日本脑炎病毒受体候选分子的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日本脑炎病毒(Japanese encephalitis virus,JEV)属于黄病毒科黄病毒属,是有囊膜的正链RNA病毒,主要的囊膜糖蛋白E与病毒的神经毒性和神经侵袭性相关,能够诱导机体产生保护性免疫反应。作为JEV的病毒吸附蛋白(virus attachment protein,VAP),E蛋白介导JEV与宿主细胞受体结合及膜融合。JEV在鸟与蚊子之间有一个区域性传播循环,猪作为中间扩增宿主,带毒蚊子通过叮咬将感染性病毒传播给人。JEV引起的流行性乙型脑炎(乙脑),是一种严重的急性中枢神经系统传染病,主要流行于我国广大地区及东亚、东南亚和南亚。
     JEV致病机制尚未完全阐明。人被携带JEV的蚊子叮咬后,病毒先在淋巴细胞、骨髓细胞及血管内皮细胞增殖。在侵袭中枢神经系统前,有一个短暂的病毒血症期。JEV和脑血管内皮细胞及其周围细胞的细胞膜相互作用后,通过受体介导的内吞,JEV与胞浆囊泡膜融合形成内化囊泡,再被转运穿过血脑屏障。在颅内,JEV仅在神经元中复制。神经元和胶质细胞大量表达巨噬细胞移动抑制因子(MIF),介导广谱的免疫炎症反应。JEV的感染也诱导神经元的凋亡。
     目的:
     病毒与细胞表面相应受体的结合是病毒感染复制过程中的始动环节,也是影响病毒宿主特异性、组织亲嗜性和致病性的决定因素之一。目前,JEV在易感细胞上的受体分子及其特性与功能仍然不清楚。为了鉴定JEV的受体,本研究从以下两种思路出发,分别进行了JEV受体候选分子的初步研究。
     方法和结果:
     一、筛选建立JEV受体功能缺陷的细胞系,并鉴定其功能。应用ICR-191(一种DNA烷化剂,通过DNA小片段缺失和移码突变使细胞随机突变)诱变JEV易感细胞——地鼠肾细胞BHK-21。经过JEV攻击、克隆化和RT-PCR筛选,获得了一株突变细胞系3A10-3F,并鉴定其为JEV受体功能缺陷。
     1.间接免疫荧光实验:JEV感染的3A10-3F细胞的荧光强度明显弱于JEV感染的BHK-21细胞,说明3A10-3F细胞对JEV的感染有相当的抵抗。
     2.空斑实验: MOI 1和MOI 10的JEV感染后,3A10-3F细胞比BHK细胞上清中JEV最高滴度分别降低了2个数量级和1个数量级,进一步证实3A10-3F细胞的确对JEV的敏感性降低了许多。
     3.流式细胞术: 3A10-3F细胞与JEV的结合率仅有2.10 % ,而BHK-21细胞与JEV的结合率可达48.84 %。3A10-3F细胞对JEV的结合率明显降低,进一步说明3A10-3F细胞为JEV受体功能缺陷。
     4.对单纯疱疹病毒1型(HSV-1)的易感性:在形态上,3A10-3F细胞与BHK-21细胞相似,仍然保留着对HSV-1的易感性。HSV-1感染后,与BHK-21一样出现细胞病变:细胞融合,变圆及融合。所以这株突变细胞系对JEV感染的抵抗是特异的。
     5.为了鉴定突变细胞3A10-3F与亲代细胞BHK-21膜分子的表达差异,应用了蛋白质组学的方法,即二维电泳(2-DE)组合液质联用质谱(LC-MS/MS)技术,首次鉴定了3A10-3F细胞上有明显差异表达的四种膜蛋白,即钙结合蛋白annexin 1, annexin 2;电压依赖的离子通道(VDAC)蛋白VDAC 1, VDAC 2。
     6. 3A10-3F细胞上annexin 1, annexin 2的表达明显下降。这两个分子有可能通过与脂膜的相互作用与JEV的结合相关,它们在3A10-3F细胞上表达的下调,导致JEV与3A10-3F细胞膜的结合能力明显下降。
     7. VDAC 1仅仅表达在3A10-3F细胞上,VDAC 2在3A10-3F细胞上的表达升高。这两个VDAC分子可能在JEV穿入3A10-3F细胞过程中起着离子通道的作用,同时也参与其它包括信号转导的细胞功能。
     二、从易感细胞上分离JEV受体候选分子,并初步鉴定其功能。
     1.应用免疫共沉淀方法(Co-immunoprecipitation, Co-IP),从白纹伊蚊细胞C6/36、非洲绿猴肾细胞Vero及BHK-21细胞膜上,分离到多个与JEV结合的分子条带。
     2.质谱分析首次鉴定出一个蛋白,即C6/36细胞上与JEV结合的74 kD分子为HSC70蛋白。
     3.免疫印记实验中,用抗HSC70抗体检测到从C6/36细胞膜上免疫共沉淀分离到的74 kD蛋白。
     4.将主要的JEV受体候选分子,即C6/36细胞膜上免疫共沉淀分离到的74 kD、97 kD分子电洗脱下来后,分别免疫小鼠制备抗体,进行病毒结合的阻断实验。结果显示,抗74 kD、97 kD抗体及抗HSC70抗体均以剂量依赖的方式部分阻断JEV与C6/36细胞的结合。在JEV MOI 100,抗体浓度为200μg时,抗97kD、74 kD抗体和抗HSC70抗体分别使JEV的结合率下降38%、35%、20%。
     5.间接免疫荧光实验:激光共聚焦显微镜观察到74 kD、97 kD及HSC70分子定位在C6/36细胞膜上。免疫荧光双标记实验结果显示JEV与74 kD、97 kD及HSC70分子共定位在C6/36细胞膜上。这些结果说明74 kD、97 kD及HSC70分子参与JEV吸附到C6/36细胞膜上。
     结论:
     1.突变细胞系3A10-3F可能是缺乏结合受体的功能,而辅受体仍然能够介导JEV进入细胞内。
     2. C6/36细胞上74 kD、97 kD分子可能是JEV受体的复合物组分,而74 kD分子可能是HSC70。
     综上所述,这些研究结果将为深入研究JEV受体特性与功能,阐明JEV致病机制提供有益的线索。
Japanese encephalitis virus (JEV) is a member of genus Flavivirus, family Flaviviridae and is an enveloped positive sense single stranded RNA virus. The major envelope glycoprotein (E), associated with neurovirulence and neuroinvasiveness, is the dominant antigen in inducing protective immune response in the infected host. Since E protein is known as the viral attachment protein (VAP), it contains structural and functional elements that participate in the virus-host cell receptor interaction and membrane fusion. The virus has a zoonotic transmission cycle between birds and mosquitoes, with swine serving as an intermediate amplifier hosts from which infected mosquitoes transmit the virus to humans. Japanese encephalitis caused by JEV is an acute and severe disease of central nervous system, and is epidemic nearly throughout of China, and virtually all of the southeastern Asia.
