall, Inc.,2003.
    82. S. Eichler, Performance Evaluation of the IEEE 802.11p WAVE Communication Standard[C], IEEE Vehicular Technology Conference, Sept.2007,2199-2203.
    83. R. Jain, W. Hawe, D. Chiu, A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems, DEC-TR-301, September 26,1984.
    84. L. Tassiulas, S. Sarkar, Maxmin Fair Scheduling in Wireless Ad Hoc Networks[J], IEEE Journal on Selected Areas in Communications Vol.23, No.1, Jan.2005,163-173.
    85. X. Su and S. Chan, Max-Min Fair Rate Allocation in Multi-hop Wireless Ad Hoc Networks[C], IEEE International Conference on Mobile Ad-hoc and Sensor Systems Oct.2006,513-16.
    86. X. L. Huang and B. Bensaou, On Max-Min Fairness and Scheduling in Wireless Ad-Hoc Networks:Analytical Framework and Implementation[C], ACM International Symposium on Mobile Ad Hoc Networking & Computing, Oct. 2001,221-231.
    87. C. L. Robinson, D. Caveney, L. Caminiti, G. Baliga, K. Laberteaux, P. R. Kumar, Efficient Message Composition and Coding for Cooperative Vehicular Safety Applications[J], IEEE Transactions on Vehicular Technology, Vol.56, No. 6, Nov.2007,3244-55.
    88. Y. C. Tseng, S. Y. Ni, Y. S. Chen, and J. P. Sheu, The Broadcast Storm Problem in a Mobile Ad Hoc Network, Wireless Networks[J], Vol.8, No.2/3, Nov.2002, 153-167.
    89. B. Williams and T. Camp, Comparison of Broadcasting Techniques for Mobile Ad Hoc Networks[C], ACM International Symposium on Mobile Ad Hoc Networking and Computing, Jun.2002,194-205.
    90. L. Bononi, M. D. Felice, A Cross Layered MAC and Clustering Scheme for Efficient Broadcast in VANETs[C], IEEE International Conference on Mobile Ad-hoc and Sensor Systems, Oct.2007,1-8.
    91. Y. Zang, L.Stibor, H. J. Reumerman, and H. Chen, Wireless Local Danger Warning Using Inter-Vehicle Communications in Highway Scenarios [C], The 14th European Wireless Conference, Jun.2008,1-7.
    92. M. Durresi, A. Durresi, and L. Barolli, Emergency Broadcast Protocol for Intervehicle Communications[C], IEEE 11th International Conference on Parallel and Distributed Systems, Jul.2005,402-406.
    93. K. Abbound and W. Zhuang, Modeling and Analysis for Emergency Messaging Delay in Vehicular Ad Hoc Networks, IEEE Global Telecommunications Conference, Nov./Dec.,2009,1-6.
    94. C. Liaskos, S. Petridou, G. Papadimitriou, P. Nicopolitidis, M. Obaidat, and A. Pomportsis, Clustering-driven Wireless Data Broadcasting[J], IEEE Wireless Communications, Vol.16, No.6, Dec.2009,80-87.
    95. M. Mariyasagayam, T. Osafune, and M. Lenardi, Enhanced Multi-hop Vehicular Broadcast (mhvb) for Active Safety Applications[C], IEEE 7th International Conference on ITS Telecommunications, Jun.2007,1-6.
    96. H. Wu, R. Fujimoto, R. Guensler, and M. Hunter, Mddv:A Mobility-centric Data Dissemination Algorithm for Vehicular Networks[C], ACM 1st International Workshop on Vehicular Ad Hoc Networks, Oct.2004,47-56.
    97. D. X. Xu, T. Sakurai, H.L. Vu, MAC Access Delay in IEEE 802.11e EDCA[C], IEEE Vehicular Technology Conference, Sept.2006,1-5.
    98. J. Peng and L. Cheng, A Distributed MAC Scheme for Emergency Message Dissemination in Vehicular Ad Hoc Networks[J], IEEE Transactions on Vehicular Technology, Vol.56, No.6, Nov.2007,3300-3308.
    99. Q. Xu, T. Mak, J. Ko, and R. Sengupta, Medium Access Control Protocol Design for Vehicle 2 Vehicle Safety Messages[J], IEEE Transactions on Vehicular Technology, Vol.56, No.2, Mar.2007,499-518.
