AB_n型超支化聚合反应动力学及分子构象的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用反应型八位置键涨落格子模型和Monte Carlo方法研究了三维空间下的ABn(n=2, 4)型超支化聚合反应。在考虑了分子内成环、空间效应、分子扩散及分子链松弛等因素影响的情况下系统研究了超支化聚合反应动力学及超支化分子的构象特征。
     在动力学研究中,分析了单体浓度、反应活性和取代基效应对聚合度、分子量分布及支化点密度的影响。在零反应活化能的条件下研究了浓度对参数的影响,浓度变化范围为0.1~0.95。结果显示数均聚合度、重均聚合度和多分散指数PI均随浓度的升高而增大。在A官能团转化率趋近于1时,平均场理论预测聚合度及分子量分布将趋于无穷大,而在我们的模拟中各参数的最大值均为有限值。比如AB_2和AB_4型超支化聚合反应中最大的PI值分别为3.50和3.42。在A官能团转化率为1时,平均支化点密度FB开始随着单体浓度的升高而增大,然而在高浓度体系下FB反而下降。在AB2型单体的反应体系中单体浓度c0=0.8时FB达最大值0.298;在AB4型单体的反应体系中c0=0.75时FB达最大值0.263。在反应活化能不为零时,随着反应活性降低PI逐渐变大,而平均FB则基本保持不变。相比而言,取代基效应对PI和FB具有显著影响。模拟结果与实验数据非常接近,这些结论将有助于对AB_n型超支化聚合反应进行预测。
     在AB_2型超支化聚合反应中,研究了单体浓度和取代基效应对分子构象的影响。系统研究了分子的尺寸与聚合度的标度规律,此规律可表示为R~Nβ,式中R为回转半径R_g或流体力学半径R_h,N为聚合度。研究发现标度指数β随着单体的转化率升高而减小,并且满足关系式β=H+K·CA,式中CA是A官能团的转化率,H和K是与单体浓度和B官能团活性比相关的常数。反应活性比在低转化率下对β具有显著影响,然而当转化率趋近于1时活性比的影响变得很小。C_A=1时β_g和β_h的取值范围分别为0.37<β_g<0.50、0.35<β_h<0.44。随着反应进行z-均半径之比γ=R_(gz)/R_(hz)逐渐增大,在各种反应条件下γ的变化范围为0.99~1.14。这些结果将有助于深入了解超支化分子构象的基本性质。
In this dissertation, ABn(n=2, 4)type hyperbranched polymerization is investigated using Monte Carlo method with a reactive 3d bond fluctuation lattice model. With the considerations of intramolecular cyclization, steric factor, diffusion of molecules, and polymer chain relaxation, the kinetics of polymerization and the conformational properties of hyperbranched polymers are systematically studied.
     In the kinetic study, the influences of monomer concentration, reaction activity and substitution effect on the degree of polymerization, molecular weight distribution and branching degree are investigated. In the case of zero activation energy, the number- and weight-average degrees of polymerization, and polydispersity index, PI, increase with the rise of monomer concentration which ranges from 0.1 to 0.95. However, different from the infinite value obtained in mean-field theory when the conversion of A groups approaches one, the maximal value of these three parameters are finite, for instance the maximal value of PIs are 3.50 and 3.42 for AB2 and AB4 type hyperbranched polymerizations respectively. The average fraction of branching point, FB, initially elevates with the increase of monomer concentration and then decreases at high concentration, with the maximal values of 0.298 and 0.263 at c0=0.8 and c0= 0.75 for AB2 and AB4 type polymeizations at full conversion of A groups. In the case of non zero activation energy, the PI increases slowly with the decrease of reaction activity, but the average FB keeps nearly unchanging. In comparison, the substitution effect has significant influence on PI and FB. The simulation results show excellent agreement with experimental data and are helpful to make great progress in prediction for ABn type hyperbranched polymerizations.