     JEV pathogenesis remains elusive. At a variable time after inoculation by an infected mosquito, JEV primaryly replicates in the lymph cells, myeloid cells or vascular endothelial cells. There is a temporal viraemia before JEV breaches the blood-brain barrier. After interaction with membrane of cerebral blood vessels endothelial cells and pericytes, JEV fuses with cytoplasmic endocytic vesicles by receptor-mediated endocytosis. Then taken up by the endocytic vesicles,JEV breaches the blood-brain barrier, and infects encephalic neurons rather than glial cells. Macrophage migration inhibitory factor (MIF) is largely expressed not only in neurons but also in glial cells, and involved in broad JEV-induced immune inflammation. JEV infection could also trigger neuronal apoptosis.
     Aim:
     The first step in virus infection requires interaction between the virus and the cellular receptors. The interaction of VAP and its cellular receptors is known to contribute to host range, tissue tropism and viral pathogenesis. To date, the cellular receptorfor JEV remains unknown. To identify and characterize the JEV cellular receptors, this study on putative JEV receptors was performed from two strategies as the followings, respectively.
     METHODS AND RESULTS:
     Ⅰ. Selection, identification and characterization of a cell mutant lacking the function of JEV receptor.
     ICR-191, a DNA alkylating agent, was used to introduce random mutations in JEV susceptible baby hamster kidney cells (BHK-21). After challenged with JEV, the surviving cells were cloned by limiting dilution. Individual clones were detected by RT-PCR for JEV RNA. A JEV RNA-negative mutant cell line, 3A10-3F, was selected and further analyzed lacking the function of JEV receptor.
     1. Indirect immunofluorescence assay (IFA): The fluorescence signals in the infected 3A10-3F cells was significantly weaker than in the infected BHK-21 cells. This suggests that 3A10-3F cells are considerably resistant to infection of JEV.
     2. Plaque assay: At MOI of 1 and 10, the highest titer for JEV from 3A10-3F cells was reduced by 2 logs and 1 log compared to the highest titer for JEV from BHK-21 cells, respectively. This shows that the susceptibility to JEV in 3A10-3F cells significant declined.
     3. Flow cytometry: The binding affinity was only 2.10% between 3A10-3F cells and JEV, while the binding affinity was 48.84% between BHK-21 cells and JEV. Apparently, the ability to bind JEV by 3A10-3F cells was significantly impaired compared with its parental BHK-21 cells, suggesting that 3A10-3F cells lack the function of the JEV receptor.
     4. The susceptibility to herpes simplex virus 1(HSV-1): 3A10-3F cells were similar to the normal BHK-21 cells in cell morphology, and were still susceptible to HSV-1. After infected with HSV-1, 3A10-3F cells appeared CPE as rapidly as BHK-21 cells did: cells shrinking, turning round and fusion. Thus, resistance of 3A10-3F cells appears to be specific for JEV.
     5. A proteomic approach, two-dimensional electrophoresis (2-DE) coupled with LC-MS/MS was used to identify differentially expressed proteins in 3A10-3F and BHK-21 cells. For the first time four differentially expressed membrane proteins of 3A10-3F cells, annexin 1 and annexin 2, voltage-dependent anion channel (VDAC) 1 and VDAC 2, were identified.
     6. The expression of annexin 1 and annexin 2 were significantly reduced on 3A10-3F cells. It is possible that annexin 1 and annexin 2 are responsible for JEV binding by an interaction with phospholipid membrane. Therefore, the decreased expression of annexin 1 and annexin 2 significantly affected the binding between JEV and 3A10-3F cells.
     7. VDAC 1 was only expressed in 3A10-3F cells, and VDAC 2 showed an increased expression in 3A10-3F cells. It is possible these two VDAC proteins represent roles involving ion transport and other cell functions including signal transduction in JEV entry into 3A10-3F cells.
     Ⅱ. Isolation and identification of the putative JEV receptors from susceptible cells.
