微构件拉伸测试技术及其力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机械电子系统(Microelectromechanical Sysetms,MEMS)具有很好的发展前景,而且应用范围特别广泛,如汽车用的微加速度器,办公用的喷墨打印机头、数字微镜阵列,通讯用的光开关,以及医疗用的微流控芯片等等。这些MEMS器件与IC芯片的主要不同之处是MEMS器件中包含有运动、接触、摩擦等微构件,使得微尺度下的力学性能研究成为MEMS的一个重要基础研究内容。然而,微尺度下的力学性能受尺度效应和微加工工艺等因素的影响,已不能用宏观下的理论来解释,需要重新对微尺度下构件的力学性能进行表征。
     微拉伸测试方法具有能够得到均匀的应力应变场,数据容易解释,通用性强等显著优点,是最常用的测试方法之一。本文研制了一种片外驱动微拉伸测试装置,目的是测量MEMS中常用薄膜材料的力学性能。此微拉伸测试装置采用压电陶瓷驱动,电感式测微仪(精度0.1μm)测量其驱动位移,微力传感器(分辨率0.25 mN)直接测量被测试样的拉力载荷,五维微动台用于调整动、静载物台使其轴向对准。主要解决两个技术难题:1)试样的轴向变形位移的检测。位移传感器测量的是总的驱动位移,它除了包含试样的轴向变形位移外,还包含微力传感器的输出变形和粘结胶的剪切变形,本文是通过在线测量测试装置的轴向刚度,从总的驱动位移中减去测试装置的轴向变形而获得拉伸试样的轴向变形。2)拉伸试样的轴向对准与夹持。由于被测试样的特征尺寸在微米量级,而测试装置的特征尺寸在毫米量级,试样的轴向对准问题是非常难解决的。本文提出了一种游标-凹槽载物片式对准机构,它由体硅微加工工艺制作。梳齿式游标用于检测非轴向对准时的角偏差,而凹槽和凹槽中的定位台用于实现试样的快速安装和定位。这种方法很大程度上提高了拉伸试样的轴向对准精度和重复对准精度。
     利用此微拉伸测试装置,测量了热氧化硅薄膜的力学性能。设计并制作了两种微拉伸试样:常规微拉伸试样和附加弹性梁的微拉伸试样。其中,后一种试样中的弹性梁可以有效减小因非轴向对准而引入的扭弯变形,保证微拉伸梁的单轴向拉伸。这两种试样采用相同的微加工工艺在同一硅片上制作,其关键步骤是双掩膜两次感应耦合等离子体(ICP)刻蚀形成阶梯状窗口结构,并最终在硅衬底表面形成释放了的热氧化硅薄膜梁。通过微拉伸测试,得到热氧化硅薄膜的弹性模量和断裂强度分别为65 GPa和350-489MPa。由于过大的残余压应力,氧化硅薄膜梁发生了过屈曲,通过对氧化硅薄膜梁的几个应力状态进行分析,提出了一种基于微拉伸屈曲梁法的测量残余应力的理论模型,氧化硅薄膜的初始残余压应力为354 MPa。
     另外,对电铸镍薄膜梁进行了微拉伸测试。电铸镍拉伸试样采用准LIGA技术制作,氨基磺酸镍为电铸液。测量结果表明:高电流密度下制备出的微结构致密度较差,具有较高的气孔率,并且杨氏模量与气孔率的关系遵循指数经验公式,其测量值与计算值比较吻合。在本文工艺条件下,当电流密度为20 mA/cm~2时,镍薄膜的杨氏模量为83±6GPa;当电流密度减小到10 mA/cm~2时,镍薄膜的杨氏模量为124±5 GPa。
     最后,探索了片内集成力敏单元的微拉伸测试。设计并制作了集成扩散硅压阻式力敏单元的微拉伸试样结构,使其能够进行片内拉力检测。利用片外驱动微拉伸测试装置进行压阻力敏单元的输出信号-输入拉力之间的关系曲线标定,测量得到力敏单元的灵敏度为0.017mV/mN。
MEMS (Microelectromechanical systems) has huge development potential and is used in different fields, such as micro accelerometer used in motorcars, ink-jet printing head and digital microarray device used in office, optical switch used in communication, microfluidic chip in medical and so on. The marked difference between MEMS and IC (Integrated circuits) is that there are mechanical elements under moving, contact or friction in MEMS. So characteriazation of mechanical proporties in micro scale is a fundamental research in MEMS. However, the mechanical properties in micro scale could not be interpreted by theories in macro scale because the properties are influenced by size effect and micro-fabrication conditions of specimens. Thus, it is necessary to characterize the mechanical properties of materials in micro scale.
