1.55μm波段聚合物光波导放大器的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是针对1.55μm波段含铒离子(Er~(3+))聚合物光波导放大器进行的基础性研究。首先简介了光波导放大器在通信上的应用和研究进展,着重介绍了聚合物光波导放大器。其次,根据速率方程和功率传输方程,数值模拟了放大器的增益和噪声系数。接着,合成了几种含Er~(3+)(Er~(3+)-Yb~(3+))配合物如Er(DBM)3MA、Er(TTA)3Phen、ErYb(DBM)3MA等;分别通过掺杂和键合的方法,将含Er~(3+)(Er~(3+)-Yb~(3+))配合物复合进不同的聚合物体系中,制备了有源聚合物材料。对以上含Er~(3+)配合物和聚合物材料的光谱进行了研究:①测量了吸收和光致发光光谱,观测到了典型的Er~(3+)的吸收和发光峰,讨论了不同配体、Er~(3+)浓度、Yb~(3+)浓度对Er~(3+)发光性质的影响。②测量发光能级寿命,得到寿命是10-30μs,发光量子效率是0.4-0.5%。③测量拉曼和红外光谱,指出量子效率低是由于O-H和C-H键的淬灭。然后,对于配合物Er(TTA)_3phen掺杂的高氟化聚合物ZP材料和ErYb(DBM)_3MA键合P(MMA-GMA)聚合物体系材料,选用光刻结合反应离子刻蚀工艺制备了光波导,并测量得到了波导的近场和损耗。在980nm泵浦下首次观测到了ErYb(DBM)_3MA的键合型聚合物波导在1.53μm的发光。对于ErYb(DBM)_3MA掺杂的紫外光敏性聚合物SU8材料,选用紫外曝光结合湿法刻蚀工艺制备光波导,测量得到了圆形的波导近场。最后,我们设计了波导放大器特性测量系统,测量和分析了磷酸盐玻璃波导放大器的增益特性。
Human society is entering into an information age driven by the rapid development of technologies in areas of microelectronics, optoelectronics, computer and communications. The demands of rapid increase in information make the communication system continuously develop to high speed, big capacity and low cost. The propagation and switching speed of signals in the traditional electronic domain are inherently limited. The optical signal has a more rapid switching and modulating speed, and the photonics and optoelectronics have become research hotspot in recent years. Optical fiber telecommunication technology, depending on its tremendous and potential bandwidth resource, has become one of the important technology to support the development of communication services. All optical communication networks will benefit to realize digital communication of high speed and large capacity, and to realize“information superhighway”in the world. Amplifier whose function is to compensate the signal losses is a key device of the optical fiber communication network. Optical amplifier directly boosts up an optical signal without any conversion of the light into an electrical signal. And optical amplifying technology has become the most effective method to compensate losses. This technology which is the key to all optical communication is a revolution in the history of the fiber communication. Erbium doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) have been successfully applied to the long-distance fiber communication. For the short-distance communication, such as local/metro networks, and especially fiber to the home (FTTH) and fiber to the curb (FTTC), a kind of medium gain, mini-volume and easy-set amplifier is urgently needed. And optical waveguide amplifier is just the amplifier which meets these demands. The optical waveguide amplifiers in the 1.55μm region are mainly made of Er-doping inorganic phosphate and silicate glasses, and have already commercialized. However, the fabrication process is complex and integrating with other photonics devices is very difficult. Compared with conventional inorganic waveguide materials, polymer waveguide materials have advantages in easy process, controllable refractive index and easy integration etc. Supported by 863 and 973 projects, we had investigated and fabricated some passive polymer waveguide devices such as arrayed waveguide grating (AWG) and power splitter etc, and we had obtained some results. Recently, we are preparing active polymeric materials with modulating or amplifying function by method of doping or chemical reaction, and then we will prepare to fabricate the waveguide electro-modulator or waveguide amplifier. The dissertation is a fundamental research on polymeric optical waveguide amplifier.
     In this dissertation, the most important results are: Using the method of bonding Erbium complex into polymer matrix, we prepared active polymer waveguide material. Thus, we had dispersed Er~(3+) ions uniformly into polymer and increased Er-doping concentration to 1026 ions/cm3. In this active polymer, we had observed photoluminescence of Er~(3+) at 1.53μm and an enhancement effect to Er~(3+) luminescence by co-doping of Yb~(3+). By applying Raman and Infrared spectra, we characterized active polymer materials and obtained the conclusion that the quenching comes from vibration of O-H and C-H groups. By using photolithography and reactive ions etching, we prepared active polymer waveguides. At 120mW pump power, we had firstly observed the 1.53μm spontaneous emission from these active polymer waveguides.
     The main content and innovation of this dissertation are followings:
     1. We introduced the application and advantages of optical amplifiers, and pointed out advantages of optical waveguide amplifiers by comparing three types of optical amplifiers. We reviewed the research progress of polymer optoelectronic devices, especially the progress of Er-doped polymer waveguide amplifier. Compared with inorganic optical waveguide amplifier, we gave some advantages of the organic polymer waveguide amplifier.
     2. We introduced the theory of the optical waveguide amplifiers. Based on optical amplifying theory of excited emission, we set up the rate equations and propagation equations of optical power, and did the numerical simulation of the gain and noise coefficient. Based on the simulation results, we analyzed impact factors of the gain and noise figure, such as Er-doped concentration, Yb-doped concentration, waveguide length, and pump power etc.