     1. By using Co-immunoprecipation (Co-IP) approach, several molecules binding with JEV from Aedes albopictus cells (C6/36), African green monkey kidney cells (Vero) and BHK-21 cells membranes were isolated.
     2. For the first time 74kD molecular from C6/36 cells membrane binding with JEV was identified as heat shock cognate 70 (HSC70) by LC-MS/MS.
     3. Antibody against HSC70 was able to detect a 74kD protein isolated by Co-IP from C6/36 cells membrane in Western blot assays.
     4. Polyclonal antibodies against 74kD and 97kD proteins were obtained after immunization of mice with the electro-eluted proteins isolated by Co-IP from C6/36 cells membrane. Then antibodies-mediated blocking JEV binding assay was performed. The results showed that antibodies against 74kD and 97kD proteins as well as antibody against HSC70 were able to block JEV binding partially to C6/36 cells in dose-dependent manner. At JEV MOI of 100 and antibodies concentration of 200μg, the binding were inhibited by 38%, 35% and 20% with antibodies against 97 kD, 74 kD proteins and antibody against HSC70.
     5. IFA: It was observed that the 74kD, 97kD and HSC70 proteins are located on the surface of C6/36 cells by confocal mocroscopy. Double-labelled IFA showed JEV and 74kD, 97kD or HSC70 proteins were co-localization on the surface of C6/36 cells. These results suggested that 74kD, 97kD or HSC70 proteins involved JEV attachment on the surface of C6/36 cells.
     CONCLUSIONS:
     1. The mutant cell line, 3A10-3F, may be deficient in binding receptor function, but some other putative co-receptors may still exist to mediate JEV entry into cells.
     2. The 74kD and 97kD proteins from C6/36 cells membrane may be components of JEV receptor complex, and the 74kD protein may be HSC70. Taken together, these results provide important clues to facilitate characterization of JEV receptor molecule(s), and to further elucidate the pathogenesis of JEV infection.
引文
1. Tsai TF. New initiatives for the control of Japanese encephalitis by vaccination: minutes of a WHO/CVI meeting, Bangkok, Thailand, 13-15 October 1998. Vaccine 2000, 18 (Suppl 2): 1-25.
    2. Solomon T. Control of Japanese encephalitis – within our grasp? N Engl J Med 2006, 355(9): 869-871.
    3. Paul WS, Moore PS, Karabatsos N, Flood SP, Yamada S, Jackson T, Tsai TF: Outbreak of Japanese encephalitis on the island of Saipan. J Infect Dis 1993, 167(5): 1053-1058.
    4. Igarashi A, Tanaka M, Morita K, Takasu T, Ahmed A, Ahmed A, Akram DS, Waqar MA. Detection of West Nile and Japanese encephalitis viral genome sequences in cerebrospinal fluid from acute encephalitis cases in Karachi, Pakistan. Microbiol Immunol 1994, 38(10): 827-830.
    5. Hanna JN, Ritchie SA, Phillips DA, Lee JM, Hills SL, van den Hurk AF, Pyke AT, Johansen CA, Mackenzie JS: Japanese encephalitis in north Queensland, Australia, 1998. Med J Austra 1999, 170(11): 533-536.
    6. Zanin MP, Webster DE, Martin JL, Wesselingh SL. Japanese encephalitis vaccines: moving away from the mouse brain. Expert Rev Vaccines 2003, 2(3): 407-416.
    7. Wu KP , Wu CW , Tsao YP , Kuo TW, Lou YC, Lin CW, Wu SC,Cheng JW. Structural basis of a flavivirus recognized by its neutralizing antibody: Solution structure of the domain III of Japanese encephalitis virus envelope protein. J Bio Chem 2003, 278 (46): 46007-46013.
    8. Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 2004, 10: 98-109.
    9. Liou ML, Hsu CY. Japanese encephalitis virus is transported across the cerebral blood vessels by endocytosis in mouse brain. Cell Tissue Res 1998, 293(3): 389-394.
    10. Suzuki T, Ogata A, Tashiro K, Nagashima K, Tamura M, Yasui K, Nishihira J. Japanese encephalitis virus up-regulates expression of macrophage migration inhibitory factor (MIF) mRNA in the mouse brain. Biochim Biophys Acta 2000, 1517(1): 100-106.
    11. Swarup V, Das S, Ghosh S, Basu A. Tumor necrosis factor receptor-1-induced neuronal death by TRADD contributes to the pathogenesis of Japanese encephalitis. J Neurochem 2007, 103(2): 771-783.
    12. Butrapet S, Kimura-Kuroda J, Zhou DS, Yasui K. Neutralizing mechanism of a monoclonal antibody against Japanese encephalitis virus glycoprotein E. Am J Trop Med Hyg 1998, 58(4): 389-398.
    13. 张明杰,汪美先,姜绍谆. 单克隆抗体治疗日本乙型脑炎的实验研究. 病毒学杂志1987, 2 (4): 27-32.
    14. 刘利兵,姜绍谆. 静脉与肌肉注入单克隆抗体对乙脑病毒感染小鼠的保护作用. 免疫学杂志 1990, 6 (1): 35-37.
    15. 张明杰,汪美先,姜绍谆,马文煜,于碧云. 单克隆抗体治疗日本脑炎病毒感染恒河猴的实验研究. 细胞与分子免疫学杂志 1988, 4: 3-4.
    16. 马文煜,姜绍谆. 流行性乙型脑炎病毒单克隆抗体用于临床治疗的初步观察. 第四军医大学学报 1992, 13(1): 56-58.
