真空微波预处理辅助浸提植物有效成分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然植物中含有非常丰富的活性成分,被广泛用于药品、保健品和化妆品中。我国拥有丰富的中药资源,但中药提取物的国际市场占有率还不足5%。由于植物中有效成分的含量相对较少,浸提(提取、浸出或萃取)过程需要耗费大量的溶剂和能量,因此提取是植物药生产中的最重要的工序,直接影响产品的质量、生产成本及原料的利用率等。开发高效节能的提取新技术和提取设备是一个关键点和突破口,对加快中药生产现代化的进程,有效开发和利用中草药资源,有着重要的意义。
     本研究提出了真空微波预处理的方法,该方法先对干物料进行一定程度的浸润,然后用微波辐射破坏植物细胞结构,之后再采用传统的提取方法。在微波预处理阶段,微波作用于物料内的汽化剂,微波几乎全被物料吸收,处理时间只有两三分钟。本研究采用水做预处理汽化剂,在微波腔内施加真空度,使汽化剂(水)在低温条件下汽化,达到既破坏细胞壁,又保留活性成分的目的,解决了用乙醇等做汽化剂安全性低,成本高的缺点。
     研究了真空微波预处理对灵芝、竹叶中的有效成分提取率的影响,首先研究了微波预处理辐射过程对植物细胞结构的破坏情况,在扫描电子显微镜下观察,可以发现,微波后的植物细胞结构几乎被完全破坏,微观结构变的疏松,有利于后续提取过程的传质。对微波预处理后灵芝和竹叶中的有效成分——灵芝多糖和竹叶黄酮的提取得率、提取液的浊度和粘度进行测试分析,利用响应面分析法优化出灵芝多糖和竹叶黄酮提取的最佳预处理工艺参数,结果表明本方法与传统水浴提取法相比,不仅可以大量缩短提取时间,还提高了有效成分的提取率。
     研究了真空微波预处理后后续浸提的动力学及其数学模型。在修正后的Fick扩散第一定律基础上,结合微波场对固液扩散机制的影响,研究了物料在微波预处理后水浴浸提过程中,有效成分浸提过程的动力学方程,并同传统水浴浸提法的动力学方程比较,对强化机理进行了一定的探讨,并用试验数据对该方程进行检验,具有一定的理论参考价值。
     研究表明真空微波预处理方法能够快速破坏植物细胞壁,使的后续的提取时间大大缩短,得率提高,是一种理想的强化提取方法。
Natural plants contain a diverse group of bioactive substances with a broad range of applications in medicine, healthcare product and cosmetic etc. China is rich in medical herb resources, but has a weak market share (less than 5%) on plant extractions in the world. Because effectual compositions of plants were a little and the extraction process needs a lot of solvent and energy, the extraction is the most important unit operation,which affect production quality, cost and utilization ratio of material directly. Therefore, it is important to develop high efficient and energy-saving extract technology and equipment which will lead acceleration the process of modernization of Chinese medicine, exploiting and utilization the resources of herbal medicine in our country in higher efficient.
     The method of vacuum-microwave pretreatment is proposed and used in current study, the materials were wetted for some time in advance, then were irradiated by vacuum-microwave to destroy cell’s structure of plants, and then the traditional extraction was employed in succession. During the microwave irradiation, microwave energy was nearly all absorbed by the solvents which moved into internal area of cell during wetting and the total irradiation time was about 2-3minutes because the materiels were just wetted by limited solvents. The effectual compositions are retented and the extraction efficieny is higher due to the shorter treatment time, lower pressure and destruction the wall of cell. Furthermore the water was employed as vaporized solvents in current method because vacuum in the microwave cavity was imposed resulting in lower vaporization temperature, it is safer and lower cost than ethanol or other solvents is used.
     The effects of vacuum-microwave pretreatment on extracting effectual composition from Ganoderma Lucidum and Bamboo leaves were studied. First, the extent of cell-wall breaking by vacuum-microwave irradiation was observed and checked by SEM. The pictures of SEM showed that cell-walls were almost destructed after microwave irradiation. The Ganoderma Lucidum and Bamboo leaves were pretreated by vacuum-microwave in advance, then the conventional water-bath extraction was employ, and the effectual compositions extraxtion rate, turbidity and viscosity of extracts were tested and analyed. The vacuum-microwave irradiation parameters were optimized and confirmed by response surface methodology. Compared with the traditional water-bath method,the results showed that the current method can not only shorten the time of extraction but increase the rate of extraction of effectual compositions.
