关于无线传感器网络节能的若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,无线传感器网络技术得到了飞速发展和广泛关注。作为影响传感器网络性能的一个核心方面,传感器节点的节能问题已成为当前的研究热点之一。本论文重点研究了与无线传感器网络节能相关的四个方面的问题:节点定位、网络分簇与簇间路由、感知区域覆盖以及网络瓶颈节点判别,提出了相应的模型和算法,并进行了仿真验证与分析。论文工作的创新点主要体现在如下方面:
     1)提出了一种分布式WSN节点定位方法,称为MDS-MAP(D)。该方法以Ordinal MDS理论为基础,使用节点间的跳数作为度量,结合局部网络划分机制,获得局部网络内的节点间的最短路径,在不需要高精度的测距方法和设备的支持下,完成节点相对位置的计算,降低了节点定位的计算复杂度。明确给出了融合局部网络的方法。利用有限的锚点绝对坐标,该方法可以获得全部节点的绝对坐标,且定位精度较类似方法有所提高。
     2)提出了一种非均匀分簇和建立簇间路由的算法,称为EER。EER通过一个给出的非线性函数控制节点的竞争半径,调整非线性函数行为的参数与节点到sink点的跳数有关。在该函数的控制下,WSN中建立的节点簇的大小呈现非均匀的状态,距离sink点越近的区域,簇的面积越小,簇中含有的节点越少。节省簇头汇聚簇内节点数据的能量,可使更多的能量用于簇间的数据转发。EER的非均匀分簇方法还使得临近sink点的区域能够产生更多的簇,有利于簇头节点的能耗平衡。
     3)提出了一种能耗平衡的WSN感知区域连通覆盖模型。该模型基于Voronoi划分和Delaunay三角剖分理论,包含跳数测量、节点分层、网络三角剖分和可休眠节点查找等环节,利用节点分层机制,在保证各个节点到sink点的连通性的同时,寻找可同时进入休眠状态的冗余节点,从而得到感知区域的连通覆盖集。
     4)提出了一种WSN网络瓶颈节点的判别方法,称为节点瓶颈系数法。节点瓶颈系数法包含两个核心概念:节点的路由节点概率和下层邻居平均节点出度。节点瓶颈系数很好地表征了节点的瓶颈程度。计算瓶颈系数仅需要了解节点的一跳邻居信息。
In recent years, wireless sensor network technologies have developed rapidly and aroused wide public concern. As one of the core aspects about the performance of wireless sensor networks, energy-saving issue of sensor node has become a hot spot of present research. In this dissertation, four aspects relating to energy-saving in wireless sensor networks are studied, which include node locating, network clustering and routing between clusters, sensing region coverage, and network bottleneck distinguishing. Also corresponding models and algorithms are presented, and analysis and simulation results show their effectiveness. The main innovations in the dissertation are outlined as following:
     1) A distributed method of WSN node locating, named MDS-MAP(D), is presented. The method based on the theory of Ordinal MDS uses hops as the metric of path length to calculate the shortest path between nodes in local networks derived by local network partition mechanism. Without support of high accuracy ranging technologies and equipments, the method can calculated the relative node location with lower calculating complexity. Furthermore, a method of merging local networks is clearly put forward, which can gets absolute coordinates of all nodes by utilizing the absolute coordinates of limited anchors and gain an increase in locating precision comparing with other similar methods.
     2) An algorithm for partitioning WSN into non-uniform clusters and building route between clusters, called EER, is introduced. EER controls the node competing radius by a given non-linear function whose behaviors are adjusted by a parameter relating to hops from node to the sink. Under the control of the non-linear function, clusters built in WSN have non-uniform size, i.e., the nearer the sink, the smaller the cluster. The smaller cluster contains less nodes and can save more cluster header energy used for data aggregation for transmitting data between clusters. The non-uniform clustering method can build more clusters near the sink region that helps to balance the energy consumption over different cluster headers.