     Because the tensile test generates a uniform state of stress and strain, and provides readily interpretable data to extract valuable information, micro-tensile testing is one of the most favored methods. In this paper an off-chip actuated tensile test device has been developed for the mechanical properties characterization of materials in MEMS. In the tensile device, a piezoelectric actuator is used to drive a movable stage. And the displacement of the actuator is measured by an inductance type displacement sensor (with accuracy 0.1μm). A load cell (with resolution 0.25 mN) is used to measure the tensile force in specimens directly, and a 5-axis translation stage is used for axial alignment between the fixed stage and the movable stage. Two technical matters are settled. The first one is the measurement of axial deformation of tensile specimen. The sensor measures the total displacement of the piezoelectric actuator, which includes deformation of the load cell and shearing deformation of glue as well as the axial deformation of the tensile specimen. In this paper the axial stiffness of the tensile system is measured in situ, and the axial deformation of tensile specimen can be obtained by substracting the axial deformation of tensile system from the total displacement of the actuator. The second matter is axial alignment and gripping of the tensile specimen. The size of the specimen is at micro-scale, whereas that of actuators and sensors is at macro-scale. So the alignment of the specimen in uniaxial tensile testing is an utterly intractable issue. In this paper, a vernier-groove plate, which is fabricated by bulk silicon micromachining technology, is presented. The vernier is used to detect the offset angle of non-alignment, and the groove and the locating boss is used to mount and locate the specimen rapidly. This method can largely improve the accuracy of alignment and repeatability.
     Using this micro-tensile testing, mechanical properties of thermal silicon oxide films are measured. Two kinds of specimens are designed and prepared: the traditional tensile specimens and the specimens with suspended spring beams. For the latter, the spring beams in the specimen could reduce effectively the torsion strain or bending strain of the specimen caused by non-axial force, and keep the specimen under uniaxial tension. Both kinds of specimens are fabricated in a wafer with the same process. The pivotal process in fabrication is double-masks-twice-ICP etching to form stair-opening structures and finally to obtain the free-standing thermal silicon oxide thin film specimens on the surface of the silicon wafer. Through tensile testing, the measured Young's modulus and fracture strength of the SiO_2 film are 65 GPa and 350-489 MPa respectively. The measured thermal SiO_2 film beams are buckled due to the compressive residual stress. Through analysis of a series of stress states in the SiO_2 film, a model to calculate the residual stress is presented based on the method of micro-tensile buckled beams. The compressive residual stress of the SiO_2 film is 354 MPa.
     Also, the mechanical properties of electroplated Ni films are measured by micro-tensile testing. The specimens are fabricated using LIGA-like technology and sulphate electrolyte bath. The results of the testing show that the higher current density produced microstucture with low density and a higher volume fraction of pores. The measured values of Young's modulus are consistent with that of calculated from the exponential empirical formula between Young's modulus and porosity. Under the technological conditions in this paper, the obtained Young's modulus is 83±6 GPa for nickel specimens electroplated at current density of 20 mA/cm~2 and it increases to 124±5 GPa as current density is decreased to 10 mA/cm~2.
     Finally, micro-tensile testing with a load cell in-chip is researched. The micro-tensile specimen integrated with a piezoresistive diffused-silicon load cell is designed and microfabricated. So the tensile force can be measured in-chip. The relational curve of the output signal and the input load curve for the piezoresistive load cell is calibrated by the off-chip actuated tensile test device, and the sensitivity coefficient of the load cell is 0.017 mV/mN.
引文
[1]ROMIG A D,DUGGER M T,MCWHORTER P J.Materials issues in microelectromechanical devices:science,engineering,manufacturability and reliability[J].Acta Materialia,2003,51:5837-5866.
    [2]SRIKAR V T,SPEARING S M.A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems[J].Experimental Mechanics.2003,43(3):238-247
    [3]HAQUE M A,SAIF M T A.A Review of MEMS-Based Microscale and Nanoscale Tensile and Bending Testing.Experimental Mechanics[J].2003,43(3):248-255
    [4]SHARPE W N.Tensile testing at the micrometer scale:opportunities in experimental mechanics.Experimental Mechanics[J].2003,43(3):228-237.
