微/纳多级结构锂离子电池电极材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从1990年起,锂离子电池已经广泛使用于便携式电子设备、电动汽车以及不间断电源等领域中。纳米结构电极材料由于自身具有较小的尺寸可以显著的提升倍率性能,但是它在实际应用过程也存在着副反应和较低的振实密度等问题。微/纳多级结构电极材料作为一种特殊的纳米材料,一方面,其结构基元的纳米尺度有利于缩短电极反应过程中的锂离子的迁移路径,从而增加材料的倍率性能;另一方面,相对于单一纳米结构材料,其相对较小的比表面积和微米尺度聚集体的稳定结构能够缓解或弱化副反应的发生以及避免单一纳米结构材料由于较大比表面能所造成的团聚现象,从而增强材料的循环稳定性。在本论文中,作者分别采用共沉淀法、溶剂热法以及微乳液法制备出具有微/纳多级结构的LiMn2O4微米球、LiFePO4微米花和CuO齿轮状薄膜,并研究了其电化学性能与微结构之间的对应关系。此外,本论文还发展了基于水热法辅助后期改性的合成路线制备出Cu2+掺杂的LiFeP04/C正极材料,并进行性能研究。
     第一章,主要介绍了锂离子电池的发展简史和工作原理,归纳了各类锂离子电池电极材料的充放电机理、存在的缺陷以及相应的改性方法。此外,还着重介绍了纳米结构锂离子电池电极材料的发展方向。
     第二章,以蒸发结晶制备出的矩形状NH4FeP2O7·1.5H2O纳米片为前驱体,乙醇为溶剂,采用溶剂热合成方法制备出长为6-8μm,宽为1-2μm和厚约为50nm的矩形纳米片自组装而成的直径约为6-8μm的微/纳多级结构LiFePO4微米花。探讨了反应溶剂对材料形貌所产生的影响,实验结果表明,当采用水和乙醇的混合溶剂时,则制备出的是长约3-4μm,宽约为2μm的LiFePO4多面体微米粒子。LiFePO4微米花和LiFePO4微米多面体分别通过热处理进行碳包覆,包碳之后,它们的形貌都保持不变。与碳包覆的LiFePO4微米多面体相比,碳包覆的LiFePO4微米花显示出更高的放电比容量(0.1C下首次放电比容量为162mAhg-1)、更好的倍率性能(10C下的比容量为101mAh g-1)以及较好的循环性能。LiFePO4微米花电化学性能优异的原因可归因于其具有微/纳多级结构,这种特殊的结构能够在长期的充放电循环中保持材料的结构稳定性。而组成微米花的结构基元矩形纳米片则能有效地改善电化学反应动力学,最终提高其倍率性能。
     第三章,采用水热法合成纯相LiFePO4纳米粒子,后期通过高温煅烧形成Cu2+掺杂和碳包覆的粒径约为400-500nm的LiFePO4纳米粒子。实验结果表明,经过金属离子掺杂和包碳改性的LiFePO4材料在0.1C、1C、2C、10C和20C倍率下,其放电比容量分别为154mAh g-1,148mAh g-1,143mAh g-1,111mAh g-1和86mA g-1,材料以0.2C的放电倍率循环充放电50次后,容量的保持率可达到97.5%,表明所制备的LiFePO4正极材料具有很好的倍率性能和循环性能,满足动力电池的应用需要。此外,该材料还表现出优异的低温性能,在-30。C下,材料的放电容量还能保持在102mAhg-1(0.1C)。与传统的固相焙烧制备方法比较,该工艺方法具有生产成本低、材料性能好等诸多优点。
     第四章,通过热处理由共沉淀法获得的碳酸盐前驱物制备出由粒径为30-40nm的纳米粒子组装成的直径为600-900nm的微/纳多级结构LiMn2O4微米球。电化学实验结果显示煅烧温度750℃、煅烧时间9h时得到产物的电化学性能最好,当以0.1C的倍率放电时,产物的放电容量为124.71mAh g-1,而当采用1C高倍率放电,产物仍然具有122.99mAh g-1的放电容量,经50次循环以后,产物的放电容量仍保持在113.98mAh g-1。这种由纳米粒子组装而成的微米球,其结构基元能够缩短在充放电过程中锂离子的扩散路径,从而增加材料的放电容量和倍率性能,而相对于纳米粒子则具有相对较小的比表面积,在充放电过程中有效地缓解由于锰溶解所带来的容量损失。此外,这种LiMn2O4多孔微米球在2M Li2SO4水溶液中也保持着良好的倍率性能,在1Ag-1,1.5A g-1,2A g-11和2.5A g-1的电流密度下,其放电容量均在110mAh g-1左右,当电流密度增至5A g-1,其放电容量还能保持在71mAh g-1。
     第五章,分别采用水溶液法和微乳液法生长出直径为300-500nm的纳米棒薄膜以及由直径为20nm的纳米丝组装而成的直径约为4-6μm,轴向长度为3-5μm的齿轮状微/纳多级结构CuO薄膜,并将它们与CuO微米粒子的电化学性能进行对比。电化学实验结果表明,这种由极细纳米丝组装而成的CuO齿轮状多级结构薄膜在0.1C的倍率下首次放电容量和充电容量分别为1057mAh g-1和779mAh g-1。相比于第二次放电容量,循环50次后,材料的放电容量基本保持不变。此外,该材料还具有良好的倍率性能,即使在3C放电倍率下,材料的放电容量仍然能够保持在579mAh g-1。相比于其他两种CuO材料的电化学性能,这种CuO齿轮状多级结构薄膜表现出更小的首次不可逆容量、更好的循环性能和倍率性能,其主要原因是组成这种多级结构薄膜的结构基元能够有效地提升材料在充电过程中电化学反应的进行程度,减少锂离子的扩散路径以及很好地容纳材料在充放电过程中的体积变化。而具有相对较小的比表面积的聚集体则能够减小由于形成SEI膜所带来的首次不可逆容量损失。
     第六章,将微/纳多级结构LiFePO4微米花作为正极材料分别与石墨、Li4Ti5O12以及CuO齿轮状多级结构薄膜三种负极材料进行搭配,组装成全电池,研究它们的相关电化学性能。其中LiFePO4/CuO全电池具有最高的放电容量和最好的循环性能,以1C倍率进行充放电,电池中的LiFePO4微米花材料能够给出140mAh g-1的放电容量,经100次循环以后,产物的放电容量仍保持在134mAh g-1。
     第七章,总结了研究工作的创新性,对未来可能的研究方向进行展望。
Since1990, lithium ion battery has been widely used in portable electronic devices, electric vehicles (EVs) and uninterruptible power system (UPS). Nanostructured electrode materials can remarkably promote charge/discharge rate due to their reduced dimensions, but it could encounter some problems in practical applications, such as side reactions, low tap density, etc. Micro/nano hierarchical electrode materials, as special nanomaterials, can take advantages of both nanomaterials and micromaterials. The ultraflne dimension of its building blocks can effectively shorten the lithium ion diffusion path and promote the rate performance during the charge-discharge process, while the microscale assemblies with relatively smaller specific surface area and better structure stability compared with unitary nanostructured materials could weaken the side reactions and avoid the active materials aggregation, which can enhance the cycling performance. In this dissertation, micro/nano hierarchical LiMn2O4microspheres, LiFePO4microflowers and CuO microcog films were successfully prepared and the electrochemical performances related to their microstructures were investigated. Besides, a novel route based on hydrothermal method was developed for preparing Cu2+doped LiFePO4/C cathode materials.