     3. The key point of research on polymer optical amplifiers is the preparation of active polymer materials with high quantum efficiency. We prepared kinds of Er-doped complexes, such as Er(DBM)3MA, ErYb(DBM)3MA, and Er(TTA)3Phen etc. Using complex ErYb(DBM)3MA with strongest luminescence, we prepared the bonding-type active polymer and doping-type active polymer. By measuring the absorption and the photoluminescence spectra of these complexes and polymer materials, we observed some typical absorption and photoluminescence peaks of Er~(3+) ions, especially photoluminescence of Er~(3+) ions at 1.53μm. Also we measured the photoluminescence lifetime of these complexes and polymers, and calculated to obtain the result is that the low emission efficiency is less than 0.5%. Therefore, the lifetime of materials must be improved, which needs further research. We measured the Raman spectra and Infrared absorption spectra which showed that low quantum efficiency was caused by vibrational quenching of O-H and C-H groups. The quenching is a high- speed non-radiative relaxation process and ought to avoid. In the world, all successful polymer waveguide amplifiers had adopted the low vibrational frequency ligands to decrease the quenching and enhance the emission quantum efficiency.
     4. The fabrication technique of waveguide amplifiers is the key process, which directly influences the quality of the waveguide. According to the properties of polymers, we chose different fabrication processes, and prepared and characterized the optical waveguides. For ZP and P(MMA-GMA) series of Er-doped polymer materials, we selected the photolithography and reactive ions etching process and prepared the optical waveguides. By measuring the near field and insertion loss of these waveguides, and we observed the 1.53μm spontaneous emission from P(MMA-GMA) active polymer waveguide under 120mW pump power. Due to the low emission quantum efficiency, a real and applicable amplifier still needs further research. For SU8 polymer material, we selected the UV exposure and wet etching technology to prepare optical waveguides. The prepared rectangle waveguides are close to the designed width of 4μm, and the error of width is only 0.3μm. The propagation loss of SU8 waveguides is lower than that of the P(MMA-GMA) waveguides. We carried out a fundamental research on Er-doping SU8 polymer, and set up a foundation for manufacture the waveguide amplifiers. This SU8 material needs to improve its Er-doping concentration and the photoluminescence quantum efficiency. Direct doping Erbium complexes into SU8 polymer is a prospective method to fabricate amplifiers, because we can use simple process to prepare waveguide of low losses.
     5. The measurement of gain and noise figure is also a very important research aspect of the amplifier. Therefore, the measurement of a finished product of waveguide amplifier will benefit us to improve measurement level. We designed a measurement system for waveguide amplifiers, at which we can precisely and conveniently measure the gain and noise performances. We measured three Er~(3+)-Yb~(3+) co-doped waveguide amplifiers, and analyzed the signal and pump losses, small signal gain, gain saturation etc. And methods of the measurement of noise were also discussed.
引文
[1] 杨祥林 著 光放大器及其应用 电子工业出版社 1-12,2000
    [2] 沈元壤〔美〕著顾世杰译 非线性光学原理与应用 科学出版社 1987
    [3] E.Desurvire, J.R.Sinpson and PlC.Becher, High gain erbirm-doped traveling wave fiber amplifier, Opt.Lett.12(11),888,1987
    [4] R.J.Mears, L.Reekie and I.M.Jauncay, Low noise erbium-doped amplifier operating at 1550nm, Electron.Lett.23(19),19,1987
    [5] C.R.Giles, E.Desurvire and J.R.Talman, 2 Gibt/s amplification at 1.53μm in an erbium-doped single-mode fiber amplifier, IEEE J.Lightwave Tech.,7(4)651, 1989
    [6] BoHun Choi, An optical power-equilized amplifier with a wide dynamic range, Opt. Commun. 267,92, 2006
    [7] D.Mgrobnic, and N.N.Puscas, Study of the amplified emission noise reconstruction of Er:Ti:LiNbO3 Waveguides, Int.J.Opto. 10(4),285, 1995
    [8] Chi-Hung Huang, and McCaughan, L. Photorefractive-damage-resistant Er-indiffused MgO:LiNbO3 ZnO-waveguide amplifiers and lasers, Electron. Lett., 33(19),1639,1997
    [9] E.M.Yeatman, M.M. Ahmad, and O.Mccarthy, Sol-Gel Fabrication of Rare-Earth Doped Photonic Components, J.Sol-Gel Scien. and Tech. 19,213,2000
    [10] S.Y. Seo and J.H. Shin, Appl. Phys. Lett. 78, 2709,2001
    [11] H.S. Han, S.Y. Seo, and J.H. Shin, Appl. Phys. Lett. 81, 3720,2002
    [12] Hansuek.Lee, Jung H. Shin, and Namkyoo Park, Optics Express, 13, 9881 2005
    [13] P.G. Kik, M.J.A.de Dood, K. Kikoin, and A. Polman, Appl. Phys. Lett. 70, 1721,1997
    [14] P.G. Kik and A. Polman, J. Appl. Phys. 88, 1992 (2000)
    [15] N. Daldosso, D. Navarro-Urrios, and M.Melchiorri et al., Appl. Phys. Lett. 86, 261103,2005
    [16] K. Liu, and E.Y.B. Pun, Appl. Opt. 43, 3179,2004
    [17] K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A.van Kan, and F. Watt, Appl. Phys. Lett. 84, 684, 2004
    [18] G.Della Valle, R. Osellame, N. Chiodo, S. Tacchco, G. Cerullo, and P. Laporta, Opt. Express 13, 5976,2005
    [19] R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, and D. T.Reid, Appl. Phys. Lett. 87, 121102,2005
    [20] P.G. Kik, A.Polman. Cooperative upconversion as the gain-limiting factor in Er doped miniature Al_2O_3 optical waveguide amplifiers.J.Appl.Phys., 93(9),5008,2003
    [21] G.N.van den Hoven, R.J.I.M.Koper, and A.Polman, Net optical gain at 1.53μm in Er-doped Al_2O_3 waveguides on silicon, Appl.Phys.Lett. 68, 1886,1996.