     The influences of monomer concentration and substitution effect on the conformation of hyperbranched polymers are studied in one-pot AB_2 type hyperbranched polymerization. The scaling relationship of the conformation size of hyperbranched polymer with the polymerization degree, R~N~β, where R is the gyration radius (R_g) or the hydrodynamic radius (Rh) of macromolecule and N the degree of polymerization, were systematically studied. It is discovered that the scaling exponentβdecreases with the increase of the monomer conversion and satisfies a simply relation,β=H+K·C_A, where CA is the conversion of A functional groups, and H and K are constant coefficients relevant with the initial monomer concentration and the reactivity ratio of B groups. The influence of the reactivity ratio of B groups onλis strong at the lower conversion of reaction but becomes weak when the conversion approaches one. Theβ_g andβ_h are at the ranges 0.37<β_g<0.50 and 0.35<β_h<0.44 when CA=1. The ratio of z-average radius,γ=R_(gz)/R_(hz), increases from 0.99 to 1.14 with the reaction conversion in various reaction conditions. These results are valuable to have deeply understanding to the fundamental property of hyperbranched polymer.
引文
[1]谭惠民,罗运军,超支化聚合物,北京:化学工业出版社,2005:5~14
    [2]Kim Y.H., Webster O.W., Hyperbranched polyphenylenes, Macromolecules, 1992, 25(21): 5561~5572
    [3]Lim Y., Kim S., Lee Y., et al, Cationic hyperbranched poly(amino ester): a novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior, Journal of the American Chemical Society, 2001, 123(10): 2460~2461
    [4]Slagt M.Q., Stiriba S., Kautz H., et al, Encapsulation of hydrophilic pincer-platinum(II) complexes in amphiphilic hyperbranched polyglycerol nanocapsules, Macromolecules, 2002, 35(15): 5734~5737
    [5]Hawker C.J., Chu F., Pomery P.J., et al, Hyperbranched poly(ethylene glycol)s: a new class of ion-conducting materials, Macromolecules,1996, 29(11): 3831~3838
    [6]Flory P.J., Molecular sze dstribution in tree dmensional plymers. VI. banched plymers cntaining A-R-Bf-1 type units, Journal of the American Chemical Society, 1952, 74(11): 2718~2722
    [7]Kricheldorf H.R., Zang Q., Schwarz G., New polymer syntheses: 6. Linear and branched poly(3-hydroxy-benzoates), Polymer, 1982, 23(12): 1821~1829
    [8]Kim Y.H., Webster O.W., Water-soluble hyperbranched polyphenylene:“a unimolecular micelle”?, Journal of the American Chemical Society, 1990, 112(11): 4592~4593
    [9]Uhrich K.E., Hawker C.J., Fréchet J.M.J., et al, One-pot synthesis of hyperbranched polyethers, Macromolecules, 1992, 25(18): 4583~4587
    [10]Yang G., Jikei M., Kakimoto, M., Successful thermal self-polycondensation of AB2 monomer to form hyperbranched aromatic polyamide, Macromolecules, 1998, 31(17): 5964~5966
    [11]Miravet J.F., Fréchet J.M.J., New hyperbranched poly(siloxysilanes): variation of the branching pattern and end-functionalization, Macromolecules, 1998, 31(11): 3461~3468
    [12]Fréchet J.M.J., Henmi M., Gitsov I., et al, Self-condensing vinyl polymerization: an approach to dendritic materials, Science, 1995, 269(5227): 1080~1083
    [13]Coessens V., Pintauer T., Matyjaszewski K., Functional polymers by atom transfer radical polymerization, Progress in Polymer Science, 2001, 26(3): 337~377
    [14]Simon P.F.W., Radke W., Müller A.H.E., Hyperbranched methacrylates by self-condensing group transfer polymerization, Macromolecular Rapid Communications, 1997, 18(9): 865~873
    [15]Müller A.H.E., Yan D., Wulkow M., Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 1. molecular weight distribution, Macromolecules, 1997, 30(23): 7015~7023
    [16]Yan D., Müller A.H.E., Matyjaszewski K., Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 2. degree of branching, Macromolecules, 1997, 30(23): 7024-7033
    [17]Radke W., Litvinenko G., Müller A.H.E., Effect of core-forming molecules on molecular weight distribution and degree of branching in the synthesis of hyperbranched polymers, Macromolecules, 1998, 31(2): 239-248