     In chapter1, a general introduction was given to the history and working principles of lithium ion batteries, including three important cathode materials (LiCoO2, LiMn2O4and LiFePO4) and four kinds of anode materials (carbon, Li-alloy, Li4Ti5O12and transitional metal oxides). Particularly, the developments of nanostructured electrode materials for lithium ion batteries were reviewed.
     In chapter2, hierarchical LiFePO4microflowers have been successfully synthesized via a solvothermal reaction in ethanol solvent with the self-prepared ammonium iron phosphate rectangular nanoplates as precursors, which were obtained by a simple water evaporation method beforehand. The hierarchical LiFePO4microflowers are self-assemblies of a number of stacked rectangular nanoplates with length of6-8μm, width of1-2μm and thickness of around50nm. When ethanol was replaced with the water-ethanol mixed solvent in the solvothermal reaction, LiFePO4micro-octahedrons instead of hierarchical microflowers were prepared. Then both of them were modified respectively with carbon coating through a post-heat treatment and their morphologies were retained. As cathode materials for rechargeable lithium ion batteries, the carbon-coated hierarchical LiFePO4microflower sample delivers high initial discharge capacity (162mAh g-1at0.1C), excellent high-rate discharge capability (101mAh·g-1at10C), and cycling stability. It exhibits better electrochemical performances than the carbon-coated LiFePO4micro-octahedron sample. The enhanced electrochemical properties can be attributed to the micro/nano hierarchical structure of the electrode material. It can take advantage of structure stability of micromaterials for long-term cycling. Furthermore, the rectangular nanoplates as the building blocks can improve the electrochemical reaction kinetics and finally promote the rate performance.
     In chapter3, Cu2+-doped LiFePO4/C nanoparticles with the particle size of400-500nm were successfully prepared by Cu2+doping and carbon coating pure phase LiFePO4nanoparticles from hydrothermal synthesis. Compared with undoped LiFePO4/C sample, the Cu2+-doped LiFePO4/C sample exhibit remarkably-improved electrochemical performance at high charge/discharge rate. It can deliver discharge capacities up to154mAh g-1,148mAh g-1,143mAh g-1,111mAh g-1and86mAh g-1at0.1C,1C,2C,10C and20C. Meanwhile, the Cu2+-doped LiFePO4/C cathode material also gives an excellent cycling performance, with no obvious capacity loss over50cycles. In addition, this Cu2+-doped LiFePO4/C composites present an outstanding low-temperature electrochemical performance, when the environmental temperature decreases to-30℃, it can still deliver a discharge capacity of102mAh g-1at0.1C rate. The electrochemical performance can meet the need of power batteries. In comparison with the solid state reaction method, this preparation process can fabricate LiFePO4cathode materials with higher electrochemical performance at lower cost.
     In chapter4, micro/nano hierarchical LiMn2O4microspheres have been successfully prepared through calcinating the carbonate precursor from co-precipitation. The results indicate that the samples are pure-phase spinel LiMn2O4and exist in microspheres with the diameter of600-900nm, which are assembled by nanoparticles of about30-40nm. The electrochemical performance of the as-prepared LiMn2O4microspheres has been investigated by galvanostatic charge-discharge test. The results show that the sample prepared at750℃for9h possesses excellent electrochemical performance. Its discharge capacities are124.71mAh g-1at0.1C and122.99mAh g-1at1C, and after50times cycling, the specific discharge capacity is still as high as113.98mAh g-1. Such excellent rate and cycling performance can be attributed on one hand to its micro/nano hierarchical structure with ultrafine nanoparticles as the building blocks, which can shorten the lithium ion diffusion path, and on the other hand to its micro-sized assembly with relatively smaller specific surface area compared to nanoparticles, which can ease the dissolution of Mn3+in the electrolyte. In addition, these micro/nano hiearchical LiMn2O4microspheres present excellent rate performance in2M Li2SO4aqueous solution. When the current density increases to1A g-1,1.5A g-1,2A g-1and2.5A g-1, the specific discharge capacity are all about110mAh g-1. Even at5A g-1, the specific discharge capacity can still retain71mAh g-1.
     In chapter5, CuO nanorod film with diameter of300-500nm and CuO hierarchical microcog film with diameter of4-6μm which are assembled by ultrafine nanofibers with the diameter of20nm were respectively prepared by aqueous solution method and micro-emulsion method. These two kinds of films and CuO microparticles were characterized by electrochemical tests. The electrochemical performance shows that the first discharge and charge capacity of this hierarchical CuO microcog film are1057mAh g-1and779mAh g-1, respectively. Moreover, it shows excellent rate performance and cycling performance. The discharge capacity of the microcog film hardly decays during the50times cycling process and has a discharge capacity of579mAh g-1at3C rate. Compared with CuO microparticles and CuO nanorod film, this microcog film shows smaller irreversible capacity, better cycling and rate performance. Such better performance can be ascribed to the small dimension of its building blocks which can improve the electrochemical reaction extent during the charge process, shorten the lithium ion diffusion path and accommodate the volume expansion during the charge-discharge process. Meanwhile, the assemblies with relatively smaller specific surface area could confine the excessive SEI formation, thus reduce its initial capacity loss.