     3) A model, which can generate connected coverage with balance energy consumption for sensing region of WSN, is presented. The model based on the Voronoi diagram and the Delaunay triangulation theories includes several links such as hops measurement, nodes layer, network triangulation, sleepable node search and so on. In detail, the model seeks nodes that can sleep together by nodes layer mechanism to obtain the coverage of a sensing region, and ensure the connectivity of nodes at the same time.
     4) A discriminance method of bottleneck node in WSN, called node bottleneck coefficient, is addressed. The node bottleneck coefficient has two kernel concepts. One is route node probability of nodes and the other is average out-degree of neibour nodes in lower layer. The node bottleneck coefficient characterizes the bottleneck degree of nodes well. And it only needs to know the information of neibours within one hop to calculate the node bottleneck coefficient.
引文
[1]Akyildiz I.,Su W.,Sankarasubramaniam Y.,Cayirici E.A Survey on Snesor Networks.IEEE Communications Magazine,2002,40(8):102-114.
    [2]任丰源,黄海宁,林闯.无线传感器网络.软件学报,2003,4(7):1282-1291.
    [3]Akkaya K.,Younis M.A Survey of Routing Protocols in Wireless Sensor Networks.Ad Hoc Networks,2005,3(3):325-349.
    [4]Chee-Yee Chong.,SP Kumar.Sensor networks:evolution,opportunities,and challenges.Proceedings of the IEEE,2003,91(8):1247-1256.
    [5]Myers C.,Oppenheim A.,Divis R.,Dove W.Knowledge-based speech analysis and enhancement.San Diego,CA 1984.
    [6]Kumar S.,Shepherd D.SensIT:Sensor information technology for the warfighter.2001 p.TuC1-3-TuC1-9.
    [7]Kahn J.M.,Katz R.H.,Pister K.S.J.Mobile networking for smart dust.1999 p.271-8.
    [8]NRC Water/Wasterwater Wireless Sensor Network Project,Regina,Saskatchewan.http://www.ic.gc.ca/eic/site/icl.nsf/eng/04363.html.2009.Ref Type:Internet Communication
    [9]Wireless Sensor Network Testbeds.http://www.wisebed.eu/index.php/partners.2009.Ref Type:Internet Communication
    [10]Sensors and sensor networks project of CSIRO.http://www.csiro.au/science/SensorsAndNetworks.html.2008.Ref Type:Internet Communication
    [11]David C.,Deborab E.,Mani S.Overview of Sensor Networks.Computer,2004,37(8):41-49.
    [12]Katherine M.,Stephen K.A low-cost microprocessor and infrared sensor system for automating water infiltration measurements.Computers and Electronics in Agriculture,2006,53(2):122-129.
    [13]Bourgeois Brian S.,Harris Mike M.,Wischow Perry B.,Ross Jerry H.Design of a Distributed Microprocessor Sensor System.1990.Report No.:ADA222459.
    [14]Gardner J.W.,Varadan V.K.,Awadelkarim O.O.Microsensors,MEMS and Smart Devices.New York:Wiley,2001.
    [15]Warneke B.,Last M.,Liebowitz B.,Pister K.S.J.Smart Dust:communicating with a cubic-millimeter computer.:IEEE;2001 p.357-61.
    [16]Rabaey J.M.,Ammer M.J.,da Silva J.L.,Jr.,Patel D.,Roundy S.PicoRadio supports ad hoc ultra-low power wireless networking.Wireless Networks,2000,169-185.
    [17]TinyOS.http://tinyos.millennium.berkeley.edu.2009.Ref Type:Internet Communication
    [18]Praveen Kumar Gopala,El Gamal H.On the scaling laws of multimodal wireless sensor networks.2005 p.3182-6.
    [19]Qingchun R.,Qilian L.An energy-efficient MAC protocol for wireless sensor networks.2005 p.5-12.
    [20] Cerpa A., Estrin D. ASCENT: adaptive self-configuring sensor networks topologies. 2004 p. 368-72.