    17. Kimura T, Kimura-Kuroda J, Nagashima K, Yasui K. Analysis of virus-cell binding characteristics on the determination of Japanese encephalitis virus susceptibility. Arch Virol 1994, 139 (3-4): 239-251.
    18. Boonsanay V, Smith DR. Entry into and production of the Japanese encephalitis virus from C6/36 cells. Intervirology 2007, 50(2): 85-92.
    19. Maisner A, Schneider-Schaulies J, Liszewski MK, Atkinson JP, Herrler G. Binding of measles virus to membrane (CD46): Importance of disulfide bonds and N-glycans for the receptor function. J Virol 1994, 68 (10): 6299-6304.
    20. Gastka M, Horvath J, Lentz TL. Rabies virus binding to the nicotinic acetylcholine receptor alpha subunit demonstrated by virus overlay protein binding assay. J Gen Virol 1996, 77 (10): 2437-2440.
    21. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426 (6965): 450-454.
    22. Gavrilovskaya IN, Shepley M, Shaw R, Ginsberg MH, Mackow ER. beta3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci USA 1998, 95 (12): 7074-7079.
    23. Mendelsohn CL, Wimmer E, Racaniello VR. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 1989, 56(10): 855-865.
    24. Rajcáni J. Molecular mechanisms of virus spread and virion components as tools of virulence. A review. Acta Microbiol Immunol Hung 2003, 50 (4): 407-431.
    25. Smith AE, Helenius A. How viruses entry animal cells. Science 2004, 304(5668): 237-242.
    26. Sieczkarski SB, Whittaker GR. Viral entry. Curr Top Microbiol Immunol 2005, 285: 1- 23.
    27. Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG.. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999, 99(1): 13-22.
    28. Lopez S, Arias CF. Early steps in rotavirus cell entry. Curr Top Microbiol Immunol 2006, 309: 39-66.
    29. Ciarlet M, Crawford SE, Cheng E, Blutt SE, Rice DA, Bergelson JM, Estes MK. VLA-2 (alpha2beta1) integrin promotes rotavirus entry into cells but is not necessary forrotavirus attachment. J Virol 2002, 76(3): 1109-1123.
    30. Arias C F, Isa P, Guerrero C A, Méndez E, Zárate S, López T, Espinosa R, Romero P, López S. Molecular biology of rotavirus cell entry. Arch Med Res 2002, 33(4): 356-361.
    31. López S, Arias CF. Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol 2004, 12(6): 271-278.
    32. Dormitzer PR, Sun ZY, Blixt O, Paulson JC, Wagner G, Harrison SC. Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J Virol 2002, 76(20): 10512-10517.
    33. Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, Robinson MK, Coulson BS. Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry. J Virol 2003, 77(18): 9969-9978.
    34. Guerrero CA, Bouyssounade D, Zárate S, Isa P, López T, Espinosa R, Romero P, Méndez E, López S, Arias CF. Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 2002, 76(8): 4096-4102.
    35. Zárate S, Cuadras MA, Espinosa R, Romero P, Juárez KO, Camacho-Nuez M, Arias CF, López S. Interaction of rotaviruseswith Hsc70 during cell entry is mediated by VP5. J Virol 2003, 77(13): 7254-7260.
    36. Zárate S, Romero P, Espinosa R, Arias CF, López S. VP7 mediates the interaction of rotaviruses with integrin alphavbeta3 through a novel integrin-binding site. J Virol 2004, 78(20): 10839-10847.
    37. Ma?es S, del Real G, Martínez-A C. Pathogens: raft hijackers. Nat Rev Immunol 2003, 3(7): 557–568.
    38. Bomsel M, Alfsen A. Entry of viruses through the epithelial barrier: pathogenic trickery. Nat Rev Mol Cell Biol 2003, 4(1): 57–68.
    39. Clapham PR, McKnight A. Cell surface receptors, virus entry and tropism of primate lentiviruses. J Gen Virol 2002, 83: 1809–1829.
    40. Spear PG, Longnecker R. Herpesvirus entry: an update. J Virol 2003, 77(19): 10179-10185.
    41. Parry C, Bell S, Minson T, Browne H. Herpes simplex virus type 1 glycoprotein H binds to alphavbeta3 integrins. J Gen Virol 2005, 86: 7-10.
    42. Li E, Brown SL, Stupack DG, Puente XS, Cheresh DA, Nemerow GR. Integrin alpha(v)beta1 is an adenovirus coreceptor. J Virol 2001, 75(11): 5405-5409.
    43. Gavrilovskaya IN, Shepley M, Shaw R, Ginsberg MH, Mackow ER. beta3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci USA 1998, 95 (12): 7074-7079.
    44. Song JW, Song KJ, Baek LJ, Frost B, Poncz M, Park K. In vivo characterization of the integrin beta3 as a receptor for Hantaan virus cellular entry. Exp Mol Med 2005, 37(2): 121-127.
    45. Triantafilou K, Triantafilou M. Lipid raft microdomains: key sites for coxsackievirus A9 infectious cycle. Virology 2003, 317(1): 128-135.
    46. Stewart PL, Nemerow GR. Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol 2007, 15(11): 500-507.
    47. Adair BD, Xiong JP, Maddock C, Goodman SL, Arnaout MA, Yeager M. Three-dimensional EM structure of the ectodomain of integrin {alpha}V{beta}3 in a complex with fibronectin. J Cell Biol 2005, 168(7): 1109-1118.