    [22] 李淑凤,宋昌烈,李成仁等, 掺 Er Al_2O_3 光波导薄膜材料的制备及光学特性,半导体光电,24(5):344, 2003
    [23] Holton, Conard, Nanocrystals in polymers amplify signals, Laser Focus World, 34 (1), 20, 1998
    [24] L. H. Slooff et al, Rare-earth doped polymers for planar optical amplifiers, J. Appl. Phys., 91(7), 3955, 2002
    [25] W. H. Wong et al, Er~(3+)-Yb~(3+) codoped polymeric optical waveguide amplifiers, Appl. Phys. Lett. 84, 176, 2004
    [26] W.H. Wong, K.S. Chan, and E.Y.B. Pun, Ultraviolet direct printing of rare-earth- doped polymer waveguide amplifiers, Appl. Phys. Lett. 87, 011103,2005
    [27] G.A. Kumar, R.E. Riman, S. Banerjee, A. Kornienko, J.G. Brennan, S. Chen, D. Smith, and J. Ballato, Appl.Phys. Lett. 88, 091902,2006
    [28] A.Q.L. Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A.Barberis, and S.M. Pietralunga, Appl.Phys. Lett. 89,141124,2006
    [29] A. K. Thomas, J.Emge, G.A. Kumar, R.E. Riman, and J.G.. Brennan, J.Am.Chem. Soc. 127, 3501,2005
    [30] Q. Zhong, H. Wang, G.. Qian, Z. Wang, J. Zhang, J. Qiu, and M. Wang, Inorg. Chem. 45, 4537,2006
    [31] G.A. Kumar, R.E. Riman, L.A.D. Torres, O.B. Garcia, S. Banerjee, A. Kornienko, and J.G. Brennan, Chem. Mater. 17, 5130,2005
    [32] 赵登峰,用于有机波导放大器的稀土铒近红外发光材料的合成与表征,吉林大学硕士论文,2006。
    [33] H. Ma, A. K. Y. Jen, and L. R. Dalton, Polymer-based optical waveguides: materials, processing, and devices, Advanced Materials, 14(19), 1339,2002
    [34] Optical Materials (Ed: R. M. Wood), Cambridge University Press, Cambridge, UK 1993
    [35] J. Hecht, Laser Focus World 2001, January, 115
    [36] 沈玉金,潘裕斌,钟宝璇,有机/聚合物光电子学器件的应用与研究进展,功能材料,31(1),1-4,2000
    [37] 禹忠,汪敏强,姚熹,光通信波段聚合物光波导材料的研究进展,化学通报,(1),5-10,2001
    [38] R. C. N. Dagani, March, 4,22,1996
    [39] 刘佰军,低介电常数含氟聚芳醚酮的合成及其性能研究,吉林大学博士论文,2002年
    [40] W.H.Wong, K.K.Liu, K.S.Chan, E.Y.B.Pun, polymer device for photonic applications, J.Cryst.Growth, 288,100,2006
    [41] 杨晓红,有机聚合物波导和光调制器的基础研究,中国科学院半导体研究所博士论文,2002
    [42] 赵禹,聚合物光波导和阵列波导光栅的基础研究,吉林大学博士论文,1-10, 2004
    [43] 王菲,硅基聚合物阵列波导光栅波分复用器的研制,吉林大学博士学位论文,1-15, 2005
    [44] D. J. Williams, Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symposium Series No.233, Washington, D.C. 1983.
    [45] J. Zyss, Nonlinear organic materials for integrated optics: a review, J. Molecular Electro.1, 25, 1985
    [46] Stephen T. Kowel, Liangxiu Ye et al., Organic and polymeric thin films for nonlinear optics, Opt. Eng. 26(2), 107, 1987
    [47] Charles A. Eldering and P. F. Brinkley et al., Electrooptic polymer materials and devices for global optical interconnects, Appl. Opt., 29(8), 1142, 1990
    [48] Emmanuel Van Tomme and Paul E. Lagasse et al., Integrated optic devices based on nonlinear optical polymers, IEEE. J. Quantum Electronics, 27(3), 778, 1991
    [49] Anthony Garito, Ruifang Shi and Marvin Wu, Nonlinear optics of organic and polymer materials, Physics Today, 5, 51, 1994.
    [50] Donald M. Burland and Cecilia A. Walsh, Second-order nonlinearity in poled-polymer systems, Chem. Rev., No.94, 31, 1994.