    [21] Gupta Himanshu, Zhou Zonghen, Das Samir R., Gu Quinyi. Connected Sensor Cover: Self-Organization of Sensor Networks for Efficient Query Execution. 2006 p. 5-11.
    [22] Wei Y., Heidemann J., Estrin D. An energy-efficient MAC protocol for wireless sensor networks. 2002 p. 2-10.
    [23] Joanna K., Wendi H., Hari B. Negotiation-based protocols for disseminating information in wireless sensor networks. Wireless Communications and Mobile Computing, 2002,3(2):271-290.
    [24] Al-Karaki J. N., Ul-Mustafa R., Kamal A. E. Data aggregation in wireless sensor networks - exact and approximate algorithms. 2004 p. 39-48.
    [25] Barbara D. Mobile computing and databases-a survey. IEEE/ACM Transactions on Networking, 1999,14(1):55-67.
    [26] Dragos Niculescu, Badri Nath. Trajectory based forwarding and its applications. SIGMOD Record, 2003,32(3):8-18.
    [27] Fan Y., Haiyun L., Jerry C., Songwu L., Lixia Z. A two-tier data dissemination model for large-scale wireless sensor networks. 2002 p. 562-7.
    [28] Fan Y., Chen A., Songwu L., Lixia Z. A scalable solution to minimum cost forwarding in large sensor networks. IEEE/ACM Transactions on Networking, 2001, 11(1):2-16.
    [29] Samuel M., Michael J. Franklin, Joseph M. Hellerstein, Wei Hong. TAG: A tiny aggregation service for ad hoc sensor networks. 2002 p. 149-55.
    [30] Gamal H. E. On the scaling laws of dense wireless sensor networks: the data gathering channel. Mobile Networks and Applications, 2005,10(4):519-528.
    [31] Savarese C., Rabaey J. M., Beutel J. Location in distributed ad-hoc wireless sensor networks. IEEE Journal on Selected Areas in Communications, 2001,15(7):1265-1275.
    [32] Seapahn M., Farinaz K., Gang Q., Miodrag P. Exposure in wireless ad-hoc sensor networks. 2001 p. 238-43.
    [33] Banka T., Tandon G., Jayasumana A. P. Zonal rumor routing for wireless sensor networks. ACM SIGOPS Operating Systems Review, 2005, 36(s1):131-146.
    [34] Intanagonwiwat C., Govindan R., Estrin D., Heidemann J., Silva F. Directed diffusion for wireless sensor networking. Computer, 2003,34(1):44-51.
    [35] Younis M., Youssef M., Arisha K. Energy-aware routing in cluster-based sensor networks. Computer, 2002, 33(5):106-108.
    [36] Karlof Chris, Wagner David. Secure routing in wireless sensor networks: attacks and countermeasures. IEEE/ACM Transactions on Networking, 2003,12(4) :609-619.
    [37] Murata T., Ishibuchi H. Performance evaluation of genetic algorithms for flowshop scheduling problems. 1994 p. 1707-16.
    [38] Karp B., Kung H. T. GPSR: Greedy perimeter stateless routing for wireless networks. 2000 p. 535-40.
    [39] Haas Z.J., Halpern J. Y., Li Li. Gossip-based ad hoc routing. 2006 p. 2001-8.
    [40] David Braginsky, Deborah Estrin. Rumor routing algorithm for sensor networks. 2002 p. 260-72.
    [41] Shah R. C., Rabaey J. M. Energy aware routing for low energy ad hoc sensor networks. 2002 p. 1222-6.
    [42] Schurgers C., Srivastava M. B. Energy efficient routing in wireless sensor networks. IEEE Transactions on Mobile Computing, 2001, 3(4):317-331.
    [43] Sohrabi K., Merrill W., Elson J., Girod L., Newberg F., Kaiser W. Methods for scalable self-assembly of ad hoc wireless sensor networks. IEEE Transactions on Information Theory, 2004, 51(3):1229-1234.