     In chapter6, we assembled full batteries by using the LiFePO4microflowers as the cathode materials to combine with three kinds of anode materials (graphite, Li4Ti5O12and CuO microcog film) respectively. The LiFePO4/CuO full battery presents the best electrochemical performance compared with other kinds of full batteries. The specific discharge capacity is140mAh g-1at1C rate (based on LiFePO4) and after100cycles, the specific discharge capacity is still as high as134mAhg-1.
     Finally, in chapter7, an overview on the research achievements is summarized and some prospects of the future research are pointed out.
引文
[1]郭炳琨,徐徽,王先友,锂离子电池[M],第二版,长沙:中南大学出版社,2002,40.
    [2]N.Watanabe, M. Fukuba, U. S. Patent 3,536,532,1970.
    [3]Sanyo, Lithium Battery Calculator, Model CS-8176L.
    [4]E. C. Gay, D. R. Vissers, F. J. Martino, et al. Performance characteristics of solid lithium-aluminum alloy electrodes [J]. Journal of the Electrochemical Society,1976,123:1591-1596.
    [5]T. D. Kaun, P. A. Nelson, L. Redey, et al. High temperature lithium/sulfide batteries [J]. Electrochimica Acta,1993,38:1269-1287.
    [6]M S Whittingham. Electrical energy storage and intercalation chemistry [J]. Science,1976,192: 1126-1127.
    [7]K. Mitzushima, P. C. Johnes, P. J. Wiseman, et al. LixCoO2 (0    [8]M. M. Thackeray, W. I. F. David, P. G. Bruce, et al. Lithium insertion into manganese spinels [J]. Materials Research Bulletin,1983,18:461-472.
    [9]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society,1997, 144(4):1188-1194.
    [10]B. Samar, U.S. Patent 4,304,825,1981.
    [11]J. M. Tarascon, D. Guyomard. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells [J]. Solid State Ionics,1994,69: 293-305
    [12]K. Xu. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chemical Reviews,2004,104:4303-4417.
    [13]B. Scorsati. Lithium rocking chair batteries:an old concept? [J]. Journal of the Electrochemical Society,1992,139(10):2776-2781.
    [14]M. S. Whittingham. Lithium batteries and cathode materials [J]. Chemical Reviews,2004,104: 4271-4301.
    [15]J. N. Reimers, J. R. Dahn. Electrochemical and in-situ X-ray diffraction studies of lithium intercalation in LixCoO2 [J]. Journal of the Electrochemical Society,1992,139(8):2091-2097.
    [16]A. Lundblad, B. Bergman. Synthesis of LiCoO2 starting from carbonate precursors:Ⅰ The reaction mechanisms [J]. Solid State Ionics,1997,96:173-181.
    [17]A. Lundblad, B. Bergman. Synthesis of LiCoO2 starting from carbonate precursors:II Influence of calcinations conditions and leaching [J]. Solid State lonics,1997,96:183-193.
    [18]H. Tukaoto, A. R. West. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping [J]. Journal of the Electrochemical Society,1997,144(9):3164-3168.
    [19]Y. Iriyama, H. Kurita, I. Yamada, et al. Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode [J]. Journal of Power Sources,2004,137: 111-116.
    [20]F. Y. Cheng, H. B. Wang, Z. Q. Zhu. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries [J]. Energy Environmental Science,2011,4: 3668-3675.
    [21]H. Huang, C. A. Vincent, P. G. Bruce. Capacity loss of lithium manganese oxide spinel in LiPFe/ethylene carbonate-dimethyl carbonate electrolyte [J]. Journal of the Electrochemical Society,1999,146(2):481-485.
    [22]A. Pasquier, A. Blyr, P. Courjal, et al. Mechanism for limited 55℃ storage performance of Li1.05Mn1.95O4 electrodes [J]. Journal of the Electrochemical Society,1999,146:428-436.
    [23]A. Mosbah, A. Verbaere, M. Tournoux. Phases LixMnO2λ rattachees au type spinelle [J]. Materials Research Bulletin,1983,18:1375-1381.
    [24]J.C. Hunter. Preparation of a new crystal form of manganese dioxide:λ-MnO2 [J]. Journal of Solid State Chemistry,1981,39:142-147.
    [25]T. Toshimi, H. Hiroshi, E. H. oshi, et al. Structure and electrochemical characterization of Li1+xMn2-xO4 for Li ion battery applications [J]. Journal of the Electrochemical Society,1996, 143(1):100-114.
    [26]Y. Gao, J. R. Dahn. Synthesis and characterization of Li1+xMn2-xO4 for Li ion battery applications [J]. Journal of the Electrochemical Society,1996,143:100-114.
    [27]M. M. Thackery, S. H. Yang, A. J. Kahaian, et al. Structural fatigue in spinel electrodes in high voltage (4V) Li/LiMn2O4 cells [J]. Electrochemical and Solid-State Letters,1998,1:7-9.
    [28]P. Arora, B. N. Popov, R. E. White. Electrochemical investigations of cobalt-doped LiMn2O4 as cathode material for lithium ion batteries [J]. Journal of the Electrochemical Society,1998, 145(3):807-815.
    [29]N. Hayashi, H. Ikuta, M. Wakihara. Cathode of LiMgyMn2-yO4 and LiMgyMn2-yO4-δ spinel phases for lithium secondary batteries [J]. Journal of the Electrochemical Society,1999,146: 1351-1354.
    [30]A. D. Robertson, S. H. Lu, W. F. Averill, et al. M3+-modified LiMn2O4 spinel intercalation cathodes(Ⅰ). Admetal effects on morphology and electrochemical performance [J]. Journal of the Electrochemical Society,1997,144(10):3500-3505.
    [31]K. Amine, H. Tukamoto, H. Yasud, et al. Preparation and electrochemical investigation of LiMn2-xMexO4(Me:Ni, Fe, and x=0.5,1) cathode materials for secondary lithium batteries [J]. Journal of Power Sources,1997,68:604-608.
    [32]G. G. Amatucci, N. Pereira, T. Zheng, et al. Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution [J]. Journal of Power Sources,1999,81-82:39-43.
    [33]Y. C. Sun, Z. X. Wang, L. Q. Chen, et al. Improved electrochemical performances of surface-modified spinel LiMn2O4 for long cycle life lithium-ion batteries [J]. Journal of the Electrochemical Society,2003,150:A1294-A1298.