    48. Katzman RB, Longnecker R. Cholesterol-dependent infection of Burkitt’s lymphoma cell lines by Epstein–Barr virus. J Gen Virol 2003, 84: 2987-2992.
    49. Wu E, Nemerow GR. Virus yoga: the role of flexibility in virus host cell recognition. Trends Microbiol 2004, 12(4): 162-169.
    50. Chiu CY, Mathias P, Nemerow GR, Stewart PL. Structure of adenovirus complexed with its internalization receptor, alphavbeta5 integrin. J Virol 1999, 73(8): 6759-6768.
    51. Nakano MY, Boucke K, Suomalainen M, Stidwill RP, Greber UF. The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J Virol 2000, 74(15): 7085-7095.
    52. Whitton JL, Cornell CT, Feuer R. Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol 2005, 3(10): 765-776.
    53. Gavrilovskaya IN, Brown EJ, Ginsberg MH, Mackow ER. Cellular entry of hantaviruseswhich cause hemorrhagic feverwith renal syndrome is mediated by β3 integrins. J Virol 1999, 73 (5): 3951-3959.
    54. Raymond T, Gorbunova E, Gavrilovskaya IN, Mackow ER. Pathogenic hantaviruses bind plexin-semaphorin-integrin domains present at the apex of inactive, bent alphavbeta3 integrin conformers. Proc Natl Acad Sci USA 2005, 102(4): 1163–1168.
    55. Dimitrov DS. Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol 2004, 2 (2): 109-122.
    56. Oldfield V, Keating GM, Plosker G. Enfuvirtide: a review of its use in the management of HIV infection. Drugs 2005, 65(8): 1139-1160.
    57. Jiang S, Sidiqui P, Liu S. Blocking of viral entry, a complimentary strategy for HIV therapy. Drug Discov Today: Ther Strateg 2004, 1 (4): 497-503.
    58. Strizki J. Targeting HIV attachment and entry for therapy. Adv Pharmacol 2008, 56: 93-120.
    59. Yin H, Slusky JS, Berger BW, Walters RS, Vilaire G, Litvinov RI, Lear JD, Caputo GA, Bennett JS, DeGrado WF. Computational design of peptides that target transmembrane helices. Science 2007, 315(5820): 1817-1822.
    60. Kim TY, Choi Y, Cheong HS, Choe J. Identification of a cell surface 30 kDa protein as a candidate receptor for Hantaan virus. J Gen Virol 2002, 83: 767-773.
    61. Salas-Benito JS, Del Angel RM. Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J Virol 1997, 71(10): 7246-7252.
    62. Jindadamrongwech S, Thepparit C, Smith DR. Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 2004, 149(5): 915-927.
    63. Sagara Y, Ishida C, Inoue Y, Shiraki H, Maeda Y. 71-kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic virus type 1. J Virol 1998, 72(1): 535-541.
    64. Ryu CJ, Cho DY, Gripon P, Kim HS, Guguen-Guillouzo C, Hong HJ. An 80-kilodalton protein that binds to the Pre-S1 domain of hepatitis B virus. J Virol 2000, 74(1): 110-116.
    65. Reyes-del Valle J, del Angel RM. Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand. J Virol Methods 2004, 116(1): 95-102.
    66. Reyes-Del Valle J, Chávez-Salinas S, Medina F, Del Angel RM. Heat shock protein 90 and heat shock protein 70 are components of Dengue virus receptor complex in human Cells. J Virol 2005, 79(8): 4557-4567.
    67. Mercado-Curiel RF, Esquinca-Avilés HA, Tovar R, Díaz-Badillo A, Camacho-Nuez M, Mu?oz Mde L. The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells. BMC Microbiol 2006, 6: 85-94.
    68. Sidhu SS. Phage display in pharmaceutical biotechnology. Curr Opin Biotechnol 2000, 11(6): 610-616.
    69. Abrol S, Sampath A, Arora K, Chaudhary VK. Construction and characterization of M13 bacteriophages displaying gp120 binding domains of human CD4. Indian J Biochem Biophys 1994, 31(4): 302-309.
    70. Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA. Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 1997, 16(9): 2294-2306.
    71. Jolly CL, Beisner BM, Holmes IH. Rotavirus infection of MA104 cells is inhibited by Ricinus lectin and separately expressed single binding domains. Virology 2000, 275(1): 89-97.
    72. Cao J, Zhao P, Miao XH, Zhao LJ, Xue LJ, Qi Zt Z. Phage display selection on whole cells yields a small peptide specific for HCV receptor human CD81. Cell Res 2003, 13(6): 473-479.
    73. Vyroubalova EC, Hartley O, Mermod N, Fisch I. Identification of peptide ligands to the chemokine receptor CCR5 and their maturation by gene shuffling. Mol Immunol 2006, 43(10): 1573-1578.
    74. Deng Q, Zhai JW, Michel ML, Zhang J, Qin J, Kong YY, Zhang XX, Budkowska A, Tiollais P, Wang Y, Xie YH. Identification and characterization of peptides that interact with hepatitis B virus via the putative receptor binding site. J Virol 2007, 81(8): 4244-4254.
    75. Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature 1989, 340(6230): 245-246.
    76. White MA. The yeast two-hybrid system: forward and reverse. Proc Natl Acad Sci USA 1996, 93 (19): 10001-10003.
    77. Coyne CB, Voelker T, Pichla SL, Bergelson JM. The coxsackievirus and adenovirus receptor interacts with the multi-PDZ domain protein-1 (MUPP-1) within the tight junction. J Biol Chem 2004, 279(46): 48079-48084.
