全固态Nd:Gd_(0.63)Y_(0.37)VO_4晶体1.34μm及倍频激光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光二极管(LD)泵浦的固体激光器具有高稳定性、高效率、高能量的优点,被广泛应用于军事、工业、医学和科学研究等领域,已成为国内外激光器领域研究的热点。1.34μm波长附近的激光由于与硅光纤低色散和低损耗的波长一致,所以与光通信中广泛采用的硅光纤传输窗口相吻合,而且它的倍频又是得到红色激光的有效途径,因此1.34μm区域的激光在激光医学、光纤通信、光传感定位和中红外参量振荡的抽运源等领域有着广阔的应用前景。
     Nd:Gd0.63Y0.37VO4晶体是一种新型的掺Nd晶体,研究表明该晶体在1.06μm被动调Q方面具有非常好的性能。本论文从理论和实验两个方面系统研究了Nd:Gd0.63Y0.37VO4晶体作为激光工作物质的1.34μm及红光激光特性,并首次测量了Nd:Gd0.63Y0.37VO4晶体的热焦距和被动损耗。我们使用光纤耦合的半导体激光器作为泵浦源,采用V3+:YAG饱和吸收体被动调Q方式对Nd:Gd0.63Y0.37VO4晶体1.34μm和KTP内腔倍频0.67μm激光特性进行了实验测量。通过实验显示了Nd:Gd0.63Y0.37VO4晶体作为激光工作物质的一些优良特性。
     论文的主要内容概括如下:
     1、实验研究了Nd:Gd0.63Y0.37VO4晶体的热焦距及被动损耗;
     2、实验研究了LD泵浦Nd:Gd0.63Y0.37VO4晶体1.34μm连续激光输出特性;
     3、采用平-凹腔结构,在不同输出镜透过率下,对LD泵浦Nd:Gd0.63Y0.37VO4晶体V3+:YAG被动调Q激光特性进行了实验研究,在V3+:YAG小信号透过率为96%、泵浦功率为5.04W、输出镜透过率T=5%时获得了61.4ns的最短脉宽。利用速率方程理论对该激光器进行了理论分析,理论计算与实验结果相符;
     4、采用平-凹腔设计,在不同输出镜透过率、不同调制重复频率下,对LD泵浦Nd:Gd0.63Y0.37VO4晶体声光调Q激光特性进行了实验研究,当调制重复频率为10kHz、输出镜透过率T=5%、泵浦功率为4.45W时,获得了最短脉宽45.6ns、最大单脉冲能量32.6μJ和最高峰值功率715W的主动调Q脉冲输出;
     5、采用三镜折叠腔,实验研究了LD泵浦Nd:Gd0.63Y0.37VO4晶体、KTP内腔倍频0.67μm红光激光器连续输出特性;
     6、采用三镜折叠腔,利用腔内倍频方法,实验研究了LD泵浦Nd:Gd0.63Y0.37VO4/KTP、V3+:YAG饱和吸收体被动调Q激光器红光输出特性,当V3+:YAG小信号透过率T0=89%、泵浦功率为4.1W时,获得了125ns的最短脉宽、4.3μJ的最大单脉冲能量和34.4W的最高峰值功率,并从理论上进行了数值分析,理论计算值和实验结果基本一致。
     论文的主要创新点:
     1、首次研究了Nd:Gd0.63Y0.37VO4晶体的热焦距及被动损耗;
     2、利用LD端面泵浦方式,采用平-凹腔,首次从理论和实验上研究了V3+:YAG饱和吸收体被动调Q Nd:Gd0.63Y0.37VO4晶体1.34μm激光输出特性,理论计算和实验结果相符;
     3、采用三镜折叠腔,利用腔内倍频方法,首次实现了LD泵浦Nd:Gd0.63Y0.37VO4/KTP 0.67μm红光激光器的连续运转及V3+:YAG饱和吸收体被动调Q运转,并从理论上进行了数值分析,理论计算值和实验结果基本一致。
In recent several years, there has been an increasing interest in laser-diode (LD) pumped all-solid-state lasers because such lasers can be widely used in the fields of military affairs, industry, medicines and so on. The wavelength of 1.34μm laser is identical with the low dispersion and low loss wavelength of silicon optical fiber. Therefore, it coincides with the transmission window of silicon optical fiber and the frequency-doubling of these lasers supplies an effective way to generate red lasers. So there are widespread application fields for the lasers operating nearby 1.34μm in laser medicine, optical fiber communication, optical sensing locating and the pump source of mid-infrared optical parametric oscillation.