    [44] Schurgers C., Tsiatsis V., Srivastava M. B. STEM: Topology management for energy efficient sensor networks. 2002 p. 195-202.
    [45] Sohrabi K., Pottie G. J. Performance of a novel self-organization protocol for wireless ad-hoc sensor networks. IEEE/ACM Transactions on Networking, 1999,14(3):479-491.
    [46] Sohrabi K., Gao J., Ailawadhi V., Pottie G. J. Protocols for self-organization of a wireless sensor network. 2000 p. 22-31.
    [47] Jae-Hwan Chang, Tassiulas L. Maximum lifetime routing in wireless sensor networks. 2004 p. 241-5.
    [48] Lin C. R., Gerla M. Adaptive clustering for mobile wireless networks. IEEE Wireless Communications, 1997, 11(6):6-28.
    [49] Tian H., Stankovic J. A., Chenyang L., Abdelzaher T. SPEED: a stateless protocol for real-time communication in sensor networks. 2003 p. 46-55.
    [50] Agre J., Clare L. An integrated architecture for cooperative sensing networks. : IEEE; 2002 p. 1125-30.
    [51] Tillapart P., Thumthawatworn T., Pakdeepinit P., Yeophantong T., Charoenvikrom S., Daengdej J. Method for cluster heads selection in wireless sensor networks. 2004 p. 563-9.
    [52] Indranil Gupta, Riordan D., Srinivas Sampalli. Cluster-head election using fuzzy logic for wireless sensor networks. 2005 p. 1567-76.
    [53] Huang Chi-Fu, Tseng Yu-Chee. The coverage problem in a wireless sensor network. International Journal of High Performance Computing Applications, 2005, 16(3): 293-313.
    [54] Caccamo M., Zhang L. Y., Lui S., Buttazzo G. An implicit prioritized access protocol for wireless sensor networks. IEEE Transactions on Mobile Computing, 2002, 3(4):366-379.
    [55] Chu Maurice, Haussecker Horst, Zhao Feng. Scalable Information-Driven Sensor Querying and Routing for ad hoc Heterogeneous Sensor Networks. : IEEE; 2002 p. 350-5.
    [56] Yao Yong, Gehrke Johannes. The cougar approach to in-network query processing in sensor networks. Ad Hoc Networks, 2002,1:293-315.
    [57] Sadagopan N., Krishnamachari B., Helmy A. The ACQUIRE mechanism for efficient querying in sensor networks. 2003 p. 148-59.
    [58] Bhardwaj M. , Garnett T., Chandrakasan A. P. Upper bounds on the lifetime of sensor networks. ACM Transactions on Database Systems (TODS), 2001, 30(1): 122-173.
    [59] Heinzelman W. R. , Chandrakasan A., Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks. IEEE Transactions on Knowledge and Data Engineering, 2000,11(1):108-117.
    [60] Basagni S. Distributed clustering for ad hoc networks. IEEE Transactions on Mobile Computing, 1999,3(3):272-285.
    [61] Heinzelman W. R., Sinha A., Wang A., Chandrakasan A.P. Energy-scalable algorithms and protocols for wireless microsensor networks. 2000 p. 2037-40.
    [62] Woigt T., Dunkels A., Alonso J., Ritter H., Schiller J. Solar-aware clustering in wireless sensor networks. 2004 p. 304-9.
    [63] Bachrach J., Taylor C. Localization in Sensor Networks in Handbook of Sensor Networks: Algorithms and Architectures. USA: Wiley, 2005.
    [64] 王福豹,史龙,任丰源.无线传感器网络中的自身定位系统和算法.软件学报, 2005,16(5):857-867.
    [65] ShangY., Ruml W., Zhang Y., Fromherz M. P. J. Localization from Mere Connectivity. 2003 p. 201-12.
    [66] Vivekanandan V., Wong V.W.S. Ordinal MDS-Based Localization for Wireless Sensor Networks. 2006 p. 1-5.