    [51] Larry R. Dalton, Aaron W. Harper et al., Polymeric electro-optic modulators: materials synthesis and processing, Adv. Mater., 7(6), 519, 1995
    [52] Larry R. Dalton, Polymeric electro-optic modulators, Chemistry & Industry, No.7, 510, 1997
    [53] Y. Hida, Y. Inoue and S. Imamura, Polymer arrayed-waveguide grating multiplexer operating around 1.3um, Electron. Lett., 30, 959, 1994
    [54] M. B. J. Diemeer, R. R. Amsamoedj and M. K. Smit, Polymeric phased arrayed wavelength multiplexer operating around 1550nm, Electron. Lett., 32, 1132, 1996
    [55] T. Watanabe, Y. Inoue, A. Kaneko and T. Kurihara, Polymer arrayed-waveguide grating multiplexer with wide tuning range, Electron.Lett., 33, 1547, 1997
    [56] Junya Kobayashi, Yasuyuki Inoue and Tohru Maruno, Tunable and polarization-intensitive arrayed-waveguide grating multiplexer fabricated from fluorinated polyimides, IEICE Trans. Electron., Vol.E81-C, No.7, 1020, 1998
    [57] C. C. Teng, Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth, Appl.Phys. Lett., 60(13), 1538, 1992
    [58] Wenshen Wang, Harold R. Fetterman, Pei-ming D. Chow and Larry R. Dalton et al., Optical heterodyne detection of 60 GHz electro-optic modulation from polymer waveguide modulators, Appl.Phys. Lett., 67, (13), 1806, 1995
    [59] Datong Chen, Harold R. Fetterman, Wenshen Wang and Larry R. Dalton et al., Demonstration of 110 GHz electro-optic polymer modulators, Appl.Phys. Lett., 70(25), 3335, 1997
    [60] D. G. Girton and R. S. Lytel et al., 20 GHz electro-optic polymer Mach-Zehnder modulator, Appl. Phys. Lett., 58(16), 22, 1991
    [61] Dechang An, Zan Shi, Suning Tang, Ray T. Chen, William H. Steier and Larry R. Dalton et al., Polymeric electro-optic modulator based on 1 2 Y-fed directional coupler, Appl. Phys. Lett., 76(15), 1972, 2000
    [62] Yongqiang Shi, James H. Bechtel, Hua Zhang, Cheng Zhang, William H. Steier and Larry R. Dalton et al., Low (Sub-1-Volt) halfwave Voltage polymeric electro-optic modulators achieved by controlling chromophore shape, Science, 288(7), 119, 2000
    [63] Yoshito Shuto and Michiyuki Amano et al., Optical intensity modulators using diazo-dye-substituted polymer channel waveguides, IEEE J. Quantum Electron., 31(8), 1451, 1995
    [64] A. Donval, E. Toussaere, and J. Zyss, Polarization insensitive electro- optic polymer modulator, J. Appl. Phys., 87(7), 3258, 2000
    [65] S.-W. Ahn, S.-Y. Shin and S.-S. Lee, Polymeric digital optical modulator based on asymmetric branch, Electron. Lett., 37(3), 172, 2001
    [66] J. I. Thackara, J. C. Chon, G. C. Bjorklund et al, polymeric electro-optical Mach-Zehnder switches, Appl. Phys. Lett. 67(26), 3874,1995
    [67] N. Keil, H. H. Yao, C. Zawadzki, (2×2) digital optical switch realized by low cost polymer waveguide technology, Electron.Lett. 32(16), 1470,1996
    [68] N. Keil, H. H. Yao, C. Zawadzki. Electron. Lett. 32 (7), 655,1996
    [69] N. Keil, H. H. Yao, C. Zawadzki. Technology, Infrastructure, WDM Networks, Eds Faulkner D W. Harmer A L. NOC 96, IOS Press, 196,1996
    [70] N. Keil, H. H. Yao, C. Zawadzki. Integrated Photonics Research, 1998 Technical Digest Series, vol 4, Itul2-1/353-355, Vactoria, Canada.
    [71] J. Si, Y. Wang, J. Zhao et al. Optics Letters, 21(5), 357,1996
    [72] K. Oda, S. Suzuki, H. Takahashi et al, An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator. [J]. IEEE Photon. Eechnol. Lett., 6(8), 1031,1994
    [73] H. P. Lee, J. J. Park, H. H. Ryoo et al, Resonance characteristics of waveguide-coupled polyimide microring resonator. Optic. Materials. 21, 535, 2002
    [74] S. C. Hagness et al. IEEE J. Lightwave Tech., 15(11), 2154,1997
    [75] D. V. Tishinin, P. D. Dapkus, A. E. Bond et al, Vertical resonant couple with precise coupling efficiency control fabricate by wafer bonding. [J]. IEEE Photon. Technol. Lett., 11(8), 1003,1994
    [76] Wukkuam H. Sterer, Antao Chen, Sang-Shin Lee et al, Polymer Electro-optica devices for integrated optics. Chem. Phys. 245, 487, 1999
    [77] D. Chen, H. R. Tetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, Demonstration of 110 GHz electro-optical polymer modulators, Appl. Phys. Lett. 70(25),3335,1997
    [78] Joseph Zyss, Molecular nonlinear optics material, physics and devices. Academic Press, p47
    [79] 江源 邹宁宁 著 聚合物光纤 化学工业出版社 北京 2002
    [80] Steve Grossman, OLEDs have a bright future in the automotive industry, Electronic Design, 49 (1), 28, 2001
    [81] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burnsan, A. B. Holmes, Light-emitting- diodes based on conjugated polymers, Nature, 347, 539,1990
    [82] D. Braun, A. J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett. 58,1982,1991
    [83] Wallace, John, Organic laser in electrically pumped. Laser Focus World, 36 (19), 2000.
