多AUV协调控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,自治水下机器人(autonomous underwater vehicles,简称AUV)在海洋探测中表现出来的巨大优越性吸引了人们越来越多的关注。AUV自带能源,与水面母船无物理连接,无需人为干预,可以携带相应设备对海洋进行自由观测,可用于海洋数据搜集、海底目标探测以及海底管路跟踪等广泛领域。
     然而,单个AUV在能源、控制、传感等方面能力有限,所以只能用于执行一些简单的、局部的海洋任务,而复杂的、大范围的海洋任务仍然超出了AUV的能力范围。为了解决这一问题,一方面可以进一步开发智能更高、能力更强、功能更多的AUV,另一方面也可以在现有AUV的基础上,通过多个AUV之间的协调合作来完成单个AUV无法或难以胜任的工作。
     多AUV协作的核心思想是让多个具有简单功能的AUV有机地组成一个整体,通过一定的协作策略,使团队中的每个成员各司其职、充分发挥团队精神来相互协调与合作,从而完成给定的任务。相对单AUV而言,多AUV系统具有空间分布性、功能分布性以及更高可靠性等优点。
     由于水下环境的特殊性,与地面和空中的多机器人系统研究相比,多水下机器人协调控制方面的研究还不成熟,尚处于初级阶段。本文通过理论分析和数值仿真的方法,对多AUV协调控制技术进行了一定研究,主要内容包括: 1. AUV六自由度运动建模与控制。多AUV协作系统归根结底是由一群单个AUV组成的,所以要想研究多AUV系统,先要对这一系统中单个AUV的性能进行全面分析,以保证整个系统的安全性和可靠性。由于通常基于欧拉角方法的运动方程在AUV纵倾±90度时会产生奇异点,所以本文基于四元数法来建立AUV六自由度运动方程,以避免奇异点的发生,使AUV能够以任意纵倾角进行全自由度仿真;
     2.多AUV协调路径规划。AUV在执行任务的时候,往往是沿着事先规划好的路径前进的,这些路径由一个个相邻的、已知的路径点连接而成。由于能源是制约AUV作业时间的重要因素,所以我们希望规划出的路径是最优的。在路径点数量较少的情况下,通过排列组合或者枚举法很容易找出AUV的最优路径;但是当路径点较多时,那么无论采用人工排列组合方法或是计算机枚举法其计算量都非常大,所以本文采用善于处理组合优化问题的智能算法(如遗传算法和蚁群算法)来对路径进行优化,确保找到最佳路径。算法分为三部分:1)路径点分配:将路径点分配给各个AUV;2)路径优化:以启发式算法为工具,结合旅行商问题对路径进行优化,找出最短路径;3)路径校核:检验是否存在静态碰撞或动态碰撞的危险;
     3.多AUV队形控制算法。一群AUV在抵达目的地的过程中,保持一定的队形很有必要,适当的队形可以提高多AUV系统的安全和作业效率。传统的领航者-跟随者方法对领航者过分依赖,所以一旦领航者发生故障,队形就会失去控制。鉴于此,本文设计了基于模糊势场的虚拟领航者队形控制方法,由于该方法中的领航者是虚拟的,于是不存在领航者发生故障的情况,弥补了“领航者-跟随者”方法的不足。虚拟领航者队形控制方法中AUV的运动状态可以通过定义人工势场来进行控制,由于通常采用势函数所定义的人工势场其势场力会发生突变从而会导致规划出的路径轨迹并不光滑,所以本文引入模糊逻辑来建立模糊人工势场,通过隶属度函数和模糊规则来构造势场中距离与势场力之间连续的映射关系;
     4.多AUV覆盖控制算法。假定最初聚集在一起、装备有测量和通信传感器的一群AUV要对某一海域进行探测,为了使探测效果最优,这群AUV应以某种特定的空间分布(密度函数)布放在这块区域。本文通过一定的控制算法,使描述覆盖控制性能指标的位置优化函数逐渐趋于收敛,最终使得一群AUV在被考察海域形成指定密度函数(如均匀分布、圆形分布、高斯分布等)的质心Voronoi分布(简称CVT分布)来对指定水域进行勘探。覆盖控制算法在处理非均匀密度分布函数时,选取合适的惩罚系数非常重要,惩罚系数过大或过小都会对AUV的运动轨迹产生不利影响。本文在非均匀密度分布函数中采用了一种连续线性惩罚系数即惩罚函数,以确保AUV实现期望的覆盖分布。
The recent years have witnessed people’s growing interests of applying of autonomous underwater vehicles (AUVs) in ocean explorations and exploitations, e.g. oceanographic data collection, underwater object inspection and pipes tracking. With its onboard power and instruments, an AUV can be used to explore oceans without physical link to the support ship supply vehicle and intervention of human beings.
     However, due to the limitations from related technologies such as power, control and sensing, a single AUV can only conduct simple tasks within a small area. To enhance AUV’s ability for complex and long duration missions, there are two options: 1) to develop a single AUV with high intelligence, strong capacities and multiple functions; 2) to deploy multiple small AUVs and make them to achieve a cooperated group behavior.