     Nd:Gd0.63Y0.37VO4 is a new one in the class of Nd-doped mixed vanadate crystals. It has been proved to be a good laser gain medium for 1.06μm Q-switched operation. In my study, we have analyzed the Nd:Gd0.63Y0.37VO4 laser performance experimentally and theoretically, and for the first time, measured the thermal focal length and passive loss of Nd:Gd0.63Y0.37VO4 crystal. By fiber-coupled laser-diode being used as the pump source and V3+:YAG saturable absorber as the Q-switch, the Nd:Gd0.63Y0.37VO4 laser with wavelength of 1.34μm and Nd:Gd0.63Y0.37VO4 red laser with wavelength of 0.67μm have both been realized. Through the experimental research, we get the excellent characteristics of Nd:Gd0.63Y0.37VO4 crystal as laser medium in this paper.
     The main contents of this dissertation include:
     1. The thermal focal length and passive loss of Nd:Gd0.63Y0.37VO4 crystal have both been researched;
     2. The LD-pumped CW characteristics of Nd:Gd0.63Y0.37VO4 laser at 1.34μm have been researched;
     3. Using short plane-concave cavity, we have got the characteristics of the LD-pumped passively Q-switched Nd:Gd0.63Y0.37VO4 laser with V3+:YAG saturable absorber at different output transmissions. With the V3+:YAG initial transmission of 96%, the pump power of 5.04W and the output transmission of T=5%, the shortest pulse with width of 61.4ns is obtained. By using the rate-equation theory, we have analyzed the laser performance and the theoretical calculations agree with the experimental data;
     4. Using plane-concave cavity, we have got the characteristics of the LD-pumped actively Q-switched Nd:Gd0.63Y0.37VO4 laser with AO modulator at different output transmissions and different modulation repetition rates. With the modulation repetition rate of 10kHz, the output transmission of T=5%and the pump power of 4.45W, the actively Q-switched pulses with the shortest pulse width of 45.6ns, the largest single pulse energy of 32.6μJ and the highest peak power of 715W are achieved;
     5. With the three-mirror-folded laser cavity, the CW output characteristics of the LD-pumped Nd:Gd0.63Y0.37VO4/KTP 0.67μm red laser are given;
     6. With the three-mirror-folded cavity, we have got the characteristics of the LD-pumped passively Q-switched Nd:Gd0.63Y0.37VO4/KTP red laser with V3+:YAG saturable absorber. When the V3+:YAG initial transmission To is 89%and the pump power is 4.1W, the shortest pulse width of 125ns with the largest single pulse energy of 4.3μJ and the highest peak power of 34.4W is obtained. The theoretical calculations of the rate equations are consistent with the experimental results.
     The main innovations of this dissertation are as follows:
     1. We firstly research the thermal focal length and passive loss of Nd:Gd0.63Y0.37VO4 crystal;
     2. Using LD end-pumping, we have experimentally and theoretically studied the performance of the passively Q-switched Nd:Gd0.63Y0.37VO4 laser with V3+:YAG saturable absorber in a planar-concave cavity for the first time, and the theoretical calculations are accord with the experimental data;
     3. With the three-mirror-folded cavity, we firstly present the performance of the LD-pumped intracavity-frequency-doubling Nd:Gdo.63Yo.37V04/KTP 0.67μm red laser operating in CW regime, as well as in the passive Q-switching regime with V3+:YAG, respectively. We have also given the rate-equation model to analyze the laser characteristics and the theoretical predictions are in agreement with the experimental results.