    [84] Yajima H., Kawase S., Sekimoto Y., Amplification at 1.06 μm using a Nd:glass thin film waveguide, Appl. Phys. Lett., 39(3),407, 1972
    [85] H.Ennen, J.Schneider, G.Pomrenke and A.Axmann, 1.54μm luminescence of erbium-implanted Ⅲ-Ⅴsemiconductors and silicon, Appl.Phys.Lett., 43(10),943,1983
    [86] Polman A., Lidgard A., Jacobson D. C., et al., 1.54μm room-temperature luminescence of Mev erbium-implanted silica glass, Appl.Phys. Lett., 57(26), 2859,1990
    [87] Kitagawa T., Hattori K., Shimize M. et al., Guided-wave laser based on erbium-doped silica planar light-wave circuit, Electron. Lett., 27(3), 334,1991
    [88] Honkanen S., Najafi S., Poyhonen P.. Silver-film ion-exchanged singlemode waveguides in Er doped phosphate glass, Electron.Lett., 27(23),2167,1991
    [89] Shmulovich J., Wong A., Wong Y. H., et al., Er~(3+) glass waveguide amplifier at 1.5 μm on silicon, Wlecctron. Lett., 28(13),1181,1992
    [90] Kitagawa T., Hattori K., Hibino Y. et al..Erbium-doped composite glasswaveguide amplifier, Electron. Lett. 29(1),131,1993
    [91] Nykolak G., Hnner M., Hibino Y. et al., Systems emaluation of an Er~(3+)-doped planar waveguide amplifier, IEEE photon. Technol. Lett., 5(10),1185,1993
    [92] A.Bahtat, M.Bouazaoui, M.Bahtat et al, Flourescence of Er~(3+) ions in Ti02 planar waveguide prepard by a sol-gel process, Opt.Commun., 111,55,1994
    [93] G.N.van den Hoven,J.H.Shin,A.Polman et al., Erbium in oxygen-doped silicon:Optical excitation,J.Appl.Phys., 78(4),2642,1995
    [94] Ghosh,R.N.,Shmulovich,J.,Kane,C.F. et al., 8-mV threshold Er~(3+)-doped planar waveguide amplifier, IEEE photonics Technology Letters, 8(4),518,1996
    [95] Shmulovich,J.,Ghosh R.N.,Kane,etal..Planar Er waveguide amplifier with 8-mW threshold, Optical Fiber Communications (OFC’96), 250,1996
    [96] Cheng Chun Li,Hong Koo Kim, Michele Migliuolo, Er-doped glass ridge-waveguide amplifiers fabricated with a collimated sputter deposition technique, IEEE Photon.Technol.Lett., 9(9), 1223,1997
    [97] Barbier D.,Bruno P.,Cassagnettes C. et al., Net gain of 27 dB with a 8.6-cm-long Er/Yb-doped glass-planar-amplifier, Opt. Fiber Commun. Con., OFC’98 Technical Digest, 45,1998
    [98] Choi Y. B., Cho S. H., Moon D. C., Er-Al-codoped silicate planar light waveguide-type amplifier fabricated by radio-frequency sputtering, Opt. Lett., 25(4),263,2000
    [99] H.S. Han, S.Y. Seo, and J.H. Shin, Appl.Phys. Lett. 79, 4568,2001
    [100] S.F. Wong,E.Y.B. Pun, P.S. Chung, Er~(3+)-Yb~(3+) codoped phosphate glass waveguide amplifier using Ag~+-Li~+ ion exchange, IEEE photon.Techn. Lett., 14(1),80,2002
    [101] G.Jose, G..Sorbello, S.Taccheo et al., Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses,J.Non-Crys.Solides, 322,256,2003
    [102] Liu K., Puri E.Y.B., Sum T.C., etal.Erbium doped waveguide amplifiers fabricated using focused proton beam irradiation, IEEE 16th Annual Meeting of Lasers and Electro-Optics,LEOS 2003, 1,132,2003
    [103] Delavaux J-M. P., Granumd S., Mizuhara O., et al., Integrated optics Erbium-Ytterbium amplifier system in 10Gb/s fiber transmission experiment, IEEE photon. Technol. Lett., 9(2),247,1997
    [104] Iannone C., Reichmann K. C., birk M.,et al., A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers. OSA Optical Fiver Communication(OFC) Proceedings, CA 2001, Anaheim, March, 17~22
    [105] 谢大弢,吴瑾光,徐端夫等, 掺 Er 凝胶玻璃中 Er 离子发光性质的研究, 光谱学与光谱分析, 18(2):177,1998
    [106] 雷红兵,杨沁清,王启明等, 离子注入掺铒硅发光中心的光致发光研究, 半导体学报, 9(5)332,1998
    [107] 万均,盛湖,陆肪等, 掺铒 SiOx 的光致发光特性.物理学报, 47(10),1741,1998
    [108] Song Feng,Chen Xiaobo, Feng Yan,LD 泵浦的共掺 Er~(3+)、Yb~(3+)磷酸盐玻璃激光器, 中国激光, A26(9),790,1999,
    [109] 陈淑芬,卢文杰,胡维晟, 掺铒铌酸锂光波导放大器增益特性的理论分析,光学技术, 3:44,1999
    [110] 张龙,林凤英,祁长鸿等,用于 1.5μm 光波导放大器的高浓度 Er~(3+)掺杂玻璃, 光学学报, 20(12):1692,2000
    [111] 巢明,李淑凤,宋昌烈,掺 Er~(3+)Al2O3 平面光波导放大器理论计算, 大连理工大学学报, 41(1):24,2001
    [112] 柳祝平,戴世勋,胡丽丽,Yb~(3+)、Er~(3+)共掺磷酸盐玻璃光谱性质研究, 中国激光, 28(5):467,2001
    [113] 王颖,杨天新,孙伟成等, 条形掺铒波导放大器的理论分析,光通信技术, 9:42,2003
    [114] 田贺斌,杨天新,王颖,等. Er~(3+):Yb~(3+)共掺玻璃波导放大器及其应用,光通信技术, 1:34,2003
    [115] 宋峰,孟凡臻,丁欣等, 1.54μm Er~(3+)-Yb~(3+)共掺玻璃激光器的速率方程及数值分析, 物理学报, 51(6):1233,2002