    [18]He X., Liang H., Pan C., Self-condensing vinyl polymerization in the presence of multifunctional initiator with unequal rate constants: Monte Carlo simulation, Polymer, 2003, 44(16): 6697~6706
    [19]Jikei M., Chou S., Kakimoto M., et al, Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid, Macromolecules, 1999, 32(6): 2061~2064
    [20]Schmaljohann D., Voit B., Kinetic evaluation of hyperbranched A2+B3 polycondensation reactions, Macromolecular Theory and Simulation, 2003, 12(9): 679~689
    [21]Oguz C., Unal S., Long T.E., et al, Interpretation of molecular structure and kinetics in melt condensation of A2 oligomers, B3 monomers, and monofunctional reagents, Macromolecules, 2007, 40(18): 6529~6534
    [22]Reisch A., Komber H., Voit B., Kinetic analysis of two hyperbranched A2+B3 polycondensation reactions by NMR spectroscopy, Macromolecules, 2007, 40(19): 6846~6858
    [23]Gao C., Yan D., Hyperbranched polymers: from synthesis to applications, Progress in Polymer Science, 2004, 29(3): 183~275
    [24]Percec V., Chu P., Kawasumi M., Toward“willowlike”thermotropic dendrimers, Macromolecules, 1994, 27(16): 4441~4453
    [25]Gooden J.K., Gross M.L., Mueller A., et al, Cyclization in hyperbranched polymer syntheses: characterization by MALDI-TOF mass spectrometry, Journal of the American Chemical Society, 1998, 120(39): 10180~10186
    [26]Cameron C., Fawcett A.H., Hetherington C.R., et al, Step growth of an AB2 monomer, with cycle formation, The Journal of Chemical Physics, 1998, 108(19): 8235~8251
    [27]Cameron C., Fawcett A.H., Hetherington C.R., et al, Step growth of two flexible ABf monomers: the self-return of random branching walks eventually frustrates fractal formation, Macromolecules, 2000, 33(17): 6551~6568
    [28]Dusek K., Somvarsky J., Smrckova M., et al, Role of cyclization in the degree-of-polymerization distribution of hyperbranched polymers, Polymer Bulletin, 1999, 42(4): 489~496
    [29]Lee Y.U., Jang S.S., Jo W.H., Off-lattice Monte Carlo simulation of hyperbranched polymers, 1. Polycondensation of AB2 type monomers, Macromolecular Theory and Simulation, 2000, 9(4): 188-195
    [30]Hanselmann R., H?lter D., Frey H., Hyperbranched polymers prepared via the core-dilution/slow addition technique: computer simulation of molecular weight distribution and degree of branching, Macromolecules, 1998, 31(12): 3790~3801
    [31]Yan D., Zhou Z., Molecular weight distribution of hyperbranched polymers generated from polycondensation of AB2 type monomers in the presence of multifunctional core moieties, Macromolecules, 1999, 32(3): 819~824
    [32]Cheng K., Wang L.Y., Kinetic model of hyperbranched polymers formed in copolymerization of AB2 monomers and multifunctional core molecules with various reactivities, Macromolecules, 2002, 35(14): 5657~5664
    [33]Galina H., Lechowicz J.B., Walczak M., Model of hyperbranched polymerization involving AB2 monomer and B3 core molecules both reacting with substitution effect, Macromolecules, 2002, 35(8): 3261~3265
    [34]Malmstr?m E., Johansson M., Hult A., Hyperbranched aliphatic polyesters, Macromolecules, 1995, 28(5): 1698~1703
    [35]Bernal D.P., Bedrossian L., Collins K., et al, Effect of core reactivity on the molecular weight, polydispersity, and degree of branching of hyperbranched poly(arylene ether phosphine oxide)s, Macromolecules, 2003, 36(2): 333~338
    [36]Gittins P.J., Alston J., Ge Y., et al, Total core functionalization of a hyperbranched polymer, Macromolecules, 2004, 37(20): 7428~7431
    [37]Hawker C.J., Lee R., Fréchet J.M.J., One-step synthesis of hyperbranched dendritic polyesters, Journal of the American Chemical Society, 1991, 113(12): 4583~4588
    [38]H?lter D., Burgath A., Frey H., Degree of branching in hyperbranched polymers, Acta Polymerica, 1997, 48(1-2): 30~35