    [5]BROTZEN F R.Mechanical testing of thin films[J].Int.Mater.Rev.,1994,39:24-45.
    [6]TAKAHIRO N,YOSHITADA I,TAKESHI T.Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM[J].Journal of Microelectromechanical Systems,2000,9:450-459.
    [7]SHARPE W N,JACKSON K M,HEMKER K J,et al.Effect of specimen size on Young's-modulus and fracture strength of polysilicon[J].Journal of Microelectromechanical Systems,2001,10:317-326.
    [8]FLECK N A,MULLER G M,ASHBY M F,et al.Strain gradient plasticity:theory and experiment [J].Acta Metall Mater,1994,42:475-487.
    [9]FLECK N A,HUTCHINSON J W.Strain gradient plasticity.Adv App Mech,Academic Press,ed.1997,33:295-361.
    [10]GAO H,HUANG Y,NIX W D,et al.Mechanism-based strain gradient plasticity-Ⅰ.Theory.Journal of the Mechanics and Physics of Solids,1999,47:1239-1263.
    [11]GAO H,HUANG Y,NIX W D,et al.Mechanism-based strain gradient plasticity-Ⅱ.Analysis.Journal of the Mechanics and Physics of Solids,2000,48:99-128.
    [12]张泰华,杨业敏,赵亚溥,等.MEMS材料力学性能的测试技术[J].力学进展,2002,32(4):545-562.
    [13]张泰华.微/纳米力学测试技术及其应用[M].北京:机械工业出版社,2004.
    [14]WEIHS T P,HONG J C,NIX W D.Mechanical deflection ofcantileven microbeams:A new techique for testing the mechanical properties of thin films[J].Journal of Materials Research,1988,3(5):931-942.
    [15]NAMAZU T,1SONO Y,TANAKA T.Plastic deformation of nanometric single crystal silicon wire in AFM Bending test at tntermediate temperatures[J].Journal of Microelectromechanical Systems,2002,11(2):125-135.
    [16]ESPINOSA H D,PROROK B C,FISCHERS M.A methodology for determining mechanical properties of freestanding thin films and MEMS materials[J].Journal of the Mechanics and Physics of Solids,2003,51:47-67.
    [17]丁建宁,孟永钢,温诗铸.多晶硅微悬臂梁断裂失效强度的尺寸效应[J].中国机械工程,2001,12(11):1228-1232.
    [18]宗登刚.微机械材料力学性能测量[D].上海:上海微系统与信息技术研究所,2003.
    [19]西安交通大学.微机械力学性能测试仪[P]:中国,00226180.4,2000.03.09.
    [20]SHARPE W N Jr,YUAN B,VAIDYANATHAN R.Measurements of Young's modulus,poisson's ratio,and tensile strength of polysilicon[C].Micro Electro Mechanical Systems,1997.MEMS '97,Proceedings,IEEE.,Tenth Annual International Workshop on,1997:424-429.
    [21]BAGDAHN J,SHARPE W N,JADAAN O.Fracture strength of polysilicon at stress concentrations[J].Journal of Microelectromechanical Systems,2003,12(3):302-312.
    [22]TOSHIYUKI T,OSAMU T,JIRO S,et al.Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films[J].Journal of Microelectromechanical Systems,1998,7(1):106-113.
    [23]HAQUE M A,SAIF M T A.Microscale Materials Testing Using MEMS Actuators[J].Journal of Microetectromechanical Systems,2001,10(1):146-152.
    [24]OGAWA H,SUZUKI S,KANEKO S,et al.Tensile testing of microfabricated thin films[J].Microsystem Technologies,1997,3:117-121.
    [25]ISONO Y,NAMAZU T,TERAYAMA N.Development of AFM tensile test technique for evaluating mechanical properties of sub-micron thick DLC films[J].Journal of Microelectromechanical Systems,2006,15(1):169-180.
    [26]EBERHAP,D B,CHRISTIAN P.G,PANITARN W,et al.A tensile test device for in situ atomic force microscope mechanical testing[J].Precision Engineering,2006,30(1):71-84.
    [27]DING J N,MENG Y G,WEN S Z.Size effect on the mechanical properties and reliability analysis of microfabricated polysilicon thin films[C].39~(th) Annual International Reliability Physics Symposium,2001.