    100. G. Korkmaz, E. Ekici, and F. Ozguner, Black-Burst-Based Multihop Broadcast Protocols for Vehicular Networks[J], IEEE Transactions on Vehicular Technology, Vol.56, No.5, Sept.2007,3159-3167.
    101.J. L. Sobrinho and A. S. Krishnakumar, Quality-of-Service in Ad Hoc Carrier Sense Multiple Access Wireless Networks [J], IEEE Journal on Selected Areas in Communications, Vol.17, No.8, Aug.1999,1353-1368.
    102. P. Wang, H. Jiang, and W. Zhuang, A new MAC Scheme Supporting Voice/Data Traffic in Wireless Ad Hoc Networks[J], IEEE Transactions on Mobile Computing, Vol.7, No.12, Dec.2008,1491-1503.
    103.R. Jurdak, C. Videria Lopes, and P. Baldi, A Survey, Classification and Comparative Analysis of Medium Access Control Protocols for Ad Hoc Networks[J], IEEE Communications Surveys & Tutorials, Vol.6, No.1, Mar. 2004,2-16.
    104.P. Wang, H. Jiang, and W. Zhuang, IEEE 802.11e Enhancements for Voice Service[J], IEEE Wireless Communications, Vol.13, No.1, Feb.2006,30-35.
    105. Y. Bi, H. Zhao, and X. Shen, A Directional Broadcast Protocol for Emergency Messages Exchange in Inter-Vehicle Communications[C], IEEE International Conference on Communications, Jun.2009,1-5.
    106. L. Briesemeister and G. Hommel, Role-based Multicast in Highly Mobile but Sparsely Connected Ad Hoc Networks[C], ACM International Symposium on Mobile Ad Hoc Networking and Computing, Aug.2000,45-50.
    107.D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, A High-Throughput Path Metric for Multi-hop Wireless Networks[C], ACM Annual International Conference on Mobile Computing and Networking, Sept.2003,134-146.
    108. R. Draves, J. Padhye, and B. Zill, Routing in Multi-Radio, Multi-Hop Wireless Mesh Networks [C], ACM Annual International Conference on Mobile Computing and Networking, Sept.2004,114-128.
    109. A. Zinin, Cisco IP Routing[M], Boston, MA:Addison-Wesley,2002.
    110. P. Liu, Z. Tao, S. Narayanan, T. Korakis, and S. S. Panwar, CoopMAC:A Cooperative MAC for Wireless LANs[J], IEEE Journal on Selected Areas in Communications, Vol.25, No.2, Feb.2007,340-354.
    111. L. X. Cai, H. Hwang, X. Shen, J. W. Mark, and L. Cai, Optimizing Geographic Routing for Millimeter-Wave Wireless Networks with Directional Antenna[C], Sixth International ICST Conference on Broadband communications, Networks, and Systems, Sept.2009,1-8.
    112.G. Mohammad and S. Marco, Maximizable Routing Metrics, IEEE/ACM Transactions on Networking[J], Vol.11, No.4, Aug.2003,663-675.
    113. A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, A Simple Cooperative Diversity Method Based on Network Path Selection[J], IEEE Journal on Selected Areas in Communications, Vol.24, No.3, Mar.2006,659-672.
    114.H. Shan, W. Zhuang, and Z. Wang, Distributed Cooperative MAC for Multihop Wireless Networks[J], IEEE Communications Magazine, Vol.47, No.2, Feb. 2009,126-133.
    115. Gavin Holland, Nitin Vaidya, Paramvir Bahl, A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks[C], ACM Annual International Conference on Mobile Computing and Networking, Jul.2001,236-251.
    116.D. X. Xu, T. Sakurai, and H. L. Vu, An Access Delay Model for IEEE 802.11e EDCA[J], IEEE Transactions on Mobile Computing, Vol.8, No.2, Feb.2009, 261-275.
    117. T. K. Mak, K. P. Laberteaux, R. Sengupta, and M. Ergen, Multi Channel Medium Access Control for Dedicated Short-range Communications[J], IEEE Transactions on Vehicular Technology, Vol.58, No.1, Jan.2009,349-366.
    118.J. G. Proakis, Digital Communications:Fourth Edition[M], McGraw-Hill Companies, Inc.,2000.
    119. J. A. Roberts, Packet Error Rates for DPSK and Differentially Encoded Coherent BPSK[J], IEEE Transactions on Vehicular Technology, Vol.42, No.2/3/4, Feb./Mar./Apr.1994,1441-1444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700