    78. Tessier J, Cuvillier A, Glaudet F, Khamlichi AA. Internalization and molecular interactions of human CD21 receptor. Mol Immunol 2007, 44(9): 2415-2425.
    79. Fey SJ, Larsen PM. 2D or not 2D. Two dimensional gel electrophoresis. Curr Opin Chem Biol 2001, 5(1): 26-33.
    80. Aebersold R, MannM. Mass spectrometry-based proteomics. Nature 2003, 422 (6928): 198-207.
    81. Tio PH, Jong WW, Cardosa MJ. Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with Dengue virus serotypes 1, 2 and 3. Virol J 2005, 2: 25-36.
    82. Triantafilou K, Fradelizi D, Wilson K, Triantafilou M. GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 2002, 76 (2): 633-643.
    83. Bernhard OK, Sheil MM, Cunningham AL. Lateral membrane protein associations of CD4 in lymphoid cells detected by cross-linking and mass spectrometry. Biochemistry 2004, 43 (1): 256-264.
    84. Guzmán MG, Kourí G. Dengue: An update. Lancet Infect Dis 2002, 2(1): 33-42.
    85. Hayes EB, Gubler DJ. West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. Annu Rev Med 2006, 57: 181-194.
    86. Kramer LD, Li J, Shi PY. West Nile virus. Lancet Neurol 2007, 6(2): 171-181.
    87. De Madrid AT, Porterfield JS. The flaviviruses (group B arboviruses): a cross-neutralization study. J Gen Virol 1974, 23(1): 91-96.
    88. Calisher CH, Karabatsos N, Dalrymple JM, Shope RE, Porterfield JS, Westaway EG, Brandt WE. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol 1989, 70: 37-43.
    89. Schibli DJ, Weissenhorn W. Class I and class II viral fusion protein structures reveal similar principles in membrane fusion. Mol Membr Biol 2004, 21(6): 361-371.
    90. Roche S, Bressanelli S, Rey FA, Gaudin Y. Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 2006, 313(5784): 187-191.
    91. Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 2006, 313(5784): 217-220.
    92. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. The envelope glycoprotein from tick-borne encephalitis virus at 2 ? resolution. Nature 1995, 375(6529): 291-298.
    93. Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 2004, 23(4): 728-738.
    94. Modis Y, Ogata S, Clements D, Harrison SC. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 2003, 100(12): 6986-6991.
    95. Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss JH, Rossmann MG, Kuhn RJ. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 2003, 10(11): 907-912.
    96. Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature 2004, 427(6972): 313-319.
    97. Kanai R, Kar K, Anthony K, Gould LH, Ledizet M, Fikrig E, Marasco WA, Koski RA, Modis Y. Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 2006, 80(22): 11000-11008.
    98. Nybakken GE, Nelson CA, Chen BR, Diamond MS, Fremont DH. Crystal structure of the West Nile virus envelope glycoprotein. J Virol 2006, 80(23): 11467-11474.
    99. Chu JJ, Rajamanonmani R, Li J, Bhuvanakantham R, Lescar J, Ng ML. Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. J Gen Virol 2005, 86: 405-412.
    100. Chin JF, Chu JJ, Ng ML. The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes and Infection 2007, 9(1): 1-6.
    101. Mota J, Acosta M, Argotte R, Figueroa R, Méndez A, Ramos C. Induction of protective antibodies against dengue virus by tetravalent DNA immunization of mice with domain III of the envelope protein. Vaccine 2005, 23(26): 3469-3476.
    102. Alka , Bharati K, Malik YP, Vrati S. Immunogenicity and protective efficacy of the E. coli-expressed domain III of Japanese encephalitis virus envelope protein in mice. Med Microbiol Immunol 2007, 196(4): 227-231.
    103. Chu JH, Chiang CC, Ng ML. Immunization of flavivirus West Nile recombinant envelope domain III protein induced specific immune response and protection against West Nile virus infection. J Immunol 2007, 178(5): 2699-2705.
    104. Lin CW, Wu SC. A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites. J Virol 2003, 77(4): 2600-2606.
    105. Mandl CW, Allison SL, Holzmann H, Meixner T, Heinz FX. Attenuation of tick-borne encephalitis virus by structure-based site specific mutagenesis of a putative flavivirus receptor binding site. J Virol 2000, 74(20): 9601-9609.
    106. Ni H, Ryman KD, Wang H, Saeed MF, Hull R, Wood D, Minor PD, Watowich SJ, Barrett AD. Interaction of yellow fever virus French neurotropic vaccine strain with monkey brain: characterization of monkey brain membrane receptor escape variants. J Virol 2000, 74(6): 2903-2906.
    107. Sanchez IJ, Ruiz BH. A single nucleotide change in the E protein gene of dengue virus 2 Mexican strain affects neurovirulence in mice. J Gen Virol 1996, 77: 2541-2545.
    108. Stiasny K, K?ssl C, Lepault J, Rey FA, Heinz FX. Characterization of a structural intermediate of flavivirus membrane fusion. PLoS Pathog 2007, 3(2): 191-199.
    109. Black WC 4th, Bennett KE, Gorrochótegui-Escalante N, Barillas-Mury CV, Fernández-Salas I, de Lourdes Mu?oz M, Farfán-Alé JA, Olson KE, Beaty BJ. Flavivirus susceptibility in Aedes aegypti. Arch Med Res 2002, 33(4): 379-388.