    [34]D. Guyomard, J. M. Tarascon. Rechargeable Li1+xMn2O4/carbon cells with a new electrolyte-composition-potentiostatic studies and application to practical cells [J]. Journal of the Electrochemical Society,1993,140:3071-3081.
    [35]J. M. Tarascon, W. R. Mckinnon, F. Coowar, et al, Synthesis conditions and oxygen stoichiomatry effects on Li insertion into the spinel LiMn2O4 [J]. Journal of the Electrochemical Society,1994,141:1421-1431.
    [36]P. Barboux, M. Morcrette, J. Perriere. LiMn2O4 thin films for lithium ion sensors [J]. Solid State Ionics,1998,11(3-4):249-254.
    [37]H. M. Wu, J. P. Tu, Y. F. Yuan, et al. One-step synthesis LiMn2O4 cathode by a hydrothermal method [J]. Journal of Power Sources,2006,161:1260-1263.
    [38]J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414:359-367.
    [39]M. Thuckeray. Lithium-ion batteries:an unexpected conductor [J]. Nature Materials,2002,1(2): 81-82.
    [40]P. P. Pier, L. Marida, Z. Daniela, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics,2002,148(1-2):45-51.
    [41]A. S. Andersson, J.O. Smith. The source of first cycle capacity loss in LiFePO4[J]. Journal of Power Sources,2001,97-98:498-502.
    [42]L. Laffont, C. Delacourt, P. Gibot, et al. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy [J]. Chemistry of Materials,2006,18: 5520-5529.
    [43]D. Morgan, A. Vander Ven, G. Ceder, et al. Li conductivity in LixMPO4 (M= Mn, Fe, Co, Ni) olivine materials [J]. Electrochemical and Solid-State Letters,2004,7:A30-A32.
    [44]M. S. Islam, D. J. Driscoll, C. A. J. Fisher, et al. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material [J]. Chemistry of Materials, 2005,17:5085-5092.
    [45]S. Nishimura, G Kobayashi, K. Ohoyama, et al. Experimental visualization of lithium diffusion in LixFePO4 [J]. Nature Materials,2008,7:707-711.
    [46]S.-Y. Chung, J. T. Bloking, Y.-M. Chiang. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Materials,2002,1:123-128.
    [47]N. Meethong, Y.-H. Kao, S. A. Speakman, et al. Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties [J]. Advanced Functional Materials,2009,19: 1-11.
    [48]H. Huang, S.-C. Yin, L. F. Nazar. Approaching theoretical capacity of LiFePO4 at room temperature [J]. Electrochemical and Solid-State Letters,2001,4(10):A170-A172.
    [49]F. Croce, A. D. Epifanio, J. Hassoun, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode [J]. Electrochemical and Solid Letters,2002,5(3):47-50.
    [50]D. Y. Wang, H. Li, S. Q. Shi, et al. Improving the rate performance of LiFePO4 by Fe-site doping [J]. ElectrochimicaActa,2005,50:2955-2958.
    [51]H.-P. Liu, Z.-X. Wang, X.-H. Li, et al. Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method [J]. Journal of Power Sources,2008, 184:469-472.
    [52]Y. Y. Liu, C. B. Cao, J. Li, et al. Enhanced electrochemical performance of carbon nanospheres-LiFeP04 composite by PEG based sol-gel synthesis [J]. Electrochimica Acta,2010, 55:3921-3926.
    [53]M. M. Doeff, Y. Hu, F. McLarnon, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J]. Electrochemical and Solid-State Letters,2003, 6(10):A207-A209.
    [54]S. H. Yang, P. Y. Zavalij, M. S. Whittingham. Hydrothermal synthesis of lithium ion phosphates [J]. Electrochemistry Communication,2001,3:505-508.
    [55]J. Chen, M. S. Whittingham. Hydrothermal synthesis of lithium iron phosphate [J]. Electrochemistry Communications,2006,8:855-858.
    [56]M.-S. Song, Y.-M. Kang, J.-H. Kim, et al. Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating [J]. Journal of Power Sources,2007,166:260-265.
    [57]Y. Zhang, H. Feng, X. B. Wu, et al. One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4 [J]. Electrochimica Acta,2009,54:3206-3210.
    [58]J. R. Dahn. Phase diagram of LixC6 [J]. Physical Review B,1991,44:9170-9177.
    [59]N. Imanishi, K. Kumai, H. Kokugan, et al. Li-NMR study of carbon fiber and graphite anodes for lithium ion batteries [J]. Solid State Ionics,1998,107:135-144.
    [60]A. Naji, P. Willmann, D. Billaud. Electrochemical intercalation of lithium into graphite: influence of the solvent composition and of the nature of the lithium salt [J]. Carbon,1998,36: 1347-1362.
    [61]K. Xu, S. S. Zhan, B. A. Poese, et al. Lithium bis (oxalato) borate stablize graphite anode in propylene carbonate [J]. Electrochemical and Solid-State Letters,2002,5:A259-A262.
    [62]R. Dominko, D. Arcon, A. Mrzel, et al. Dichalcogenide nanotube electrodes for Li-ion batteries [J]. Advanced Materials,2002,14:1531-1534.
    [63]T. Ishihara, A. Kawahara, H. Nishiguchi, et al. Effects of synthesis condition of graphitic nanocabon tube on anodic property of Li-ion rechargeable battery [J]. Journal of Power Sources, 2001,97-98:129-132.
    [64]E. Yoo, J. Kim. E. Hosono, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano Letters,2008,8:2277-2282.
    [65]D. Wang, R. Kou, D. Choi, et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage [J]. ACS Nano,2010,4:1587-1595.
    [66]J.Yang, Y. Takeda, N. Imanishi, et al, SiOx-based anodes for secondary lithium batteries [J]. Solid State Ionics.2002,152:125-129.
    [67]Y. Idota, T. Kubota, A. Matsufuji, et al. Tin-based amorphous oxide:a high-capacity lithium-ion-storage material [J]. Science,1997,276:1395-1397.
    [68]M. Morcrette, D. Larcher, J. M. Tarascon, et al. Influence of electrode microstructure on the reactivity of Cu2Sb with lithium [J]. Electrochimica Acta,2007,52(17):5339-5345.
    [69]J. Wolfenstine, S. Campos, D. Foster, et al. Nano-scale Cu6Sn5 anodes [J]. Journal of Power Sources,2002,109(1):230-233.