     A kinetic mathmatical model for extraction process after vacuum-microwave pretreatment was also studied, which is based on the revised Fick’s first law of diffusion. The experiment datas matched the kinetic equation well. Therefore it provides a theoretical reference for the vacuum-microwave pretreatment extraction of Chinese traditional medicine. The results show that vacuum-microwave pretreatment is a perfect assisted extraction method, which can destruct the cell-wall of plants rapidly, shorten extraction time and increase extraction rate.
引文
[1]刘小平,李湘南.中药分离工程[M].北京:化学工业出版社,2004.1-5
    [2]卢晓江.中药提取工艺与设备[M].北京:北京化学工业出版社,2004.176-178
    [3]刘振武,李满飞.中药产业的可持续发展与GAP[J].中草药,1999,30(11)
    [4]肖诗鹰,王智民主编.国家中药技术标准战略与对策[M].中国医药科技出版社,2005, 192-1008
    [5] Coenen H, Kriejej E.Ger Chem Eng.1984,7:335-346
    [6]麻成金,张永康.微波和超临界CO2萃取杜仲籽油工艺研究[J].食品科学,2005,16(1): 131-135
    [7] Hromadkova, Z Ebringerova, A Valachovic.Comparison of classical and ultrasound-assisted extraction of polysaccharides from Salvia officinalis L. Ultrasonics Sonochemistry, 1999, 5(4): 163-168
    [8]曾虹燕,方芳.超临界CO2、微波和超声波辅助提取光皮树子油工艺研究[J].中国粮油学报,2005 ,4 (2) : 67-70
    [9]刘佳,赵国玲,章晓骅.金银花绿原酸酶法提取新工艺研究[J].中成药,2002,24(6):416-418
    [10]薛伟明,张效林,刘袖洞,等.酶-膜法药用植物有效成分提取分离过程应用研究[J].西北大学学报(自然科学版),1997,27(6):494-498
    [11]张兆旺,王英姿,孙秀梅.当归苦参丸两种方法提取液的成分比较[J].中国中药杂志, 1999,24(12):734
    [12]Ganzler K, Szinai I, Salgo A.Effective sample preparation method for extracting biologically active compounds from different matrices by a microwave technique. Journal of Chromatography, 1990,520: 257-262
    [13]Pare J R J. Controlled energy density microwave-assisted processes[P]. US: 6061926 A, 2000-05-16
    [14]Pare J R J. Microwave assisted generation of volatiles of supercritical fluid and apparatus therefore[P]. US: 5519947A, 1996-5-28
    [15]Pare J R J. Microwave of volatile oils and apparatus therefore[P]. EP: 0485668 Al, 1992-05-20
    [16] Pare J R J. Microwave extraction of volatile oils [ P]. US: 5338557A, 1994-08-16
    [17] B Kaufmann, P Christen, J L Veuthey.Parameters affecting microwave-assisted extraction of withanolides. Phytochemical Analysis, 2001, 12: 327-331
    [18]Pallaroni L HC, Eskilsson C S, Bjorklund E. Microwave-assisted extraction of ze-aralenone from wheat and corn. Analytical and Bioanalytical Chemistry, 2002, 374(1): 161-166
    [19]J H Kwon, J M R Belanger, J R J Pare.Application of the microwave-assisted p- rocess (MAPTM) to the fast extraction of ginseng saponins. Food Research International, 2003,36(5): 491-498
    [20]Yang Y,Chen L, Guo Z K,etc. Microwave assisted extraction of major active ingr-edients in Panax quinquefolium L.Journal of Liquid Chromatography and Related Tech-nologies,2004,27(20): 3203-3211
    [21]M Dabiri, S Salimi, A Ghassempour, etc.Optimization of microwave-assisted extraction for alizarin and purpurin in Rubiaceae plants and its comparison with conventional extraction methods. Journal of Separation Science, 2005, 28(4):387-396