    [28]吴昊,孟永钢,苏才钧,等.多晶硅薄膜疲劳特性片外测试方法[J].哈尔滨工业大学学报,2006(4):592-595.
    [29]MUHLSTE1N C L,STACH E A,RITCHIE R O.Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical Systems[J].Applied Physics Letters,2002,80:1532-1535.
    [30]KAHN H,TAYEBI N,BALLARINI R,et al.Fracture toughness of polysilicon MEMS devices[J].Sensors and Actuators,2000,82:274-280.
    [31]CORIGLIANO A,MASI B D,FRANGI A,et al.Mechanical characterization of polysilicon through on-chip tensile tests[J].Journal of Microelectromechanical Systems,2004,13(2):200-219.
    [32]KAPELS H,AIGNER R,BINDER J.Fracture strength and fatigue of polysilicon determined by a novel thermal actuator[J].IEEE Transactions on Electron Devices,2000,47(7):1522-1528.
    [33]苏才钧,吴昊,郭占社,等.单晶硅微构件力学特性片上测试系统[J].机械强度,2005,27(4):456-459.
    [34]JIN QinHua,WANG YueLin,LI Tie,et al.A MEMS device for in-situ TEM test of SCS nanobeam[J].Science in China Series E:Technological Sciences,2008,51(9):1491-1496.
    [35]WANG Z L,SONG J H.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J].Science,2006,312:242-246.
    [36]SELVAKUMAR A.,NAJAFI K,JUAN W H,et al.Vertical comb array microactuators[C].IEEE Micro-Electro-Mechanical Systems(MEMS) workshop,Amsterdam,Netherlands,1995.
    [37]GARDNER J W,VARADAN V K,AWADELKARIM O O[M].Microsensors,MEMS,and Smart Devices.Beijing:Tsinghua University Press,2004.
    [38]AKIYAMA T,SHONO K Controlled stepwise motion in polysilicon microstructures.Journal of Microelectromechanical Systems,1993,2(3):736-741.
    [39]SINCLAIR M J.A high force low area MEMS thermal actuator[C].Inter Society Conference on Thermal Phenomena,La Vegas,Nevada,2000.
    [40]ZHU YONG,BARTHELAT F,LABOSSIERE P E,et al.Nanoscale displacement and strain measurement[C].The SEM Annual Conference and Exposition on Experimental and Applied Mechanics,Charlotte,North Carolina,2003.
    [4l]梅年松,黄庆安.MEMS薄膜横向断裂强度的在线测试-热驱动法[J].微纳电子技术,2003,7/8:215-217.
    [42]CHRONIS N,LEE L P.Electrothermally activated SU-8 microgripper for single cell manipulation in solution[J].Journal of Microelectromechanical Systems,2005,14(4):857-863.
    [43]GODDENHENRICH T,LEMKE H.,HARTMANN U,et al.Force microscope with capacitive displacement detection[J].Journal of Vacuum Science and Technology A,1990,8(1):383-387.
    [44]LI X D,YANG Y,WEI C.In situ and real-time tensile testing of thin films using double-field-of-view electronic speckle pattern interferometry[J].Measurement Science and Technology,2004,15:75-83.
    [45]READ D T.Young's modulus &thin films by speckle interferometry[J].Measurement Science and Technology,1998,9:676-685.
    [46]Ll B,TANG X S,XIE H M,et al.Strain analysis in MEMS/NEMS structtires and devices by using focused ion beam system[J].Sensors and Actuators A,2004,111:57-62.
    [47]ZHANG X J,ZAPPE S,BERNSTE1N R W,et al.Micromachined silicon force sensor based on diffractive optical encoders for characterization of microinjection[J].Sensors and Actuators A,2004,114:197-203
    [48]QIAN J,YU T X,ZHAO Y P.Two-dimensional stress measurement of a micromachined piezoresistive structure with micro-Raman spectroscopy[J].Microsystem Technologies,2005,11:97-103.
    [49]熊继军,张文栋,薛晨阳等.拉曼光谱应用于硅微悬臂梁的应力特性测试[J].中国机械工程,2005,16(14):1292-1295.
    [50]LEI Z K,KANG Y L,CEN H,et al.Variability on raman shift to stress coefficient of porous silicon[J].Chinese Physics Letters,2006,23:1623-1626.