    110. Tabachnick WJ, Wallis GP, Aitken TH, Miller BR, Amato GD, Lorenz L, Powell JR, Beaty BJ. Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations. Am J Trop Med Hyg 1985, 34(6): 1219-1224.
    111. Bennett KE, Olson KE, Munoz ML, Fernandez-Salas I, Farfan-Ale JA, Higgs S, Black WC 4th, Beaty BJ. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 2002, 67(1): 85-92.
    112. Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 1997, 3(8): 866-871.
    113. Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, Virelizier JL, Arenzana-Seisdedos F, Desprès P. Dendritic cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell derived dengue viruses. EMBO Rep 2003, 4(7): 723-728.
    114. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 2003, 197(7): 823-829.
    115. Thepparit C, Smith DR. Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 2004, 78(22): 12647-12656.
    116. Jindadamrongwech S, Thepparit C, Smith DR. Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 2004, 149(5): 915-927.
    117. Chu JJ, Ng ML.Characterization of a 105-kDa plasma membrane associated glycoprotein that is involved in West Nile virus binding and infection. Virology 2003, 312(2): 458-469.
    118. Igarashi A. Isolation of a Singh's Aedes albopictus cell clone sensitive to Dengue and Chikungunya viruses. J Gen Virol 1978, 40(3): 531-544.
    119. Igarashi A, Buei K, Ueba N, Yoshida M, Ito S, Nakamura H, Sasao F, Fukai K. Isolation of viruses from female Culex tritaeniorhynchus in Aedes albopictus cell cultures. Am J Trop Med Hyg 1981, 30(2): 449-460.
    120. Turell MJ, Sardelis MR, Dohm DJ, O'Guinn ML. Potential North American vectors of West Nile virus. Ann N Y Acad Sci 2001, 951: 317-324.
    121. Salas-Benito JS, Del Angel RM. Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J Virol 1997, 71(10): 7246-7252.
    122. Yazi Mendoza M, Salas-Benito JS, Lanz-Mendoza H, Hernandez-Martinez S, Del Angel RM. A putative receptor for dengue virus in mosquito tissues: localization of a 45-kDa glycoprotein. Am J Trop Med Hyg 2002, 67(1): 76-84.
    123. Sakoonwatanyoo P, Boonsanay V, Smith DR. Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein. Intervirology 2006, 49(3): 161-172.
    124. Salas-Benito J, Reyes-Del Valle J, Salas-Benito M, Ceballos-Olvera I, Mosso C, del Angel RM. Evidence that the 45-kD glycoprotein, part of a putative dengue virus receptor complex in the mosquito cell line C6/36, is a heat-shock related protein. Am J Trop Med Hyg 2007, 77(2): 283-290.
    125. Chu JJ, Leong PW, Ng ML. Characterization of plasma membrane-associated proteins from Aedes albopictus mosquito (C6/36) cells that mediate West Nile virus binding and infection. Virology 2005, 339(2): 249-260.
    126. Solomon T, Dung NM, Vaughn DW, Kneen R, Thao LT, Raengsakulrach B, Loan HT, Day NP, Farrar J, Myint KS, Warrell MJ, James WS, Nisalak A, White NJ. Neurological manifestations of dengue infection. Lancet 2000, 355(3): 1053-1059.
    127. Misra UK, Kalita J, Syam UK, Dhole TN. Neurological manifestations of dengue virus infection. J Neurol Sci 2006, 244(1-2): 117-122.
    128. Taft SA, Liber HL, Skopek TR. Mutational spectrum of ICR-191 at the hprt locus in human lymphoblastoid cells. Environ Mol Mutagen 1994, 23(2): 96-100.
    129. Zhang MJ, Wang MJ, Jiang SZ, Ma WY. Passive protection of mice, goats, and monkeys against Japanese encephalitis with monoclonal antibodies. J Med Virol 1989, 29(2): 133-138.
    130. Nitayaphan S, Grant JA, Chang GJ, Trent DW. Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. Virology 1990, 177 (2): 541-552.
    131. Schols D, Baba M, Pauwels R, De Clercq E. Flow cytometric method to demonstrate whether anti-HIV-1 agents inhibit virion binding to T4+ cells. J Acquir Immune Defic Synd 1989, 2(1): 10-15.
    132. Mirza SP, Halligan BD, Greene AS, Olivier M. Improved method for the analysis of membrane proteins by mass spectrometry. Physiol Genomics 2007, 30 (1): 89-94.
    133. Hertzler S, Trottier M, Lipton HL. Selection and characterization of a BHK-21 cell line resistant to infection by Theiler’s murine encephalomyelitis virus due to a block in virus attachment and entry. J Gen Virol 2000, 81: 2485-2490.
    134. Libbey JE , Tsunoda I , Fujinami RS. Altered cell growth and morphology in a BHK-21cell mutant that lacks a receptor for Theiler’s murine encephalomyelitis virus. Virology 2002, 294(1): 85-93.
    135. Gilbert J, Dahl J, Riney C, You J, Cui C, Holmes R, Lencer W, Benjamin T. Ganglioside GD1a restores infectibility to mouse cells lacking functional receptors for polyomavirus. J Virol 2005, 79 (1): 615- 618.
    136. Hara T, Hattori S, Kawakita M. Isolation and characterization of mouse FM3A cell mutants which are devoid of Newcastle disease receptors. J Virol 1989, 63 (1): 182-188.