    [116] Meng Fanzhen, Song Feng, Zhang Chaobo et al., Laser Diode Pumped 1.54μm Er:Yb Phosphate Glass Continuous Wave Compact Laser, Chin. Phys. Lett., 20(10),1739,2003
    [117] 陈海燕,刘永智,戴基智等, Er~(3+)-Yb~(3+)共掺磷酸盐玻璃(LGS-L)波导放大器设计, 光学学报, 23(6):697,2003
    [118] 慕桓,陆加佳,金国良等,掺铒玻璃 Ag+-Na+离子交换光波导的分析, 上海交通大学学报, 38(2):248,2004
    [1] 周炳琨等 著 激光原理 国防工业出版社,4-18,2000
    [2] 杨祥林 著 光放大器及其应用,电子工业出版社,28-74,2000
    [3] 陈海燕,宽带掺 Er 光波导放大器关键技术研究,电子科技大学博士学位论文,18-47,2004
    [4] Richard S. Quimby, Wlliam J. Miniscalco, Barbara Thompson, Upconversion and 980-nm excited-state absorption in erbium-doped glass, Fiber Laser Sources and Amplifiers IV,SPIE, 1789,50,1992
    [5] G. Nykolak, P.C. Cecker, J Shmulovivh, et al, Concentration-Dependent 4I13/2 Lifetimes in Er~(3+)-Doped Fibers an Er~(3+)-Doped planar waveguides, IEEE Photon. Technol. Lett., 5(9),1014,1993
    [6] M. Federighi, F. Di Pasquale, The Effect of Pair-Induced Energy, Transfer on the Perfoormance of Silica Waveguide Amplifiers with High Er~(3+)/Yb~(3+) Cocentrations, IEEE Photon. Technol. Lett., 7(3),303,1995
    [7] Snoeks E., Kik P.G., Polman A., Concentration quenching in erbium-implanted alkali-silica glasses, [J].Opt. Mater., 5(1),159,1996
    [8] L.H.Slooff, A.Van. Blaaderen, A.Polman, G..A. Hebbink, S.I. Klink, F.C.J.M.V. Veggel, D.N. Reinhoudt, and J.W. Hofstraat, J.Appl. Phys. 91, 3955,2002
    [9] 陈海燕,Er~(3+)-Yb~(3+)共掺磷酸盐玻璃光波导放大器的设计于制作研究,电子科技大学硕士学位论文,2002
    [10] Shooshtari A., Touam T., Najafi S.I., Yb~(3+) Sensitized Er~(3+)-Doped Waveguide Amplifiers: A Theoretical Approach, Optical and Quantum Electron., 30,249,1998
    [11] W.Q.Shi, Effects of energy transfer among Er~(3+) ions on the fluorescence decay and lasting properties of heavily doped ErY3Al5O12, J.Opt. Soc. Am. B, 7(8),1456,1990
    [12] B.C. Hwang, S.B. Jiang, T. Luo, J. Watson, G. Sorbello, N. Peyghambarian, J. Opt. Soc. Am. B, 17,833,2000
    [13] Yongdan Hu, Shibin Jiang, Gino Sobello et al, J. Opt. Soc. Am. B, 18,1928, 2001
    [14] Mathieu Laroche, Sylvain Girard, Jayanta K. Sahu, W.Andrew Clarkson, and Johan Nilsson, J. Opt. Soc. Am. B, 23,195,2006
    [15] Victor Lopez, Gonzalo Paez, and Marijia Strojnik, Optics Letters, 31, 1660,2006
    [1] 赵登峰,用于有机波导放大器的稀土铒近红外发光材料的合成与表征,吉林大学硕士论文,2006
    [2] 王冬梅,含稀土配合物聚合物透明材料的设计合成与发光性质研究,吉林大学博士论文,2004
    [3] Xi-Zhen Zhang, Da-Ming Zhang, Shan-Kun Mu, et al, 1.53 μm photoluminescence from ErYb(DBM)3MA containing polymer, Applied Physics B, 86, 677,2007
    [4] H. Liang, Z. Zheng, B. Chen, Q. Zhang, and H. Ming, Mat. Chem. and Phys. 86, 430,2004
    [5] L.H.Slooff, A.Van. Blaaderen, A. Polman, G.A. Hebbink, S.I. Klink, F.C.J.M.V. Veggel, D.N. Reinhoudt, and J.W. Hofstraat, J. Appl. Phys. 91, 3955, 2002
    [6] S.F. Wong, E.Y.B. Pun, and P.S. Chun, IEEE Photon. Thechn. Lett. 14, 80, 2002
    [7] K. Liu and E.Y.B. Pun, Appl. Opt. 43, 3179, 2004
    [8] S.F. Li, Q.Y.Z hang, and Y.P. Lee, Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicated laser glasses, J. Appl. Phys. 96,4746,2004
    [9] D. Pisignano, E. Mele, L. Persano, G. Paladini, and R. Cingolani, Appl. Phys. Lett. 86,261104,2005
    [10] X.Z. Zhang, K. Liu, S.K.Mu, et al, Er~(3+)-Yb~(3+) co-doped glass waveguide amplifiers using ion exchange and field-assisted annealing, Optics Communications, 268, 300, 2006
    [11] C. Strohh?fer and A. Polman, J.Appl.Phys. 90, 4314, 2001
    [12] Q. Zhong, H. Wang, G. Qian, Z. Wang, J. Zhang, J. Qiu, and M. Wang, Inorg. Chem. 45, 4537, 2006
    [13] C. Strohh?fer and A. Polman, J.Appl.Phys. 90, 4314, 2001
    [14] 高景生,宋昌烈,李成仁等,高掺铒硅酸盐玻璃样品净增益特性测量,光学学报,30(5),2004
    [15] 孙江亭,具有宽带红外发射的掺铒硼硅玻璃的研究,中科院长春光学精密机械与物理研究所博士学位论文,40-48,2004
    [16] 杨祥林 著 光放大器及其应用,电子工业出版社,24,27,2000
    [17] H.Lin, E.Y.B, X.R.Liu, Er~(3+)-doped Na2O Cd3Al2Si3O12 glass for infrared and upconversion applications, Journal of Non-Crystalline Solids, 283,27,2001
    [18] Hai Lin, Shibin Jiang, Jiangfeng Wu, Feng Song, Nasser Peyghambarianand E.Y.B. Pun, Er~(3+)-doped Na2O-Nb2O5-TO2 glasses for optical waveguide laser and amplifier, J.Phys. D: Appl.Phys. 36,812,2003
    [19] Z. Zheng, H. Liang, H. Ming, Q. Zhang, and J. Xie, Opt. Comm. 233, 149, 2004
    [20] 武汉大学化学系编,仪器分析高等教育出版社,2000