    [67] Sayed A. H., Tarighat A., Khajehnouri N. Network-based Wireless Location: Challenges Faced in Developing Techniques for Accurate Wireless Location Information. IEEE Signal Processing Magazine, 2005, 22(4):24-40.
    [68] Costa Jose A., Patwari N., Iii. Distributed Weighted-multidimensional Scaling for NOde Localization in Sensor Networks. ACM Trans. Sen. Netw., 2006, 2(1): 39-64.
    [69] Ye M., Li C. F., Chen G. H., Wu J. EECS: An Energy Efficient Clustering Scheme in Wireless Sensor Networks. USA: IEEE; 2005 p. 535-40.
    [70] Younis O., Fahmy S. HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad-hoc Sensor Networks. IEEE Transactions on Mobile Computing, 2004,3(4):660-669.
    [71] Megerian S., Koushanfar F., Potkonjak M., Srivastava M. B. Worst and Best-case Coverage in Sensor Networks. IEEE Transactions on Mobile Computing, 2005, 4(1): 84-92.
    [72] Lindsey S., Raghavendra C., Sivalingam K. M. Data Gathering Algorithms in Sensor Networks Using Energy Metrics. IEEE Transactions on Parallel and Distributed Systems, 2002,13(9):924-935.
    [73] Tian D., Georganas N. D. A node scheduling scheme for Energy conservation in large wireless sensor networks. Wireless Commu. Mobile Computing, 2003, 3(2):271-290.
    [74] Tillapart P., Thumthawatworn T., Pakdeepinit P., et al. Method for cluster heads selection in wireless sensor networks. Chiang Mai: IEEE Press; 2004 p. 3615-23.
    [75] Manjeshwar A., Agrawal D. P. APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks.: IEEE Computer Society; 2002 p. 195-202.
    [76] Lindsey S., Raghavendra C., Sivalingam K. M. Data gathering in sensor networks using the energy delay metric. San Francisco: IEEE Computer Society; 2001 p. 2001-8.
    [77] Girod L, Bychoyskiy V., Elson J., Estrin D. Locating Tiny Sensors in Time and Space: A Case Study. Freiburg: IEEE Computer Society; 2002 p. 214-9.
    [78] Priyantha N. B., Miu A. K. L., Balakrishnan H., Teller S. The Cricket Compass for Context-aware Mobile Applications. Rome: ACM Press; 2001 p. 1-14.
    [79] Girod L., Estrin D. Robust Range Estimation Using Acoustic and Multimodal Sensing. Maui: IEEE Robotics and Automation Society; 2002 p. 1312-20.
    [80] Gupta H., Das S. R., Gu Q. Connected sensor cover: self-organization of sensor networks for efficient query execution. New York, USA: ACM Press; 2003 p. 189-200.
    [81] Peide Z. Computational Geometry - Algorithms Design and Analysis (2ed). Beijing, China: Tsinghua University Press, 2005.
    [82] Lindsey S., Raghavendra C. Pegasis: Power-Efficient gathering in sensor information systems. Montana: IEEE Computer Society; 2002 p. 1-6.
    [83] Manjeshwar A., Grawal D. P. TEEN: A protocol for enhanced efficiency in wireless sensor networks. San Francisco: IEEE Computer Society; 2001 p. 2009-15.
    [84] Heinzelman W. R. Application-Specific Procotol Architectures for Wireless Networks. Boston: Massachusetts Institute of Technology; 2000.
    [85] Jie J., Li F., Heying Z., Wenhua D. An Algorithm for Minimal Connected Cover Set Problem in Wireless Sensor Networks. Journal of Software (China), 2006,17(2):175-184.
    [86] Tan H. O., Korpeoglu I. Power efficient data gathering and aggregation in wireless sensor networks. SIGMOD, 2003,32(4):66-71.
    [87] Handy M. J., Haase M., Timmermann D. Low energy adaptive clustering hierarchy with deterministic cluster-head selection. Stockholm: IEEE Communications Society; 2002 p. 368-72.