    [22]Arturo L P, M P CMacias.Focused microwaves-assisted extraction and simultaneousspectrophotometric determination of vanillin and phydroxybenzaldehyde from vanilla f-ragans.Talanta, 2006,69:47-91
    [23]侯春友,刘钟栋.陈肇锬微波条件下提取果胶的研究[J].郑州粮食学院学报,1999,22(2): 9-13
    [24]何弥尔,马银海.用微波提取茶叶中的咖啡因[J].昆明师范高等专科学校学报,2000, 22(4):16-17
    [25]孙萍,李艳,顾承志,等.甘草多糖的微波提取及含量测定[J].基层中药杂志,2001,15 (6):22
    [26]王莉,刘志勇,鲁建江,等.车前草总黄酮的微波提取及含量测定[J].江西中医学院学报,2002,12(2):18-19
    [27]顾承志,鲁建江.微波提取车前穗中总黄酮及其含量测定[J].湖北中医学院学报,2004,6(2):33-34
    [28]焦士龙,张泽英,褚治德,等.微波提取丹参工艺研究[J].中草药,2005,36(11):1640-1643
    [29]张素霞.番茄红素的微波提取及其稳定性的研究[J].中国调味品,2009,34(4):106-109
    [30]唐小俊,张雁,池建伟,等.微波提取荔枝多糖及冲剂的研制[J].食品研究与开发,2208,29(1):18-21
    [31]董薇,于龙.微波法从香蕉皮中提取果胶的工艺研究[J].微量元素与健康研究,2006,23(1):33-34
    [32]Dandekar D V, Gaikar V G. Microwave assisted extraction of curcuminoids from Curcuma longa[J]. Separation Science and Technology, 2002, 37(11): 2669-2690
    [33] Chemat S H, Lagha A, Esveld D C. Microwave-assisted extraction kinetics of terpenesfrom caraway seeds[J]. Chemical Engineering and Processing, 2005, 44(12): 1320-1326
    [34]韦藤幼,赵群莉,童张法.植物有效成分的微波预处理提取方法[P].中国: 02149695.1. 2002-12-17
    [35]梁忠生.黄花篙微波预处理对青篙素提取产率的影响研究[J].中南药学,2004,2(6): 342-344
    [36]易醒,肖小年.微波预处理提取泽泻中三萜总组分的研究[J].食品科学,2006,27(10): 384-387
    [37]胡秀沂,邱树.毅新鲜菊芋的预处理及微波辅助提取菊粉的研究[J].食品工业科技,2007,4:150-153
    [38]黄旭初,侯娟.金银花中绿原酸的微波预处理提取及检测[J].分析测试技术与仪器,2008,14(1):14-18
    [39]陈丛瑾,胡华宇.微波预处理-溶剂回流提取马占相思叶多酚的工艺研究[J].应用化工,2008,37(5):545-549
    [40] Hamada J S.Characterization of protein fractions of rice bran to devisemethods of protein solubilization[ J].Cereal Chem,1997,74(5): 662-668
    [41]丘泰球,宋武明,陈树功.超声波在花粉细胞破壁技术上的应用[J].声学技术,1991,10(1):12-15
    [42]苗前,杜红傲,王文正.玉米花粉机械破壁方法的研究[J].食品科学,1997,11(18):43-46
    [43]王春涛,潘家祯,崔宁.超高压超临界撞击流技术制备破壁灵芝孢子粉的研究[J].化工装备技术,2005,26(2):17-22
    [44]秦蓝,许时婴,王璋.采用酶法液化技术制备高品质的南瓜汁[J].食品与发酵工业, 2004,29(12): 48-53
    [45]汪兴平,谢笔钧,程超,等.反复冻融法在葛仙米破壁技术上的应用[J].食品科学,2005, (3):139-142
    [46]曹龙奎,黄威,王会.玉米花粉破壁方法的试验研究[J].吉林农业科学,2004,29(5):52-54
    [47]Z-W Cui, S-Y Xu, D-W Sun.Dehydration of garlic slices by combined microwave-vacuum and air drying. Drying Technology, 2003, 21(7), 1173-1184
    [48] Schiffmamn R F.Microwave and Dielectric drying in A.S.Mujunmdar(Eds),Handbook of Industrial Drying,Marcel Dekker,New York,USA
    [49]胡斌杰,陈金锋,王宫南.超声波法与传统热水法提取灵芝多糖的比较研究[J]食品工业科技,2007(2):190-192
    [50]陈宁.真空微波辅助萃取大蒜素工艺的研究[J].试验报告与理论研究,2009,1(12):21-24
    [51]林志彬.灵芝的现代研究[M].第2版.北京:北京医科大学出版社.2001: 157-206
    [52]高梦祥,张佳兰,王江明.微波浸提竹叶黄酮的工艺研究[J].西北农林科技大学学报,2005,33(1):146-150
    [53]刘江,周荣琪.竹叶提取物总黄酮含量测定方法的改进[J].食品科技,2005,11:76-79
    [54]李进飞.杜仲叶中绿原酸的提取及动为学研究[D]:[硕士学位论文].中南大学,2004
    [55]林亚平,卢维伦.非溶蚀型药物体系的释放动力学模型[J].药学学报,1997,32(11):69-74
    [56]唐春林.细胞破壁技术提高胡萝卜汁中胡萝卜素含量的研究[D]:[硕士学位论文].西华大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700