    [21] 范康年主编,谱学导论, 高等教育出版社,2001
    [22] V.L. Ermolaev and E.B. Sveshnikova, Russ.Chem. Rev. 63, 905,1994
    [23] A.M. Grishin, E.V. Vanin, and O.V.Tarasenko et al, Strong broad C-band room-temperature photoluminescence in amorphous Er_2O_3 film, Appl.Phys. Lett. 89, 021114, 2006
    [24] 张国斌,陈彪,戚泽明,陈永虎,梁浩,张其锦,施朝淑,Eu~(3+)掺杂的 PMMA-络合物体系的发光特性,发光学报,24(6), 616,2003
    [25] F. Quochi, R. Orrù, F. Cordella, A. Mura, G.. Bongiovanni, F. Artizzu, P. Deplano,M.L. Mercuri, L. Pilia, and A.Serpe, J.Appl. Phys. 99, 053520, 2006
    [26] W.H. Wong, E.Y.B. Pun, and K.S. Chan, Appl. Phys. Lett. 84, 176,2004
    [27] W.H. Wong, K.S. Chan, and E.Y.B. Pun, Appl. Phys. Lett. 87, 011103, 2005
    [28] H. Wang, G. Qian, M. Wang, J. Zhang, and Y. Luo, Enhanced Luminescence of an Erbium(Ⅲ) Ion-Association Ternary Complex with a Nerar-Infrared Dye, J. Phys. Chem. B, 108, 8084,2004
    [29] Qi Zhong, Huaishan Wang, Guodong Qian, Zhiyu Wang, Jiahua Zhang, Jianrong Qiu, and Mingquan Wang, Novel Stoichiometrically Erbium-Ytterbium Cocrystalline Complex Exhibiting Enhanced Near-Infrared Luminescence, Inorg. Chem. 45,4537,2006
    [30] A.Q.Le Quang, J. Zyss, I. Ledoux, V.G. Truong, A.-M. Jourdye, B. Jacquier, D.H. Le, and A. Gibaud, An hybrid organic-inorganic approach to erbium-functionalized nanodots for emission in the telecom window, Chemical Physics, 318,33,2005
    [31] C. Strohh?fer, P.G. Kik, and A. Polman, Selective modification of the Er~(3+) 4I11/2 branching ration by energy transfer to Eu~(3+), J.Appl. Phys. 88, 4486, 2000
    [32] G.A. Kumar, R.E. Riman, L.A.D. Torres, O.B. Garcia, S. Banerjee, A. Kornienko, and J.G. Brennan, Chem. Mater. 17, 5130,2005
    [33] Anna Kornienko, Thomas J.Emge, G.Ajith Kumar, Richard E.Riman, and John G. Brennan, J.Am.Chem.Soc., 127,3501,2005
    [34] G.A. Kumar, R.E. Riman, S. Banerjee, A. Kornienko, J.G. Brennan, S. Chen, D. Smith, and J. Ballato, Appl.Phys. Lett. 88, 091902, 2006
    [35] John Ballato, Richard E.Riman, and Elias Snitzer, Sol-gel synthesis of rare-earth-doped lanthanum halides for highly efficient 1.3-μm optical amplification, Opt. Lett. 22,691, 1997
    [36] Gaetano Mancino, Anderew J. Ferguson, Andrew Beeby, Nicholas J. Long, and Tim S. Jones, Dramatic increase in the lifetime of the Er~(3+) ion in a molecular complex using a perfluorinated imidodiphosphinate sensitizing ligand, J.Am.Chem.Soc., 127,524,2005
    [37] A.Q.L. Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, and S.M. Pietralunga, Appl.Phys. Lett. 89,141124,2006
    [38] H. Ma, A. K. Y. Jen, and L. R. Dalton, Polymer-based optical waveguides: materials, processing, and devices, Advanced Materials, 14(19), 1339, 2002
    [39] W.H. Wong, K.K. Liu, K.S. Chan, and E.Y.B. Pun, polymer device for photonic applications, Journal of Crystal Growth, 288,100, 2006
    [40] John Ballato, Stephen Foulger, and Dennis W. Smith Jr, Optical properties of perfluorocyclobutyl polymers, J.Opt.Soc.Am.B, 20,1838,2003
    [41] John Ballato, Stephen Foulger, and Dennis W. Smith Jr, Optical properties of perfluorocyclobutyl polymers.Ⅱ.Theoretical and experimental attenuation, J.Opt.Soc.Am.B, 21,958,2004
    [42] Jennifer Gordon, John Ballato, and Dennis W. Smith Jr and Jianyong Jin,Optical properties of perfluorocyclobutyl polymers. Ⅲ. Spectroscopic characterization of rare-earth-doped perfluorocyclobutyl polymers, J.Opt.Soc.Am.B, 22,1654,2005
    [43] W.H. Wong, J. Zhou and E.Y.B. Pun, Low-loss polymeric optical waveguides using electron-beam direct writing, Appl.Phys.Lett, 78,2110, 2001
    [44] T.C. Sun, A.A. Bettiol, J.A.van Kan, and F. Watt, E.Y.B. Pun, and K.K, Tung, Proton beam writing of low-loss polymer optical waveguides, Appl.Phys.Lett, 83,1707,2003
    [45] Min-Cheol Oh, Myung-Hyun Lee, Joo-Heon Ahn, Hyung-Jong Lee, and Seon Gyu Han, polymeric wavelength filters with polymer gratings, Appl.Phys.Lett, 72, 1559, 1998
    [1] 赵禹,聚合物光波导和阵列波导光栅的基础研究,吉林大学博士论文,68-96,2004年
    [2] Dalton, L. R., Harper, A. W. and Shi, Y. et al., Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics, Chem. Mater, 7(6),1060,1995
    [3] Larry R. Dalton, Polymeric electro-optic modulators, Chemistry & Industry, No.7, 510, 1997.