    137. Jnaoui K, Michiels T. Analysis of cellular mutants resistant to Theiler’s virus infection: differential infection of L929 cells by persistent and neurovirulent strains. J Virol 1999, 73 (9): 7248-7254.
    138. Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JA. Identification of the cellular receptor for anthrax toxin. Nature 2001, 414(6860): 225-229.
    139. Flower RJ, Rothwell NJ. Lipocortin-1: cellular mechanisms and clinical relevance. Trends Pharmacol Sci 1994, 15(3): 71-76.
    140. Hwang HJ, Moon CH, Kim HG, Kim JY, Lee JM, Park JW, Chung DK. Identification and Functional Analysis of Salmon Annexin 1 Induced by a Virus Infection in a Fish Cell Line. J Virol 2007, 81(24): 13816-13824.
    141. Raynor CM, Wright JF, Waisman DM, Pryzdial EL. Annexin II enhances cytomegalovirus binding and fusion to phospholipids membranes. Biochemistry 1999, 38(16): 5089-5095.
    142. Malhotra R, Ward M, Bright H, Priest R, Foster MR, Hurle M, Blair E, Bird M. Isolation and characterization of potential respiratory syncytial virus receptor(s) on epithelial cells. Microbes Infect 2003, 5(2): 123-133.
    143. Ma G, Greenwell-Wild T, Lei K, Jin W, Swisher J, Hardegen N, Wild CT, Wahl SM. Sretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1 infection. J Exp Med 2004, 200(10): 1337-1346.
    144. Hodge T, Colombini M. Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 1997, 157(3): 271-279.
    145. Rostovtseva T, Colombini M. VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys J 1997, 72(5): 1954-1962.
    146. Yu WH, Forte M. Is there VDAC in cell compartments other than the mitochondria? J Bioenerg Biomembr 1996, 28(2): 93-100.
    147. Kayser H, Kratzin HD, Thinnes FP, Gotz H, Schmidt WE, Eckart K, Hilschmann N. Identification of human porins. I. Purification of a porin from human B-lymphocytes (Porin 31HL) and the topochemical proof of its expression on the plasmalemma of the progenitor cell. Biol Chem Hoppe-Seyler 1989, 370(12): 1253-1264.
    148. Yu WH, Wolfgang W, Forte M. Subcellular localization of human voltage-dependent anion channel isoforms. J Biol Chem 1995, 270(23): 13998-14006.
    149. Okada SF, O'Neal WK, Huang P, Nicholas RA, Ostrowski LE, Craigen WJ, Lazarowski ER, Boucher RC. Voltage-dependent anion channel-1 (VDAC-1) contributes to ATP release and cell volume regulation in murine cells. J Gen Physiol 2004, 124(5): 513-526.
    150. Baker MA, Lane DJ, Ly JD, De Pinto V, Lawen A. VDAC1 is a transplasma membrane NADH-ferricyanide reductase. J Biol Chem 2004, 279(6): 4811-4819.
    151. Vander Heiden MG, Li XX, Gottleib E, Hill RB, Thompson CB, Colombini M. Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J Biol Chem 2001, 276(22): 19414-19419.
    152. Berry AM, Flock KE, Loh HH, Ko JL. Molecular basis of cellular localization of poly C binding protein 1 in neuronal cells. Biochem Biophys Res Commun 2006, 349(4): 1378-1386.
    153. Kubota H, Yokota S, Yanagi H, Yura T. Structures and co-regulated expression of the genes encoding mouse cytosolic chaperonin CCT subunits. Eur J Biochem 1999, 262(2): 492-500.
    154. Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible ? Electrophoresis 2000, 21(6): 1054-1070.
    155. Schr?der B, Hasilik A. A protocol for combined delipidation and fractionation of membrane proteins using organic solvents. Anal Biochem 2006, 357(1): 144-146.
    156. Zuobi-Hasona K, Crowley PJ, Hasona A, Bleiweis AS, Brady LJ. Solubilization of cellular membrane proteins from Streptococcus mutans for two-dimensional gel electrophoresis. Electrophoresis 2005, 26(6): 1200-1205.
    157. 刘美德,赵彤言,董言德,陆宝麟. C6/36 细胞上登革病毒 2 型受体蛋白的免疫共沉淀.中国病毒学. 2004,19(3):217-219.
    158. Chu JJ, Leong PW, Ng ML. Analysis of the endocytic pathway mediating the infectious entry of mosquito-borne flavivirus West Nile into Aedes albopictus mosquito (C6/36) cells. Virology, 2006, 349(2): 463-475.
    159. Sagara Y, Ishida C, Inoue Y, Shiraki H, Maeda Y. 71-kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic virus type 1. J Virol 1998, 72(1):535-541.
    160. Triantafilou K, Fradelizi D, Wilson K, Triantafilou M. GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 2002, 76(2):633-643.
    161. Mayer MP. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 2005, 153:1-46.
    162. Flaherty KM, DeLuca-Flaherty C, McKay DB. Three-dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature 1990, 346(6285): 623-628.
    163. Morshauser RC, Hu W, Wang H, Pang Y, Flynn GC, Zuiderweg ER. High-resolution solution structure of the 18 kDa substratebinding domain of the mammalian chaperone protein HSC70. J Mol Biol 1999, 289(5):1387-403.
    164. Arispe N, De Maio A. ATP and ADP modulate a cation channel formed by Hsc70 in acid phospholipid membranes. J Biol Chem 2000, 275(40):30839-30843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700