    [70]P. Patel, I. S. Kim, J. Maranchi, et al. Pyrolysis of analkyltin/polymer mixture to form a tin/carbon composite for use as an anode in lithium-ion batteries [J]. Journal of Power Sources, 2004,135(1-2):273-280.
    [71]J. Xie, X. B. Zhao, G. S. Cao, et al. Electrochemical performance of CoSb3/MWNTs nanocomposite prepared by in situ solvothermal synthesis [J]. Electrochimica Acta,2005, 50(13):2725-2731.
    [72]A. Deschanvers, B. Raveau, Z. Sekkal. Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2-xO40≤x≤0.33 [J]. Materials Research Bulletin,1971,6:699-704.
    [73]K. K. Colbow, J. R. Dahn, R. R. Haering. Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4 [J]. Journal of Power Sources,1989,26:397-402.
    [74]E. Ferg, R. J. Gummov, A. de Kock, et al. Spinel Anodes for Lithium-Ion Batteries [J]. Journal of the Electrochemical Society,1994,141:L147-L150.
    [75]T. Ohzuku, A. Ueda, N. Yamamoto. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium Cells [J]. Journal of the Electrochemical Society,1995,142:1431-1435.
    [76]C. H. Chen, J. T. Vaughey, A. N. Jansen, et al. Studies of Mg substituted Li4-xMgxTi512 spinel elect rodes(0    [77]L. Cheng, J. Yan, G. N. Zhu, et al. General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J]. Journal of Materials Chemistry, 2010,20:595-602.
    [78]S. H. Huang, Z. Y. Wen, J. C. Zhang, et al. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery [J]. Solid State Ionics,2006,177(9-10):851-855.
    [79]P. Poizot, S. Laruelle, S. Grugeon, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature,2000,407:496-499.
    [80]S. Grugeon, S. Laruelle, R. H.-Urbina, et al. Particle size effects on the electrochemical performance of copper oxides toward lithium [J]. Journal of the Electrochemical Society,2001, 148:A285-A292.
    [81]S. Laruelle, S. Grugeon, P. Poizot, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential [J]. Journal of the Electrochemical Society,2002,149: A627-A634.
    [82]H. Li, G. Richter, J. Maier. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries [J]. Advanced Materials,2003,15:736-739.
    [83]J. Jamnik, J. Maier. Nanocrystallinity effects in lithium battery materials:Aspects of nano-ionics. Part Ⅳ [J]. Physical Chemistry Chemical Physics,2003,5:5215-5220.
    [84]A. S. Arico, P. Bruce, B. Scrosati, et al, Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials,2005,4:366-377.
    [85]Y. G. Guo, J. S. Hu, L. J. Wan. Nanostructured materials for electrochemical energy conversion and storage devices [J]. Advanced Materials,2008,20:2878-2887.
    [86]P. G. Bruce, B. Scrosati, J. M. Tarascon. Nanomaterials for rechargeable lithium batteries [J]. Angewandte Chemie International Edition,2008,47:2930-2946.
    [87]P. Balaya, A. J. Bhattacharyya, J. Jamnik, et al. Nano-ionics in the context of lithium batteries [J]. Journal of Power Sources,2006,159:171-178.
    [88]N. Meethong, H.-Y. S. Huang, W. C. Carter, et al. Size-dependent lithium miscibility gap in nanoscale Li1-xFePO4 [J]. Electrochemical and Solid-State Letters,2007,10:A134-A138.
    [89]X. L. Wu, L. Y. Jiang, F. F. Cao, et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix:superior cathode material for electrochemical energy-storage devices [J]. Advanced Materials,2009,21:2710-2714.
    [90]D. K. Kim, P. Muralidharan, H. W. Lee, et al. Spinel LiMn2O4 nanorods as lithium ion battery cathodes [J]. Nano Letters,2008,8(11):3948-3952.
    [91]H. W. Lee, P. Muralidharan, R. Ruffo, et al. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries [J]. Nano Letters,2010,10:3852-3856.
    [92]K. Saravanan, M. V. Reddy, P. Balaya, et al. Storage performance of LiFePO4 nanoplates [J]. Journal of Materials Chemistry,2009,19:605-610.
    [93]Z. S. Wu, W. Ren, L. Wen, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance [J]. ACS Nano, 2010,4:3187-3194.
    [94]X. Yao, C. Tang, G. Yuan, et al. Porous hematite (α-Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries [J]. Electrochemistry Communications,2011, 13:1439-1442.
    [95]J. S. Chen, X. W. Lou. Anatase TiO2 nanosheet:An ideal host structure for fast and efficient lithium insertion/extraction [J]. Electrochemistry Communications,2009,11:2332-2335.
    [96]谢毅,杜永芳,肖夏,等.晶体自范性和自生成模板法结合生长组装多级纳米结构[J].中国科学技术大学学报,2008,38:569-575.
    [97]P. S. Weiss. Hierarchical assembly [J]. ACS Nano,2008,2:1085-1087.
    [98]J. Qian, M. Zhou, Y. Cao, et al. Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries [J]. Journal of Physical Chemistry C,2010,114:3477-3482.
    [99]J. Su, X. L. Wu, C. P. Yang, et al. Self-assembled LiFePO4/C nano/microspheres by using phytic acid as phosphorus source [J]. Journal of Physical Chemistry C,2012,116:5019-5024.
    [100]J. Liu, T. E. Conry, X. Y. Song, et al. Nanoporous spherical LiFePO4 for high performance cathodes [J]. Energy & Environmental Science,2011,4:885-888.
    [101]J. S. Chen, Y. L. Tan, C. M. Li, et al. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage [J]. Journal of the American Chemical Society,2010,132:6124-6130.
    [102]J. S. Chen, T. Zhu, X. H. Yang, et al. Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties [J]. Journal of the American Chemical Society,2010,132:13162-13164.
    [103]C. K. Chan, H. Peng, G. Liu, et al. High-performance lithium battery anodes using silicon nanowires [J]. Nature Nanotechnology,2008,3:31-35.
    [104]P. L. Taberna, S. Mitra, P. Poizot, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications [J]. Nature Materials.2006,5: 567-573.
    [105]Y. Li, B. Tan, Y. Wu. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability [J]. Nano Letters,2008,8:265-270.
    [1]J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367.
    [2]P. G. Bruce, B. Scrosati, J. M. Tarascon. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition,2008,47:2930-2946.
    [3]Y. G. Guo, J.-S. Hu, L.-J. Wan. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials,2008,20:2878-2887.