    [88] Matlab. http://www mathworks com/ 2009
    [89] Fang Q., Zhao F., Guibas L. J. Lightweight sensing and communication protocols for target enumeration and aggregation. : ACM Press; 2003 p. 165-76.
    [90] Giridhar A., Kumar P. R. Computing and Communicating Functions over Sensor Networks. IEEE Journal on Selected Areas in Communications, 2005, 23(4):755-764.
    [91] Wagner D. Resilient Aggregation in Sensor Networks. 2004 p. 78-87.
    [92] Heinzelman W. R., Chandrakasan A. P., Balakrishnan H. An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 2002,1(4):660-670.
    [93] Marco D., Duarte-Melo E. J., Liu M., et al. On the Many-to-0ne Transport Capacity of a Dense Wireless Sensor Network and the Compressibility of Its Data. Palo Alto, CA. : Springer; 2003 p. 1-16.
    [94] Guoqiang M., Fidan B., Anderson B. D. O. Wireless Sensor Network Localization Techniques. Computer Networks, 2007,51 (10):2529-2553.
    [95] Shang Y., Rural W. , Zhang Y. Improved MDS-Based Localization. 2004 p. 2640-51.
    [96] Bergamo P. , Mazzini G. Localization in sensor networks with fading and mobility. 2002 p. 750-4.
    [97] Patwari N., Hero A., Perkins M. , Correal N. , O'Dea R. Relative location estimation in wireless sensor networks. IEEE Transcations on Signal Processing, 2003,51(8):2137-2148.
    [98] Guoqiang M. , Baris F., Brian D. O. Anderson. Wireless sensor network localization techniques. Computer Networks: The International Journal of Computer and Telecommunications Networking, 2007,51 (10):2529-2553.
    [99] Cox T., Cox M. Multidimensional Scaling (2ed). London UK: Chapman & Hall, 2001.
    [100] Al-Karaki J. N. , Kamal A. E. Routing Techniques in Wireless Sensor Networks: A Survey. IEEE Wireless Communications, 2009,11(6):6-28.
    [101] Yan R., Sidong Z., Hongke Z. Theories and Algorithms of Coverage Control for Wireless Sensor Networks. Journal of Software (China), 2006,17(3):422-433.
    [102] Akyildiz I., Su W., Sankarasubramaniam Y., Cayirici E. A Survey on Sensor Networks. IEEE Communications Magazine, 2002,40(8):102-114.
    [103] Tian L., Xie D.L., Zhang L., Cheng S. D. Quasi-Bottleneck Nodes: A Potential Threat to the Lifetime of Wireless Sensor Networks. : Springer Berlin / Heidelberg; 2006 p. 241-8.
    [104] Padmanahh K., Roy R. Bottleneck around base station in wireless sensor network and its solution. 2006.
    [105] Tian L., Xie D. L., Han B., Zhang L., Cheng S. D. Study on bottleneck nodes in wireless sensor networks. Journal of Software (China), 2006,17(4):830-837.
    [106] Kosar R., Ersoy C. Enhancing the performance of nonuniformly deployed sensor networks by locating bottleneck areas for partial redeployment. 2007 p. 117-23.
    [107] Doherty L., Pister K. S. J., Ghaoui L. E. Conver Position Estimation in Wireless Sensor Networks. Anchorage: IEEE Computer and Communications Societies; 2001 p. 1655-63.
    [108] Capkun S. Hamdi M. Hubaus J-P. GPS-Free Positioning in Mobile Ad-hoc Networks. Cluster Computing, 2002, 5(2):157-167.
    [109] Bulusu N., Heidemann J., Estrin D. Adaptive Beacon Placement. Mesa: IEEE Computer Society; 2001 p. 489-98.
    [110] Meguerdichian S., Koushanfar F., Potkonjak M., Srivastava M.B. Coverage Problems in Wireless Ad-hoc Sensor Networks. Anchorage: IEEE Computer and Communications Societies; 2001 p. 1380-7.