引文
[1]R. Newman, "Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs," J. Appl. Phys.,34(2):437 (1963)
    [2]R. J. Keyes and T. M. Quist, "Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers," Appl. Phys. Lett.,4(3):50-52 (1964)
    [3]H. G. Danielmeyer and F. W. Ostermayer Jr., "Diode-pump-modulated Nd:YAG laser," J. Appl. Phys.,43(6):2911-2912 (1972)
    [4]武伟,LD泵浦c-cut Nd:GdVO4晶体激光特性研究,山东大学硕士论文,2006
    [5]吴峰,LD泵浦Nd:GdVO4晶体1.34μm激光器的研究,山东大学硕士论文,2007
    [6]杨宏志,YVO4/Nd:YVO4热键合晶体的制备及激光特性研究,山东大学硕士论文,2007
    [7]A. A. Kaminskii, Laser Crystal, Springer-Verlag, Berlin Heidelberg,1981
    [8]A. A. Kaminskii, "Modern developments in the physics of crystalline laser materials," Phys. Stat. Sol. (a),200:215 (2003)
    [9]H. T. Huang, J. L. He, C. H. Zuo, "Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm," Appl. Phys. B 89:319-321 (2007)
    [10]H. C. Liang, Y. J. Huang, W. C. Huan, "High-power, diode-end-pumpded, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm, " Optics Letters, 35(1):4-6 (2010)
    [11]S. C. Huang, H. L. Cheng, Yi-Fan Chen, K. W. Su, "Diode-pumped passively mode-locked 1342 nm Nd:YVO4 laser with an AlGaInAs quantum-well saturable absorber," Optics Letter,34(15):2348-2350 (2009)
    [12]P. Li, Q. P. Wang, X. Y. Zhang, J. Lian, J. Chang, "Compact and efficient Kerr-lens mode-locked diode-pumped actively Q-switched YVO4/Nd:YVO4 laser," Optics Communications,283:5139-5144 (2010)
    [13]Wan Qin, Chenlin Du and Shuangchen Ruan, and Yuncai Wang, "10.2-W Q-switched intracavity frequency-doubled Nd:YVO4/LBO red laser double-end-pumped by laser-diode-arrays," Optics Express,15(4):1594-1599 (2007)
    [14]A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov,et al., "The Nd:GdVO4 Crystal:a New Material for Diode-pumped Lasers, " Sov. J. Quantum Electron., 22:1071 (1992)
    [15]Zhang Huaijin, Meng Xianlin, Liu Junhai, et al., "Growth of lowly Nd doped GdVO4 single crystal and its laser properties," J. Crystal Growth,216:367 (2000)
    [16]T. Jensen, V. G Ostoumov, J. P. Meyn, et al., "Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4," Applied Physics B,59:373 (1994)
    [17]P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, et al., "GdVO4 as a new medium for solid-state lasers:some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions," Quantum Electronics,25:1162 (1995)
    [18]Rui Zhou, Shuangchen Ruan, Chenlin Du, Jianquan Yao, "26.3-W continuous-wave, diode-double-end-pumped all-solid-state Nd:GdVO4 laser operating at 1.34μm,' Optics Communications,281:3510-3513 (2008)
    [19]J. Ma, D. Li, P. Zhao, and D. Liu, "Pulse Compression in AO Q-Switched Diode-Pumped Nd:GdVO4 Laser with V3+:YAG Saturable Absorber," Laser Physics, 20(11):1941-1944 (2010)
    [20]F. Q. Jia, "Laser diode end-pumped V:YAG passively Q-switched UV lasers at 335 nm," Laser Phys. Lett.,6:1-6 (2009)
    [21]J. S. Ma, Y. F. Li, Y. M. Sun, H. J. Qi, R. J. Lan, and X. Y. Hou, "Passively Q-switched 1.34μm Nd:GdVO4 laser with V:YAG saturable absorber," Laser Phys. Lett.,5(8):593-596 (2008)