    [4]T. Muraliganth, A. V. Murugan, A. Manthiram. Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries[J]. Journal of Materials Chemistry,2008,18:5661-5668.
    [5]A. V. Murugan, T. Muraliganth, A. Manthiram. Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries[J]. Journal of Physical Chemistry C,2008,112:14665-14671.
    [6]E. Hosono, Y. G. Wang, H. S. Zhou, et al. Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method[J]. ACS Applied Materials & Interfaces,2010,2:212-218.
    [7]S. Lim, C. S. Yoon, J. P. Cho. Synthesis of nanowire and hollow LiFePO4 Cathodes for high-performance lithium batteries[J]. Chemistry of Materials,2008,20:4560-4564.
    [8]K. Saravanan, M. V. Reddy, P. Balaya, et al. Storage performance of LiFePO4 nanoplates[J]. Journal of Materials Chemistry,2009,19:605-610.
    [9]R. Amin, P. Balaya, J. Maier. Anisotropy of electronic and ionic transport in LiFePO4 single crystals[J]. Electrochemical and Solid-State Letters,2007,10:A13-A16.
    [10]Y. G. Wang, Y. R. Wang, E. Hosono, et al. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method[J]. Angewandte Chemie International Edition,2008,47:7461-7465.
    [11]X. K. Zhi, G C. Liang, L. Wang, et al. The cycling performance of LiFePO4/C cathode materials[J]. Journal of Power Sources,2009,189:779-782.
    [12]Y. G. Guo, J. S. Hu, L. J. Wan. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials,2008,20:2878-2887.
    [13]X. L. Wu, L. Y. Jiang, F. F. Cao, et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix:superior cathode material for electrochemical energy-storage devices[J]. Advanced Materials,2009,21:2710-2714.
    [14]C. W. Sun, S. Rajasekhara, J. B. Goodenough, et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode[J]. Journal of the American Chemical Society,2011,133:2132-2135.
    [15]H. Yang, X. L. Wu, M. H. Cao, et al. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries[J]. Journal of Physical Chemistry C,2009,113:3345-3351.
    [16]J. Xu, W. X. Zhang, Z. H. Yang, et al. Large-scale synthesis of long crystalline Cu2-xSe nanowire bundles by water-evaporation-induced self-assembly and their application in gas sensing[J]. Advanced Functional Materials,2009,19:1759-1766.
    [17]Y. Y. Li, J. P. Liu, X. T. Huang, et al. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres[J]. Crystal Growth & Design,2007,7:1350-1355.
    [1]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society,1997, 144(4):1188-1194.
    [2]M. Thuckeray. Lithium-ion batteries:an unexpected conductor[J]. Nature Materials,2002,1(2): 81-82.
    [3]P. P. Pier, L. Marida, Z. Daniela, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics,2002,148(1-2):45-51.
    [4]S.-Y. Chung., J. T. Bloking., Y.-M. Chiang. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials,2002,1:123-128.
    [5]N. Meethong, Y.-H. Kao, S. A. Speakman, et al. Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties[J]. Advanced Functional Materials,2009,19: 1-11.
    [6]H. Huang, S.-C. Yin, L. F. Nazar. Approaching theoretical capacity of LiFePO4 at room temperature[J]. Electrochemical and Solid-State Letters,2001,4(10):A170-A172.
    [7]B. Jin, E. M. Jin, K.-H. Park, et al. Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery[J]. Electrochemistry Communications,2008,10:1537-1540.
    [8]Y. Q. Wang, J. L. Wang, J. Yang, et al. High-rate LiFePO4 electrode material synthesized by a novel route from FePO4·4H2O[J], Advanced Functional Materials,2006,16:2135-2140.
    [9]Y. G Wang, Y. R. Wang, E. Hosono, et al. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method[J]. Angewandte Chemie International Edition,2008,47:7461-7465.
    [10]D. Y. Wang, H. Li, S. Q. Shi, et al. Improving the rate performance of LiFePO4 by Fe-site doping[J]. Electrochimica Acta,2005,50:2955-2958.
    [11]H. P. Liu, Z. X. Wang, X. H. Li, et al. Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method[J]. Journal of Power Sources,2008,184: 469-472.
    [12]Y. Y. Liu, C. B. Cao, J. Li. Enhanced electrochemical performance of carbon nanospheres-LiFePO4 composite by PEG based sol-gel synthesis[J]. Electrochimica Acta,2010,55: 3921-3926.
    [13]M. M. Doeff, Y. Q. Hu, F. McLarnon, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4[J]. Electrochemical and Solid-State Letters,2003, 6(10):A207-A209.
    [14]M. S. Song, Y.-M. Kang, J.-H. Kim, et al. Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating[J]. Journal of Power Sources,2007,166:260-265.
    [15]Y. Zhang, H. Feng, X. B. Wu, et al. One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4[J]. Electrochimica Acta,2009,54:3206-3210.
    [16]S. H. Yang, P. Y. Zavalij, M. S. Whittingham. Hydrothermal synthesis of lithium ion phosphates[J]. Electrochemistry Communication,2001,3:505-508..
    [17]E. M. Jin, B. Jin, D.-K. Jun, et al. A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method[J]. Journal of Power Sources, 2008,178:801-806.
    [18]G Meligrana, C. Gerbaldi, A. Tuel, et al. Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells[J]. Journal of Power Sources,2006,160:516-522.
    [19]I. Bilecka, A. Hintennach, M. D. Rossell, et al. Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance[J]. Journal of Materials Chemistry,2011,21,5881-5890.
    [20]J. J. Chen, M. S. Whittingham. Hydrothermal synthesis of lithium iron phosphate[J]. Electrochemistry Communications,2006,8:855-858.
    [21]K. Saravanan, M. V. Reddy, P. Balaya, et al. Storage performance of LiFePO4 nanoplates[J]. Journal of Materials Chemistry,2009,19:605-610.
    [22]J. Morales, J. S.-Pena, E. R.-Castellon, et al. Antagonistic effects of copper on the electrochemical performance of LiFePO4[J]. Electrochimica Acta,2007,53:920-926.
    [23]S. S. Zhang, K. Xu, T. R. Jow. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources,2003,115:137-140.
    [24]M. C. Smart, B. V. Ratnakumar, S. Surampudi, et al. Irreversible capacities of graphite in low temperature electrolytes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 1999,146:3963-3969.