    [111] Xu Y., Heidemann J., Estrin D. Geography-Informed Energy Conservation for Ad hoc Routing. Rome: ACM Press; 2001 p. 70-84.
    [112] Chang J-H., Tassiulas L. Energy Conserving Routing in Wireless Ad-hoc Networking. Tel Aviv: IEEE Computer and Communications Societies; 2000 p. 22-31.
    [113] Borg I., Groenen P. Modern Multidimensional Scaling: Theory and Applications. New York: Springer, 1997.
    [114] He T., Huang C., Lum B. M., Stankovic J. A. Range-free Localization Schemes for Large Scale Sensor Networks. San Diego, CA 2003 p. 81-95.
    [115] Ji X., Zha H. Sensor Positioning in Wireless Ad-hoc Sensor Networks Using Multidimensional Scaling. Hong Kong, China 2004 p. 2652-61.
    [116] Biljana S., Danco D., Andrea K. Cluster-based MDS algorithm for nodes localization in wireless sensor networks with irregular topologies. New York, USA: ACM; 2008 p. 384-9.
    [117] James A., Tolga E., David K. G., et.al. A theory of network localization. IEEE Transactions on Mobile Computing, 2006,15:1663-1678.
    [118] Jose A. Costa, Neal P., Alfred 0. Hero. Distributed weighted-multidimensional scaling for node localization in sensor networks. ACM Trans. Sen. Netw., 2006,2:39-64.
    [119] Jose A. Costa, Neal P., Alfred 0. Hero. Distributed Multidimensional Scaling with Adaptive Weighting for Node Localization in Sensor Networks. ACM J. Sensor Networking, 2005, 2:39-64.
    [120]Ahmed A.Ahmed,Yi S.,Hongchi S.,Bei H.MDS-BASED METHODS FOR ADHOC NETWORK LOCALIZATION.Journal of Interconnection Networks,2006,7(1):5-19.
    [121]Chang-Hua W.,Wei-Hua S.,Ying Z.Mobile Sensor Networks Self Localization based on Multi-dimensional Scaling.Roma 2007 p.4038-43.
    [122]Guoling S.,Yi W.,Wei G.On localization in sensor network with inaccurate and incomplete distance measurements.Journal of Electronics(China),2005,24(1):60-63.
    [123]Gwo-Jong Y.,Shao-Chun W.A Hierarchical MDS-Based Localization Algorithm for Wireless Sensor Networks.2008 p.748-54.
    [124]Wolfgang H.,Leopold S.Applied Multivariate Statistical Analysis(2ed).Springer,2007.
    [125]Hom B.K.P.Closed-form Solution of Absolute Orientation Using Unit Quaternions.J.Opt.Soc.Am.A.,1987,4:629-642.
    [126]GloMoSim:Global Mobile Information Systems Simulation Library.http://pcl cs ucla edu/projects/glomosim/2009
    [127]Theodore S.Rappaport.Wireless Communications:Principles and Practice.New Jersey:Prentice Hall,1999.
    [128]唐勇,周明天,张欣.无线传感器网络路由协议研究进展.软件学报,2006,17(3):410-421.
    [129]沈波,张世永,钟亦平.无线传感器网络分簇路由协议.软件学报,2006,17(7):1588-1600.
    [130]邓俊辉.计算几何-算法与应用(第二版).北京:清华大学出版社,2006.
    [131]M.de Berg,M.van Kreveld,M.Overmars,O.Schwarzkopf.Computational Geometry:Algorithms and Applications(2se).New York:Springer-Verlag Berlin Heidelberg New York,2000.
    [132]Fortune S.A sweepline algorithm for Voronoi diagrams.Yorktown Heights,New York,United States:ACM Digital Library;1986 p.313-22.
    [133]Heo N.,Varshney P.K.A distributed self spreading algorithm for mobile wireless sensor networks.:IEEE;2003 p.1597-602.
    [134]Gage D.W.Command control for many-robot systems.Huntsville AL:AUVS;1992p.22-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700