    [51]邱宇,雷振坤,亢一澜,等.微拉曼光谱技术及其在微结构残余应力检测中的应用[J].机械强度,2004,26(4):389-392.
    [52]MEYER G,AMER N M.Novel optical approach to atomic force microscopy[J].Applied Physics Letters,1988,53:1045-1047.
    [53]REN Q,ZHAO Y P,HAN L,et al.A nanomechanical device based on light-driven proton pumps[J].nanotechnology,2006,17:1778-1785.
    [54]SUN Y,WAN K T,ROBERTS K P,et al.Mechanical property characterization of mouse zona petlucida[J].Transactions on Nanobioscience,2003,2(4):279-286.
    [55]MEI T,LI W J,GE Y,et al.An integrated MEMS three-dimensional tactile sensor with large force range[J].Sensors and Actuators A,2000,80:155-162.
    [56]KIM K,LEE K R,KIM Y K,et al._3-Axes Flexible Tactile Sensor Fabricated by Si Micromachining and Packaging Technology.Micro Electro Mechanical Systems,19th IEEE International Conference,Istanbul,2006
    [57]BARTSCH M S,FEDERLE W,FULL R J,et al.Small Insect Measurements Using a Custom MEMS Force Sensor[C].12th International Conference on Transducers,Solid-State Sensors,Actuators and Microsystems,2003.
    [58]KIM D H,YUN S,KIM B,et al.Mechanical Force Response of Single Living Cells Using a Micro Robotic SystemiC].Proceedings of the 2004 IEEE International Conference on Robotics 8Automation,New Orleans,2004.
    [59]ADAMS J D,MANNING L,ROGERS B,et al.Self-sensing Ttapping Mode Atomic Force Microscopy.Sensors and Actuators A,2005,121:262-266.
    [60]TAKAYUKI S,KAZUYA U,EIJI M,et al.Fabrication and Characterization of Diamond AFM Probe Integrated with PZT Thin Fihn Sensor and Ac.tuator[J].Sensors and Actuators A,2004,114:398-405.
    [61]ADAMS J D,ROGERS B,MANNING L,et al.Piezoelectric self-sensing micro-cantilever bending[J].Sensors and Actuators A,2005,121:457-461.
    [62]ASANO K,HATAKEYAMA F,YATSUZUKA K.Fundamental study of an electrostatic chuck for silicon wafer handing[J].IEEE Transactions on Industry Applications,2002,38(3):840-845.
    [63]BROTZEN F R.,Mechanical Testing of Thin Films[J].International Materials Reviews,1994,39(1):24-45.
    [64]CHINMULGUND M,INTURI R B,BARNARD J A.Effect of Ar Gas Pressure on Growth,Structure,and Mechanical Properties of Sputtered Ti,Al,TiAl,and Ti3Al Films[J].Thin solid films,1995,270:260-263.
    [65]GUO J G,ZHAO Y P.The Size-dependent Elastic Properties of Nanofilms with Surface Effects[J].Journal of Applied Physics,2005,98:07430.
    [66]LARSEN K P,RAVNKILDE J T,GINNERUP M,et al.Device for Fatigue Testing of Electroplated Nickle(MEMS)[C].The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems,2002
    [67]MUHLSTE1N C L,BROWN S B,RITCHIE R O.High-cycle Fatigue of Single-crystal Silicon Thin Films[J].Journal of Microelectromechanical Systems,2001,10(4):593-600.
    [68]SUN Y F,PANG H L.AFM image reconstruction for deformation measurements by digital image correlation[J].Nanotechnology,2006,17:933-939.
    [69]SHARPE W N,PULSKAMP J,GIANOLA D S,Strain measurements of silicon dioxide microspecimens by digital imaging processing[J],Experimental Mechanics,2007,47:649-658.
    [70]WARDLY G A.Electrostatic wafer chuck for electron beam micro fabrication[J].Review of Scientific Instruments,1973,44(10):1506-1509.
    [71]孙禹辉,康仁科,郭东明,等.化学机械抛光中的硅片夹持技术[J].半导体技术,2004,29(4):10-14.
    [72]株式会社日立高新技术.静电吸盘的制造方法[P]:中国,03106729.8,2003.03.27.
    [73]德尔西斯药品公司.静电吸盘[P]:中国,97195369.4,1997.04.09.