    [39]Schmaljohann D., Barratt J.G., Komber H., et al, Kinetics of nonideal hyperbranched polymerizations. 1. numeric modeling of the structural units and the diads, Macromolecules, 2000, 33(17): 6284~6294
    [40]Galina H., Lechowicz J.B., Walczak M., Kinetic modeling of hyperbranched polymerization involving an AB2 monomer reacting with substitution effect, Macromolecules, 2002, 35(8): 3253~3260
    [41] Zhou Z., Yan D., Distribution function of hyperbranched polymers formed by AB2 type polycondensation with substitution effect, Polymer, 2006, 47(4): 1473~1479
    [42] Richards E.L., Buzza D.M.A., Davies G. R., Monte Carlo simulation of random branching in hyperbranched polymers, Macromolecules, 2007, 40(6): 2210~2218
    [43]Zimm B.H., Stockmayer W.H., The dimensions of chain molecules containing branches and rings, The Journal of Chemical Physics, 1949, 17(12): 1301~1314
    [44]Dobson G.R., Gordon M., Configurational statistics of highly branched polymer systems, The Journal of Chemical Physics, 1964, 41(8): 2389~2398
    [45]Burchard W., Schmidt M., Stockmayer W.H., Information on polydispersity and branching from combined quasi-elastic and integrated scattering, Macromolecules, 1980, 13(5): 1265~1272
    [46]Alexandrowicz Z., Kinetics of formation and mean shape of branched polymers, Physical Review Letters, 1985, 54(13): 1420~1423
    [47]Konkolewicz D., Gilbert R.G., Gray-Weale A., Randomly hyperbranched polymers, Physical Review Letters, 2007, 98(23): 238301(4)
    [48]Ba X., Wang H., Zhao M., et al, Conversion dependence of the z-Average mean square radii of gyration for hyperbranched polymers with excluded volume effect, Macromolecules, 2002, 35(10): 4193~4197
    [49]Zhou Z., Yu M., Yan D., et al, Mean-square radius of gyration and degree of branching of highly branched copolymers resulting from the copolymerization of AB2 with AB monomers, Macromolecular Theory and Simulations, 2004, 13(8): 724~730
    [50]Miller T.M., Neenan T.X., Kwock E.W., et al, Dendritic analogues of engineering plastics: a general one-step synthesis of dendritic polyaryl ethers, Journal of the American Chemical Society, 1993, 115(1): 356~357
    [51]Hao J., Jikei M., Kakimoto M., Synthesis and comparison of hyperbranched aromatic polyimides having the same repeating unit by AB2 self-polymerization and A2+B3 polymerization, Macromolecules, 2003, 36(10): 3519~3528
    [52]Frenkel D., Smit B., Understanding molecular simulation from algorithms to applications, California: Academic Press, 2002: 63~82
    [53]杨玉良,张红东,高分子科学中的Monte Carlo方法,上海:复旦大学出版社, 1993:1~247
    [54]Watsen M.W., Schick M., Stable and unstable phases of a diblock copolymer melt, Physical Review Letters, 1994, 72(16): 2660~2663
    [55]Wall F.T., Hiller L.A., Wheeler D.J., Statistical computation of mean dimensions of macromolecules.Ⅰ, The Journal of Chemical Physics, 1954, 22(6): 1036~1041
    [56]Wall F.T., Hiller L.A., Atchison W.F., Statistical computation of mean dimensions of macromolecules.Ⅱ, The Journal of Chemical Physics, 1955, 23(5): 913~921
    [57]Wall F.T., Hiller L.A., Atchison W.F., Statistical computation of mean dimensions of macromolecules.Ⅲ, The Journal of Chemical Physics, 1955, 23(12): 2314~2321
    [58]Wall F.T., Hiller L.A., Atchison W.F., Statistical computation of mean dimensions of macromolecules.Ⅳ, The Journal of Chemical Physics, 1957, 26(6): 1742~1749
    [59]Flory P.J., Principle of polymer chemistry, New York: Cornell University Press, 1953:178~228
    [60]梁冯珍,宋占杰,张玉环,应用概率统计,天津:天津大学出版社,2004:194~200
    [61]Metropolis N., RosenBluth A.W., RosenBluth M.N., et al, Equation of state calculations by fast computing machines, The Journal of Chemical Physics, 1953, 21(6): 1087~1092
    [62]Gillespie D.T., Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry, 1977, 81(25): 2340~2361
    [63]Wall F.T., Mandel F., Macromolecular dimensions obtained by an efficient Monte Carlo method without sample attrition, The Journal of Chemical Physics, 1975, 63(11): 4592~4595