    [4] Rettig W., Appl. Phys. B., 45, 145, 1988
    [5] Shi. Y., Steier W. H., Yu L. P., Chen M. and Dalton L. R., Proc. SPIE 1559, 118, 1991
    [6] Shi. Y., Steier W. H., Yu L. P., Chen M. and Dalton L. R., Appl. Phys. Lett., 58, 1131, 1991.
    [7] Steier W. H., et al., Mat. Res. Soc. Sym. Proc. 143, 147, 1996
    [8] Larry R. Dalton, Aaron W. Harper et al., Polymeric electro-optic modulators: materials synthesis and processing, Adv. Mater.,7(6),519, 1995
    [9] Yoshito Shuto and Michiyuki Amano et al., Optical intensity modulators using diazo-dye-substituted polymer channel waveguides, IEEE J.Quantum Electron., 31(8), 1451, 1995
    [10] Srinivasan R., Braren B., Ultraviolet laser ablation and etching of polymethyl methacrylate sensitized with an organic dopant, Appl. Phys. A, 45, 289, 1988
    [11] Srinivasan R., J. Appl. Phys.,72, 1651, 1992
    [12] Mustacich R, Gilbert M, Finn R, Swann C., Analysis and fabrication of overlapping-electrode designs for poling and modulating channels in polymer thin films, Appl. Opt., 31, 2800, 1992
    [13] Thackara J. I., Lipscomb G. F., Stiller M. A., et al.,Poled electro-optic waveguide formation in thin-film organic media, Appl. Phys. Lett., 52, 1031, 1988
    [14] Kulis J. R., Franke H ., J. Appl. Phys., 63, 2517, 1988
    [15] Datong Chen, Harold R. Fetterman, Wenshen Wang and Larry R. Dalton et al., Demonstration of 110 GHz electro-optic polymer modulators, Appl. Phys. Lett., 70, 25, 3335, 1997
    [16] A. Donval, E. Toussaere, and J. Zyss, Polarization insensitive electro-optic polymer modulator, J. Appl. Phys., 87(7), 3258, 2000
    [17] S.-W. Ahn, S.-Y. Shin and S.-S. Lee, Polymeric digital optical modulator based on asymmetric branch, Electron. Lett., 37(3), 172, 2001
    [18] Xi-Zhen Zhang, Da-Ming Zhang, Shan-Kun Mu, et al, 1.53 μm photoluminescence from ErYb(DBM)3MA containing polymer, Applied Physics B, 86, 677, 2007
    [19] 王菲,硅基聚合物阵列波导光栅波分复用器的研制,吉林大学博士论文,71-72,2005年
    [20] W.K. Burns and G.B. Hocker, Appl. Opt. 16, 2048,1977
    [21] W. H. Wong et al, Er~(3+)-Yb~(3+) codoped polymeric optical waveguide amplifiers, Appl. Phys. Lett. 84 (2), 176, 2004
    [22] W.H. Wong, K.S. Chan, and E.Y.B. Pun, Appl. Phys. Lett. 87, 011103, 2005
    [23] W.H. Wong, and E.Y.B. Pun, polymeric waveguide wavelength filters using electron-beam direct writing, Appl.Phys.Lett. 79, 22, 2001
    [24] W.H. Wong, J. Zhou, and E.Y.B. Pun, low-loss polymeric optical waveguides using electron-beam direct writing, Appl.Phys.Lett. 78, 15, 2001
    [1] H.Onodera, I.Awai, and J, Ikenoue, Refractive-index measurement of bulk materials prism coupling method, 22(8),1194,1983
    [2] 平面光波导折射率分布的测定,韦珏,徐晓峰,耿和平,康智慧,姜云,高锦岳,光子学报,34(4),2005
    [3] Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis J.M.White and P.F.Heidrich Appl.Opt, 15 (1), 151,1976
    [4] K. Liu, E.Y.B. Pun, IEEE Photon. Technol. Lett. 17,76,2005
    [5] K. Liu, E.Y.B. Pun, Appl. Opt. 43,3179,2004
    [6] X.Z. Zhang, K. Liu, S.K.Mu, et al, Er~(3+)-Yb~(3+) co-doped glass waveguide amplifiers using ion exchange and field-assisted annealing, Optics Communications, 268, 300, 2006
    [7] E. Desurvire, C.R. Giles, J.R. Simpson, and J.L. Zyskind, Opt. Lett. 14, 1266, 1989
    [8] D.K. Sardar, J.B. Gruber, B. Zandi, J.A. Huntchinson, and C.W. Trussell, J. Appl. Phys. 93,2041, 2003
    [9] H. Lin, S. Jiang, J. Wu, F. Song, N. Peyghambarian, and E.Y.B. Pun, J. Phys. D: Appl. Phys. 36, 812,2003
    [10] D. Pisignano, E. Mele, L. Persano, G. Paladini, and R. Cingolani, Appl. Phys. Lett. 86, 261104, 2005
    [11] R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, S.Shen, and A. Jha, Appl. Phys. Lett. 87, 121102, 2005
    [12] K. Liu, E.Y.B. Pun, T.C. Sun, A.A. Bettiol, J.A. van Kan, and F. Watt, Appl. Phys. Lett. 84, 684, 2004
    [13] G.D.Valle, R. Osellame, N. Chiodo, S. Taccheo, G. Cerullo, and P. Laporta, Opt. Express 13, 5976, 2005
    [14] E.M. Yeatman, M.M. Ahmad, and O. Mccarthy, J. Sol-Gel Sci. Technol. 19, 231, 2000
    [15] 邵公望,金国良,戴亚军,戴蓓兴, 铒镱共掺光波导放大器噪声指数的测量,全国第十二次光纤通信暨第十三届集成光学学术会议论文集,464,广东四会, 2005 年 11 月 14-18 日

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700