    [74]圣戈本陶瓷及塑料股份有限公司.采用平面薄膜电极的静电吸盘[P]:中国,00816969.1,2000.12.05
    [75]ASANO K,HATAKEYAMA F,YATSUZUKA K.Fundamental study of an electrostatic chuck for silicon wafer handling[J].IEEE Trans on Industry Application,1997,436-445.
    [76]ALBERT P P.Resonant-Structure Micromotors.Micro Electro Mechanical Systems[C].Proceedings,An Investigation of Micro Structures,Sensors,Actuators,Machines and Robots IEEE,1989.
    [77]WILLIAM C T,TU-CUONG H N,ROGER T H.Laterally Driven Polysilicon Resonant Microstructures[C].Micro Electro Mechanical Systems,Proceedings in An Investigation of Micro Structures,Sensors,Actuators,Machines and Robots IEEE,1989.
    [78]李勇,李玉和,李庆祥,等.基于体硅工艺的微夹持器设计[J].清华大学学报(自然科学版),2003,43(5):655-658.
    [79]FEDDER G.Simulation of Microelectromechanical systems[D].USA:University of California at Berkeley,1994.
    [80]丁建宁.多品硅微机械构件材料力学行为及微机械粘附问题研究[D],北京:清华大学,2001.
    [81]CHINMULGUND M,INTURI R B,BARNARD J A.Effect of Ar gas pressure on growth,structure,and mechanical properties of sputtered Ti,Al,TiAl,and Ti3Al films,Thin Solid Films,1995,270:260-263.
    [82]BOERA M P,CORWINA A D,KOTULAA P G,et al.On-chip laboratory suite for testing of free-standing metal film mechanical properties,Part Ⅱ- Experiments[J].Acta Materialia.2008,56(14):3313-3326.
    [83]BOGOZI A,DATYE A V,BRZHEZINSKAYA M,et al.Elastic Modulus Study of Gold Thin Film for Use as an Actuated Membrane in a Superconducting RF MEM Switch[J].IEEE Transactions on Applied Superconductivity,2005,15(2):980-983.
    [84]LEE S J,HAN S W,HYUN S M,et al.Measurement of Young's modulus and Poisson's ratio for thin Au films using a visual image tracing system[J].Current Applied Physics,2009,9(1):S75-S78.
    [85]SHARPE W N,MCALEAVEY A.Tensile properties of LIGA nickel[C]// SPIE conference on materials and device characterization in micromachining,Bellingham,1998:130-137.
    [86]CHO H S,HEMKER K J,LIAN K,et al.Measured mechanical properties of LIGA Ni structures[J].Sensors and Actuators A-Phys,2003,03:59-63.
    [87]LUO J K,FLEWITT A J,SPEARING S M,et al.Young's modulus of electroplated Ni thin film for MEMS applications[J].Materials Letters,2004,58:2306-2309.
    [88]LIU Rui,WANG Hong,LI Xueping,et al.A micro-tensile method for measuring mechanical properties of MEMS materials[J].Journal of Micromechanics and Microengineering,2008,18(6):065002.
    [89]HEMKER K J,LAST H.Microsample tensile testing of LIGA nickel for MEMS applications[J].Materials Science and Engineering A,2001,319:882-886.
    [90]SON D,KIM J J,LIM T W,et al.Evaluation of fatigue strength of LIGA nickel film by microtensile tests[J].Scripta Materialia,2004,50:1265-1269.
    [91]王永珍,龚国权,崔敬忠.二氧化硅薄膜的制备及应用[J].真空与低温,2003,9(4):228-233.
    [92]李竞春,杨沛峰,杨谟华,等.SiGeMOS器件SiO2栅介质低温制备技术研究[J].微电子学,2001,31(3):192-194.
    [93]LI Peng,LI Xinxin,ZUO Guomin,et al.Silicon dioxide microcantilever with piezoresistive element integrated for portable ultraresoluble gaseous detection[J].Applied Physics Letters,2006,89:074104-1-3.
    [94]LAERMER F,URBAN A,Challenges,developments and applications of silicon deep reactive ion etching[J],Microelectronic Engineering,2003,67:349-355.
    [95]郑志霞,冯勇建,张春权.ICP刻蚀技术研究[J],厦门大学学报(自然科学版)增刊,2004,43(8):365-368.
    [96]ZHANG D C,LI Z H,LI T,et al.A novel isolation technology in bulk micromachining using deep reactive ion etching and a poly-silicon refill[J],Journal of Micromechanicanics and Miroengineering,2001,11(1):13-19.