    [22]H.-J. Qi, X.-D. Liu, X.-Y. Hou, Y.-F. Li, and Y.-M. Sun, "A c-cut Nd:GdVO4 solid-state laser passively Q-switched with Co2+:LaMgAl11O19 lasing at 1.34μm," Laser Phys. Lett.4(8):576-579 (2007)
    [23]B.-T. Zhang, J.-L. He, H.-T. Huang, C.-H. Zuo, " Passive Q-switch mode-locking of 1.34μm Nd:GdVO4 lasers with Co2+:LMA saturable absorber," Laser Phys. 6(1):22-25 (2009)
    [24]Z.-Y. Li, B.-T. Zhang, J.-F. Yang, J.-L. He, H.-T. Huang, "Diode-Pumped Simultaneously Q-Switched and Mode-Locked Nd.GdVO4/LBO Red Laser," Laser Physics,20(4):761-765 (2010)
    [25]Jin-Long Xu, Hai-Tao Huang, Jing-Liang He, Jian-Fei Yang, "The characteristics of passively Q-switched and mode-locked 1.06μm Nd:GdVO4 laser with V:YAG saturable absorber," Optical Materials,32:522-525 (2010)
    [26]Kejian Yang, Shengzhi Zhao, Jingliang He, Baitao Zhang, "Diode-pumped passively Q-switched and mode-locked Nd:GdVO4 laser at 1.34μm with V:YAG saturable absorber," Optics Express,16(25):20176-20185 (2008)
    [27]Rui Zhou, Shuangchen Ruan, Chenlin Du, Jianquan Yao, "High-power continuous-wave diode-end-pumped intracavity-frequency-doubled Nd:GdVO4/LBO red laser," Optics Communications,282:605-610 (2009)
    [28]J. Ma, Y. Xu, P. Zhao, and D. Liu, "A Laser-Diode End-Pumped Passively Q-switched Intracavity Doubling Nd:GdVO4/KTP Red Laser with V3+:YAG Saturable Absorber," Laser Physics,20(8):1703-1706 (2010)
    [29]Yuan He, Xueyuan Hou, Lianjie Qin, et al., "Laser-diode pumped passively Q-switched Nd:YxGd1-xVO4 laser with a GaAs saturable absorber," Opt. Commun., 234:305 (2004)
    [30]Lianjie Qin, Xianlin Meng, Chenlin Du, et al., "Growth and properties of mixed crystal Nd:YGdVO4," Journal of Alloys and Compounds,354:259 (2003)
    [31]Yonggui Yu, Jiyang Wang, Huaijin Zhang, et al., "Growth and characterization of Nd:YxGd1-xVO4 series laser crystals," J. Opt. Soc. Am. B,25(6):995-1001 (2008)
    [32]Junhai Liu, Xianlin Meng, Zongshu Shao, and Minhua Jiang, "Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1-xVO4 crystals," Appl. Phys. Lett.,83(7):1289-1291 (2008)
    [33]Junhai Liu, Zhengping Wang, Xianlin Meng, and Zongshu Shao, "Improvement of passive Q-switching performance reached with a new Nd-doped mixed vanadate crystal," Optics Letters,28(23):2330-2333 (2003)
    [34]Haohai Yu, Huaijin Zhang, Zhengping Wang, Jiyang Wang, "Passively Q-switched laser performance of c-cut Nd:Gd0.63Y0.37VO4 crystal," Optics Communications, 281:5199-5201 (2008)
    [35]J.-F. Yang, X.-Q. Yang, J.-L. He, B.-T. Zhang, J.-L. Xu, H.-T. Huang, C.-H. Zuo, and S. Zhao, "Diode-Pumped Passively Q-Switched Mode-Locking Nd:Y0.5Gd0.5VO4 Laser at 1.34μm with Co2+:LaMgAl11O19 Saturable Absorber," Laser Physics,19(8):1819-1823 (2009)
    [36]J. D. Bierlein, H. Vanherzeele, "Potassium Titanyl Phosphate:Properties and New Applications," J. Opt. Soc. Am. B,6(4):622-633 (1989)
    [37]Michael E. Hagerman, Kenneth R. Poeppelmeier, "Review of the Structure and Processing-Defect-Property Relationships of Potassium Titanyl Phosphate:A Strategy for Novel Thin-Film Photonic Devices," Chem. Mater.,7:602-621 (1995)