    [25]M. C. Smart, B. V. Ratnakumar, S. Surampudi. Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance[J]. Journal of the Electrochemical Society,2002,149:A361-A370.
    [26]C. R. Sides, C. R. Martin. Nanostructured electrodes and the low-temperature performance of Li-ion batteries[J]. Advanced Materials,2005,17:125-128.
    [27]H.-M. Xie, R.-S. Wang, J.-R. Ying, et al. Optimized LiFeP04-polyacene cathode material for lithium-ion batteries[J]. Advanced Materials,2006,18:2609-2613.
    [1]A. S. Arico, P. Bruce, B. Scrosati, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials,2005,4:366-377.
    [2]O.K. Park, Y. Cho, S. Lee, et al. Who will drive electric vehicles, olivine or spinel?[J]. Energy & Environmental Science,2011,4:1621-1633.
    [3]J. Molenda, J. Marzec. Functional cathode materials for Li-ion batteries-Part Ⅲ:Potential cathode materials LixNi1-y-zCoyMnzO2 and LiMn2O4[J]. Functional Materials Letters,2009,2: 1-7.
    [4]H. Huang, C. A. Vincent, P. G. Bruce. Capacity loss of lithium manganese oxides spinel in LiPF6/ethylene carbonate-dimethyl carbonate electrolyte[J]. Journal of the Electrochemical Society,1999,146 (2):481-485.
    [6]A. Mosbah, A. Verbaere, M. Tournous. Phases LixMnO2λ, rattachees au type spinelle[J]. Materials Research Bulletin,1983,18:1375-1381.
    [7]J.C. Hunter. Preparation of a new crystal form of manganese dioxide:λ,-MnO2[J]. Journal of Solid State Chemistry,1981,39:142-147.
    [8]P. Arora, B. N. Popov, R. E. White. Electrochemical investigations of cobalt-doped LiMn2O4 as cathode material for lithium ion batteries[J]. Journal of the Electrochemical Society,1998, 145(3):807-815.
    [9]Hayashi N, Ikuta H, Wakihara M. Cathode of LiMgyMn2-y04 and LiMgyMn2yO4-δ spinel phases for lithium secondary batteries[J]. Journal of the Electrochemical Society,1999,146: 1351-1354.
    [10]Y. C. Sun, Z. X. Wang, L. Q. Chen, et al. Improved electrochemical performances of surface-modified spinel LiMn2O4 for long cycle life lithium-ion batteries[J]. Journal of the Electrochemical Society,2003,150:A1294-A1298.
    [12]H.-W. Lee, P. Muralidharan, R. Ruffo, et al. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for li-ion batteries[J]. Nano Letters,2010,10:3852-3856.
    [13]D. K. Kim, P. Muralidharan, H.-W. Lee, et al. Spinel LiMn2O4 nanorods as lithium ion battery cathodes[J]. Nano Letters,2008,8:3948-3952.
    [14]X. X. Li, F. Y. Cheng, B. Guo, et al. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries[J]. Journal of Physical Chemistry B,2005,109:14017-14024.
    [15]Y. L. Ding, J. Xie, G. S. Cao, et al. Enhanced elevated-temperature performance of Al-doped single-crystalline LiMn2O4 nanotubes as cathodes for lithium ion batteries[J]. Journal of Physical Chemistry C,2011,115:9821-9825.
    [16]J. Y. Luo, L. Cheng, Y. Y. Xia. LiMn2O4 hollow nanosphere electrode material with excellent cycling reversibility and rate capability [J]. Electrochemistry Communications,2007,9: 1404-1409.
    [17]H. Uchiyama, E. Hosono, H. S. Zhou, et al. Three-dimensional architectures of spinel-type LiMn2O4 prepared from biomimetic porous carbonates and their application to a cathode for lithium-ion batteries[J]. Journal of Materials Chemistry,2009,19:4012-4016.
    [18]W. H. Ryu, J. Y. Eom, R. Z. Yin, et al. Synergistic effects of various morphologies and Al doping of spinel LiMn2O4 nanostructures on the electrochemical performance of lithium-rechargeable batteries[J]. Journal of Materials Chemistry,2011,21:15337-15342
    [19]F. Y. Cheng, H. B. Wang, Z. Q. Zhu, et al. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries[J]. Energy & Environmental Science,2011,4: 3668-3675.
    [20]Z. H. Yang, W. X. Zhang, Q. Wang, et al, Synthesis of porous and hollow microspheres of nanocrystalline Mn2O3[J]. Chemical Physics Letters,2006,418:46-49.
    [21]J. M. Tarascon, W. R. Mckinnon, F. Coowar, et al, Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4[J]. Journal of the Electrochemical Society,1994,141:1421-1431.
    [22]A. Yamada, K. Miura, K. Hinokumak, et al. Synthesis and struatural aspects of LiMn2O4 as a cathode for rechargeable lithium batteries[J]. Journal of the Electrochemical Society,1995, 142(7):2149-2156.
    [23]A. Yamada, M. Tanaka, K. Tanaka, et al. Jahn-Teller instability in spinel Li-Mn-O[J]. Journal of Power Sources,1999,81-82:73-78.
    [24]W. Liu, G. C. Farrington. Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the Pachini process[J]. Journal of the Electrochemical Society, 1996,143(3):879-884.
    [25]A. Subramania, N. Angayarkanni, T. Vasudevan. Effect of PVA with various combustion fuels in sol-gel thermolysis process for the synthesis of LiMn2O4 nanoparticles for Li-ion batteries[J]. Materials Chemistry and Physics,2007,102:19-23.
    [26]M. Armand, J. M. Tarascon. Building better batteries[J]. Nature,2008,451:652-657.
    [27]J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367.
    [28]W. Li, J. R. Dahn, D. S. Wainwright. Rechargeable lithium batteries with aqueous electrolytes [J]. Science,1994,264:1115-1118.
    [29]J. Y. Luo, Y. Y. Xia. Aqueous lithium-ion battery LiTi2 (PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability[J]. Advanced Functional Materials,2007, 17:3877-3884.
    [30]Y. Xu, X. S. Han, L. Zheng, et al. Pillar effect on cyclability enhancement for aqueous lithium ion batteries:a new material of β-vanadium bronze M0.33V2O5 (M=Ag, Na) nanowires[J]. Journal of Materials Chemistry,2011,21:14466-14472.