    [97]MARXER C,THIO C,GRETILLAT M A,et al.Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications[J].Journal of Microelectromechanical Systems,1997,6(3):277-285.
    [98]MITA Y,HIROSE K,KUBOTA M,et al.Deep-Trench Vertical Si Photodiodes for Improved Efficiency and Crosstalk[J].Journal of Selected Topics in Quantum Electronics,2007,13(2):386-391.
    [99]关旭东.硅集成电路工艺基础[M].北京:北京大学出版社,2003.
    [100]李德胜.MEMS技术及其应用[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [101]黄庆安.硅微机械加工技术[M].北京:科学出版社,1996.
    [102]LEONDES C T.MEMS/NEMS:handbook techniques and applications[M].New York:Springer,2006.
    [103]GOTTSCHO R A,JURGENSEN C W,VITKAVAGE D J.Microscopic uniformity in Plasma etching[J].Journal of Vacuum Science and Technology B,1992,10(5):2133-2147.
    [104]SHAQFEH E S G,JURGENSEN C W.Simulation of reactive ion etching pattern transfer[J].Journal Applied Physics,1989,66(10):4664-4675.
    [105]AYON A A,BRAFF R,LIN C C,et al.Characterization of a time multiplexed inductively coupled plasma etcher[J].Journal of the Electrochemical Society,1999,146(1):339-349.
    [106]CHUNG C K.Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system[J].Journal of Micromechanics and Microengineering,2004,14:656-662.
    [107] MARTY F, ROUSSEAU L, SAADANY B, et al. Advanced etching of silicon based on deep reaction ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostuctures[J]. Microelectronics Journal, 2005, 36: 673-677.
    [108] ZIJLSTRA T, DRIFT E, DOOD M, et al. Fabrication of two-dimensional photonic crystal waveguides for 1.5 mm in silicon by deep anisotropic dry etching[J]. Journal Vacuum Science and Technology B, 1999, 17(6): 2 734-2 739.
    [109] 钱劲,刘澂,张大成,等.微电子机械系统中的残余应力问题[J].机械强度,2001, 23(4): 393-401.
    [110] STONEY G G. The tension of metallic films deposited by electrolysis[J]. Proceedings of the Royal Society, 1909,82: 172-175.
    [111] GUCKEL H, RANDAZZO T, BURNS D W. A simple technique for the determination of mechanical strain in thin films with application to polysillicon[J]. Journal of Applied Physics, 1985, 57: 1671-1675.
    [112] CARR S M, LAWRENCE VV E, WYBOURNE M N. Static Buckling and Actuation of Free-Standing Mesoscale Beams[J]. IEEE Transaction on Nanotechnology, 2005, 4: 655-659.
    [113] FANG W, WICKERT J A. Post buckling of micromachined beams[J]. Journal of Micromechanics and Microengineering, 1994,4: 116-122.
    [114] LUO C, FRANCIS A, LIU X C. Determination of compressive residual stress in a doubly-clamped microbeam according to its buckled shape[J]. Microelectronic Engineering, 2008, 85: 339-347.
    [115] ZHANG TY, SU Y J, QIAN C F, et al. Microbridge testing of silicon nitride thin films deposited on silicon wafers[J]. Acta Materialia, 2000, 48:2843-2857.
    [116] DENHOFF M VV. A measurement of Young's modulus and residual stress in MEMS bridges using a surface profiler[J]. Journal of Micromechanics and Microengineering, 2003, 13: 686-692.
    [117] ZHOU Z M, ZHOU Y, YANG CS, et al. The evaluation of Young's modulus and residual stress of copper films by microbridge testing[J]. Sensors and Actuators A, 2006, 127: 392-397.
    [118] LIN LW, CHIAO M. Electro, thermal and elastic characterization of suspended micro beams[J]. Microelectronics Journal, 1998, 29: 269-276.
    [119] MATOBA H, ISHIKAWA T, KIM CJ, et al. A bistable snapping microactuator [C]. In: Proc. IEEE MEMS Workshop, 1994.
    [120] BRUSH D O, ALMROTH B O. Buckling of Bars, Plates, and Shells[M]. New York: McGraw-Hill, 1975.