    [38]Masse R, Grenier J C, Bull Soc, "Crystals of (K, Rb, NH4)TiO(P, As)O4 and Their Use in Electrooptic Device," Frand. Mineral Crystallogr,94:437-439 (1971)
    [39]N. V. Stus, S. N. Dub, D. A. Stratiychuk, V. V. Lisnyak, "The mechanical properties of KTiOPO4 single crystals," Journal of Alloys and Compounds, 366:13-15(2004)
    [40]Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, "Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and F3/2→4I13/2 transitions," Optics Express, 16(25):21155-21160 (2008)
    [41]A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, "Pulsed laser operation of diffusion-doped Cr2+:ZnSe," Optics Communications,167:129-132 (1999)
    [42]V. Kushawaha and Y. Chen, "Diode end-pumped high-efficiency Nd:YAG laser," Appl. Phys. B.,59(6):659-661 (1994)
    [43]R. Burnham and A. D. Hays, "High-power diode-array-pumped frequency-doubled cw Nd:YAG laser," Opt. Lett.,14(1) 27-29 (1989)
    [44]F. Hanson and D. Haddock, "Laser diode side pumping of neodymium laser rods," Appl. Opt,27(1):80-83 (1988)
    [45]R. Scheps, "Efficient laser diode pumped Nd lasers," Appl. Opt,28(1):89-91 (1989)
    [46]J. J. Zayhowski and C. Dill Ⅲ, "Diode-pumped passively Q-switched picosecond microchip lasers," Opt. Lett.,19(18):1427-1429 (1994)
    [47]Y. Shimony, Z. Burshtein, and Y. Kalisky, "Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser," IEEE J. Quantum Electron., 31(10):1738-1741 (1995)
    [48]H. Plaessmann, K. S. Yamada, C. E. Rich, and W. M. Grossman, "Subnanosecond pulse generation from diode-pumped acousto-optically Q-switched solid-state lasers," Appl. Opt.,32(33):6616-6619 (1993)
    [49]R. S. Conroy, T. Lake, G. J. Friel, A. J. Kemp, and B. D. Sinclair, "Self Q-switched Nd:YVO4 microchip lasers," Opt. Lett.,23(6):457-459 (1998)
    [50]A. Agnesi, S. Dell'Acqua, E. Piccinini, G. Reali, and G. Piccinno, "Efficient wavelength conversion with high-power passively Q-switched diode-pumped Neodymium lasers," IEEE J. Quantum Electron.,34(8):1480-1484 (1998)
    [51]J. Ma, Y. Li, Y. Sun, and X. Hou, "Passively Q-Switched 1.32μm Nd:YAG Laser with a V:YAG Saturable Absorber," Laser Physics,18(4):393-395 (2008)
    [52]J. S. Ma, Y. F. Li, Y. M. Sun, H. J. Qi, R. J. Lan, and E. Y. Hou, "Passively Q-switched 1.34μm Nd:GdVO4 laser with V:YAG saturable absorber," Laser Physics Letters,5(8):593-596 (2008)
    [53]姚建铨,非线性光学频率变换及激光调谐技术,北京:科学出版社,1995
    [54]刘均海,邵凤兰,许心光,王长青,王继扬,刘耀岗,邵宗书,蒋民华,“优质KTP晶体腔内有效倍频效率及损耗的研究,”光电子·激光,11(6):609-612(2000)
    [55]J. Ma, Y. Xu, P. Zhao, and D. Liu, "A Laser_Diode End-Pumped Passively Q-switched Intracavity Doubling Nd:GdVO4/KTP Red Laserwith V3+:YAG Saturable Absorber," Laser Physics,20(8):1703-1706 (2010)
    [56]Haitao Huang, Jingliang He, Chunhua Zuo, "Highly efficient and compact laser-diode end-pumped Q-switched Nd:YVO4/KTP red laser," Optics Communications,281:803-807 (2008)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700