    [31]Y. F. Sun, S. S. Jiang, W. T. Bi, et al. Highly ordered lamellar V2O3-based hybrid nanorods towards superior aqueous lithium-ion battery performance[J]. Journal of Power Sources,2011, 196:8644-8650.
    [32]C. Z. Wu, Z. P. Hu, W. Wang, et al. Synthetic paramontroseite VO2 with good aqueous lithium-ion battery performance[J]. Chemical Communications,2008,3891-3893.
    [33]L. Tian, A. B. Yuan. Electrochemical performance of nanostructured spinel LiMn2O4 in different aqueous electrolytes[J]. Journal of Power Sources,2009,192:693-697.
    [34]Q. T. Qu, L. J. Fu, X. Y. Zhan. Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries[J]. Energy & Environmental Science,2011,4:3985-3990.
    [35]Q. T. Qu, G. J. Wang, L. L. Liu, et al. Excellent electrochemical behavior of LiMn2O4 in aqueous electrolyte[J]. Functional Materials Letters,2010,3:151-154.
    [36]D. Lu, W. Li, X. Zuo, et al. Study on electrode kinetics of Li+insertion in LixMn2O4 (≤x≤1) by electrochemical impedance spectroscopy[J]. Journal of Physical Chemistry C,2007,111: 12067-12074.
    [1]P. Poizot, S. Laruelle, S. Grugeon, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature,2000,407:496-499.
    [2]H. Li, P. Balaya, J. Maier. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides[J]. Journal of the Electrochemical Society,2004,151(11):A1878-A1885.
    [3]J. Chen, L. Xu, W. Li, et al. Alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications[J]. Advanced Materials,2005,17:582-586.
    [4]Y. S. Hu, L. Kienle, Y. G. Guo, et al. High lithium electroactivity of nanometer-sized rutile TiO2[J]. Advanced Materials,2006,18:1421-1426.
    [5]P. L. Taberna, S. Mitra, P. Poizot, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications[J]. Nature Materials,2006,5:567-573.
    [6]J. C. Park, J. Kim, H. Kwon, et al. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials[J]. Advanced Materials,2009,21:803-807.
    [7]S. Grugeon, S. Laruelle, R. H.-Urbina, et al. Particle size effects on the electrochemical performance of copper oxides toward lithium[J]. Journal of the Electrochemical Society,2001, 148:A285-A292.
    [8]Y. G. Guo, J. S. Hu, L. J. Wan. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials,2008,20:2878-2887.
    [9]X. J. Zhang, D. E. Zhang, X. M. Ni, et al. Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper oxalate[J]. Solid-State Electronics,2008,52: 245-248.
    [10]谢毅,杜永芳,肖夏,等.晶体自范性和自生成模板法结合生长组装多级纳米结构[J].中国科学技术大学学报,2008,38:569-575.
    [11]P. S. Weiss. Hierarchical AssemblyfJ]. ACS Nano,2008,2:1085-1087.
    [12]S. Q. Wang, J.Y. Zhang, C. H. Chen. Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries[J]. Scripta Materialia,2007,57:337-340.
    [13]H. B. Wang, Q. M. Pan, J. W. Zhao, et al. Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries[J]. Journal of Power Sources,2007,167:206-211.
    [14]J. Y. Xiang, J. P. Tu, Y. F. Yuan, et al. Electrochemical investigation on nanoflower-like CuO/Ni composite film as anode for lithium ion batteries[J]. Electrochimica Acta,2009,54:1160-1165.
    [15]X. H. Huang, C. B. Wang, S. Y. Zhang, et al. CuO/C microspheres as anode materials for lithium ion batteries[J]. Electrochimica Acta,2011,56:6752-6756.
    [16]W. X. Zhang, X. G. Wen, S. H. Yang, et al. Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature[J]. Advanced Materials,2003,15:822-825.
    [17]W. X. Zhang, M. Li, Q. Wang, et al, Hierarchical self-assembly of microscale cog-like superstructures for enhanced performance in lithium-ion batteries[J]. Advanced Functional Materials,2011,21:3516-3523.
    [18]S. Laruelle, S. Grugeon, P. Poizot, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential[J]. Journal of the Electrochemical Society,2002,149: A627-A634.
    [19]H. Li, G. Richter, J. Maier. Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries [J]. Advanced Materials,2003,15:736-739.
    [20]J. Jamnik, J. Maier. Nanocrystallinity effects in lithium battery materials[J]. Physical Chemistry Chemical Physics,2003,5:5215-5220.
    [21]J. S. Chen, T. Zhu, Q. H. Hu, et al. Shape-controlled synthesis of Co3O4 nanocubes, nanodiscs and nanoflowers and their comparative lithium storage properties[J]. ACS Applied Materials & Interfaces,2010,2:3628-3635.
    [22]J. Hu, H. Li, X. J. Huang, et al. Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries[J]. Solid State Ionics,2006,177:2791-2799.
    [1]A. N. Jansen, A. J. Kahaian, K. D. Kepler, et al. Development of a high-power lithium-ion battery[J]. Journal of Power Sources,1999,81-82:902-905.
    [2]E. Ferg, R. J. Gummov, A. D. Kock, et al. Spinel anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society,1994,141:L147-L150.
    [3]H. G. Jung, M. W. Jang, J. Hassoun, et al. A high-rate long-life Li4Ti5O12/Li[Ni0.45 Co0.1Mn1.45]O4 lithium-ion battery[J]. Nature Communications, Volume:2, Article number:516 DOI: doi:10.1038/ncomms 1527
    [4]H. F. Xiang, X. Zhang, Q.Y. Jin, et al. Effect of capacity matchup in the LiNi0.5Mn1.5O4/ Li4Ti5O12 cells[J]. Journal of Power Sources,2008,183:355-360.
    [5]J. Hassoun, K.-S. Lee, Y.-K. Sun, et al. An advanced lithium ion battery based on high performance electrode materials[J]. Journal of the American Chemical Society,2011,133: 3139-3143
    [6]P. Poizot, S. Laruelle, S. Grugeon, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature,2000,407:496-499.
    [7]J. Hassoun, F. Croce, I. Hong, et al. Lithium-iron battery:Fe2O3 anode versus LiFePO4 cathode[J]. Electrochemistry Communications,2011,13:228-231.
    [8]H. Yang, X. L. Wu, M. H. Cao, et al. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries[J]. Journal of Physical Chemistry C,2009,113:3345-3351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700