    [121] MICHAEL A, KWOK C Y. Thermo-mechanical behavior of buckled multi-layered micro-bridges[J]. Sensors and Actuators A, 2007, 137:157-168.
    [122] ZOU Q, LI Z, LIU L. New methods for measuring mechanical properties of thin films in micromachining: beam pull-in voltage method and long beam deflection method[J]. Sensors and Actuators A, 1995, 48:137-143.
    [123] TAHER M, SAIF A. On tunable bistable MEMS-theory and experiment[J]. Journal Microelectromechanical Systems, 2000, 9: 155-170.
    [124] MICHAEL A, KWOK C Y. Buckling shape of elastically constrained multi-layered micro-bridges[J]. Sensors and Actuators A, 2007, 135: 870-880.
    [125]TIMOSHENKO S P.Theory of elastic stability[M].New York:McGraw Hill,1961.
    [126]ZHAO J H,RYAN T,HO P S.Measurement of elastic modulus;poisson ratio,and coefficient of thermal expansion of on-wafer submicron films[J].Journal of Applied Physics,1999,85:6421-6414.
    [127]WEIHS T P,HONG S,BRAVMAN J C,et al.Mechanical deflection of cantilever microbeams:a new technique for testing the mechanical properties of thin fihns[J].Journal of Materials Research,1988,3:931-942.
    [128]PETERSEN K E,GUARNIERI C R.Young's modulus measurements of thin fihns using micromechanics[J].Journal Applied.Physics,1979,50:6761-6766.
    [129]TSUCHIYAT,INOUE A,SAKATA J.Tensile testing of insulating thin films;humidity effect on tensile strength of SiO_2 films[J].Sensors and Actuators A,2000,82:286-290.
    [130]SUNDARARAJAN S,BHUSHAN B,NAMAZU T,et al.Mechanical property measurements of nanoscale structures using an atomic force microscope[J].Ultramicroscopy,2002,91:111-118.
    [131]郝秀春.电热驱动微夹钳的拓扑设计及相关问题研究[D].大连:大连理工大学,12005.
    [132]BUCHHEIT T E,LAVAN D A,MIC14AEL J R,et al.Microstructural and mechanical properties investigation of electrodeposited and annealed LIGA nickel[J].Metallurgical and Materials Transactions A,2002,33(3):539-554.
    [133]YANG Y,YAO N,SOBOYEJO W O,et al.Deformation and fracture in micro-tensile tests of freestanding electroposited nickel thin films[J].Scripta Materialia,2008,58:1062-1065.
    [134]QU N S,ZHU D,CHAN K C,et al.Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density[J].Surface and Coatings Technoiogy,2003,168:123-128.
    [135]RASHIDI A M,AMADE14 A.The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings[J].Surface and Coatings Technology,2008,202:3772-3776.
    [136]EBRAHIMI F,AHMED Z.The effect of current density on properties of electrodeposited nanocrystalline nickel[J].Journal of Applied Electrochemistry,2003,33:733-739.
    [137]LINS V F,CECCONELLO E S,MATENCIO T.Effect of the Current Density on Morphology,Porosity,and Tribological Properties of Electrodeposited Nickel on Copper[J].Journal of Materials Engineering and Performance,2008,17:741-745.
    [138]KIM H S,BUSH M B.The effects of grain size and porosity,on the elastic modulus of nanocrystalline materials[J].NanoStructured Materials,1999,11(3):361-367.
    [139]KLUGE M D,WOLF D,LUTSKO J F,et al.Formalism for the calculation of local elastic constants at grain boundaries by means of atomistic simulation[J].Journal of Applied Physics,1990,67(5):2370-2379.
    [140]Wong K P,Chan K C,Yue T.Modelling the effect of complex waveform on surface finishing in pulse current electroforming of nickel.Surface and Coatings Technology,2003,135:91-97.
    [141]肖日松.微电铸工艺参数对模具质量影响研究[D].大连:大连理工大学,2006.
    [142]RICE R W.Evaluation and extension of physical property-porosity models based on minimum solid area[J].Journal of Materials Science,1996,31:102-118.
    [143]Smith C S.Piezoresistive effect in germainium and silicon[J],Physics Review,1954,94:24-49.
    [144]袁希光,传感器技术手册.北京:国防工业出版社,1986.
    [145]张段芹,褚金奎,侯志武,等.一种片外驱动微拉伸测量技术研究[J].中国机械工程,2009,20(7):860-864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700