    [64]Verdier P.H., Stockmayer W.H., Monte Carlo calculations on the dynamics of polymers in dilute solution, The Journal of Chemical Physics, 1962, 36(1): 227~235
    [65]Hilhorst H.J., Deutch J.M., Analysis of Monte Carlo results on the kinetics of lattice polymer chains with excluded volume, The Journal of Chemical Physics, 1975, 63(12): 5153~5161
    [66]Carmesin I., Kremer K., The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions, Macromolecules, 1988, 21(9): 2819~2823
    [67]Deutsch H.P., Dickman R., Equation of state for athermal lattice chains in a 3d fluctuating bond model, The Journal of Chemical Physics, 1990, 93(12): 8983~8990
    [68]Deutsch H.P., Binder K., Interdiffusion and self-diffusion in polymer mixtures: a Monte Carlo study, The Journal of Chemical Physics, 1990, 94(3): 2294~2304
    [69]Rampf F., Binder K., Paul W., The phase diagram of a single polymer chain: new insights from a new simulation method, Journal of Polymer Science: Part B: Polymer Physics, 2006, 44(18): 2542~2555
    [70]Ivanov V.A., An E. A., Spirin L.A., et al, Equation of state for macromolecules of variable flexibility in good solvents: a comparison of techniques for Monte Carlo simulations of lattice models, Physical Review E, 2007, 76(2): 026702(15)
    [71]Cavallo A., Müller M., Binder K., Monte Carlo simulation of a homopolymer-copolymer mixture interacting with a surface: bulk versus surface micelles and brush formation, Macromolecules, 2008, 41(13): 4937~4944
    [72]He X., Tang J., Kinetics of self-condensing vinyl hyperbranched polymerization in three-dimensional space, Journal of Polymer Science: Part A: Polymer Chemistry, 2008, 46(13): 4486~4494
    [73]Kricheldorf H.R., Vakhtangishvili L., Schwarz G., et al, Cyclic hyperbranched poly(ether ketone)s derived from 3,5-bis(4-fluorobenzoyl)phenol, Macromolecules, 2003, 36(15): 5551~5558
    [74]Feast W.J., Keeney A.J., Kenwright A.M., et al, Synthesis, structure and cyclics content of hyperbranched polyesters, Chemical Communications, 1997, 18, 1749~1750
    [75]Jin R.H., Andou Y., Novel one-step synthesis of random hyperbranched polymers from activated methylene AB2 monomer, Macromolecules, 1996, 29(24): 8010~8013
    [76]Morgenroth F., Müllen K., Dendritic and hyperbranched polyphenylenes via a simple Diels-Alder route, Tetrahedron, 1997, 53(45): 15349~15366
    [77]Rubinstein M., Colby R.H., Polymer physics, USA: Oxford University Press, 2003: 60~66
    [78]Grosberg A.Y., Khokhlov A.R., Statistical physics of macromolecules, New York: American Institute of Physics Press, 1994: 20~21
    [79]Sch?rtl W., Light scattering from polymer solutions and nanoparticle dispersions; New York: Springer, 2007: 14~16
    [80]Murat M., Grest G.S., Molecular dynamics study of dendrimer molecules in solvents of varying quality, Macromolecules, 1996, 29(4): 1278~1285
    [81]Scherrenberg R., Coussens B., van Vliet P., et al, The molecular characteristics of poly(propyleneimine) dendrimers as studied with small-angle neutron scattering, viscosimetry, and molecular dynamics, Macromolecules, 1998, 31(2): 456~461
    [82]Stechemesser S., Eimer W., Solvent-dependent swelling of poly(amido amine) starburst dendrimers, Macromolecules, 1997, 30(7): 2204~2206
    [83]Nunez C.M., Chiou B.S., Andrady A.L., et al, Solution rheology of hyperbranched polyesters and their blends with linear polymers, Macromolecules, 2000, 33(5): 1720~1726
    [84]Ishizu K., Takahashi D., Takeda H., Novel synthesis and characterization of hyperbranched polymers, Polymer, 2000, 41(16): 6081~6086
    [85]GeladéE.T.F., Goderis B., de Koster C.G., et al, Molecular structure characterization of hyperbranched polyesteramides, Macromolecules, 2001, 34(11): 3552~3558
    [86]Burchard W., Solution properties of branched macromolecules, Advances in Polymer Science, 1999, 143, 113~194
    [87]Bantle S., Schmidt M., Burchard W., Simultaneous static and dynamic light scattering, Macromolecules, 1982, 15(6): 1604~1609

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700