     The key idea behind the second option is that the coordinated multiple simple AUVs can work in a coordinated manner and act as a group during missions. By employing related control strategies, the complex missions can be reduced to many simple sub-missions which are allocated to corresponding AUVs, each of which is responsible for its own sub-mission and exhibits the team work spirit. Through cooperation and coordination of multiple vehicles, many complex tasks can be conducted. Moreover, coordinated multiple AUVs have much more advantages than single AUV in many aspects, such as spatial distribution, function distribution and higher reliability.
     Due to the special undersea environment, the existing research on coordination and cooperation of multiple AUVs is much more immature compared with those works for land and air vehicles. In this dissertation, the coordinated operation of multiple AUVs has been studied through theory analysis and numerical simulations, the following efforts have been made in this work, including:
     1. The modeling and controlling of a single AUV in six degrees-of-free (DOFs). To guarantee the reliability and safety of the system, an overall analysis of the performance of a single AUV is necessary since the coordinated system is based on single vehicles. The existing modeling of marine vehicles in six-DOFs is mainly based on Euler angles which has representation singularities for a pitch angle of positive/negative ninety degrees. To avoid singularities inherently in Euler angle representation, quaternion representation is adopted in dynamic modeling.
     2. Cooperative path planning for multiple vehicles. During the exploration, the path of an AUV consists of finite sequence of waypoints which are defined a prior. It is desirable to obtain an optimal route due to the limited onboard power. Enumeration or permutation can be applied to find optimal paths for limited waypoints, but they are computationally expensive for large scale of waypoints. The efficient intelligent methods, e.g. genetic algorithm and ant colony algorithm, have been utilized to solve the combinational optimization problem in this work. The proposed path planning algorithm consists of three phases: 1) waypoint assignment: allocating the waypoints to individual AUVs; 2) route optimization: minimizing the total journey of all vehicles by heuristic methods involved in the Traveling Salesman Problem (TSP); 3) route validation: checking if there exists static or moving potential collisions.
     3. Formation control of multiple AUVs. It is significant for a group of vehicles to maintain certain formation from initial location to a specified destination within an unknown environment. It is believed that such a formation may improve the safety and efficiency of the group. Since there exists possible failure of Leader in the conventional Leader-Follower method, an alternative, Virtual Leader method, is presented in this paper to improve the Leader-Follower method. In this method, the interactions between vehicles are based on artificial potentials. Since the potential force is not continuous for conventional function-based artificial potentials, a fuzzy-logic-based artificial potential, which deals with input and output variables of fuzzy logic controller through membership functions and fuzzy rules, is proposed to generate continuous potential forces.
     4. Coverage control of multiple AUVs. Suppose a group of initially clustered AUVs, which equipped with sensors for measuring and communicating, are exploring a certain ocean region. In order to optimize the exploring performance, it is desirable to distribute the vehicles according to certain density function. The control law minimizes the locational optimization function, which defines coverage quality, and ultimately drives a group of vehicles to form centroidal Voronoi tessellations (CVT) over the given area with a prescribed geometric pattern, e.g. uniform, circular and Gaussian styles. It is of great important to design a proper penalty coefficient for non-uniform density distribution areas since an improper coefficient would result in unexpected vehicle trajectories. Therefore, a continuous linear penalty coefficient, i.e. penalty function, is utilized in density function to achive the desired distribution.
引文
[1] Joel E. Cohen, Christopher Small, Andrew Mellinger, John Gallup, Jeffrey Sachs, Peter M. Vitousek, Harold A. Mooney. Estimates of Coastal Populations. Science, 1997. 278(5341): p.1209-1213.
    [2] A.N. Shepard. Applications of human occupied vehicles at hydrocarbon seeps and vents in the Gulf of Mexico. Oceans Conference Record (IEEE). 2001. p.799-806.
    [3] Christopher Hillenbrand. UUV science & technology trends. Sea Technology, 1997. 38(12): p.10-13,15.
    [4] David M Graham. Deep Sea Systems International: ROV systems trend leader. Sea Technology, 1998. 39(12): p.65-70.
    [5] Jon E. Refsnes, Asgeir J. Sorensen. Design of control system of torpedo shaped ROV with experimental results. Ocean '04 - MTS/IEEE Techno-Ocean '04: Bridges across the Oceans. 2004. p.264-270.
    [6] Hidehiko Nakajoh, Takashi Murashima, Hiroshi Yoshida. 7000m operable deep-sea ROV system, "KAIKO7000". Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering. 2005. p.759-766.
    [7] Robert A. George, Jih-Ping Shuy, Eric Cauquil. Deepwater AUV logs 25,000 kilometers under the sea. Sea Technology, 2003. 44(12): p.10-15.
    [8] J. Yuh. Design and control of autonomous underwater robots: A survey. Autonomous Robots, 2000. 8(1): p.7-24.
    [9] Jason Evans, Meyer Nahon. Dynamics modeling and performance evaluation of an autonomous underwater vehicle. Ocean Engineering, 2004. 31(14-15): p.1835-1858.
    [10]封锡盛,刘永宽.自治水下机器人研究开发的现状和趋势.高技术通讯, 1999. 9(9): p.55-59.
    [11] Samuel M. Smith, Stanley E. Dunn, Thomas L. Hopkins, K. Heeb, T. Pantelakis. Application of a modular AUV to coastal oceanography: case study on the ocean explorer. Oceans Conference Record (IEEE). 1995. p.1423-1432.
    [12] Ian Stevenson, Paul Nicholson, Annitta Attieh, Clayton Summers. Ultra-high resolution seabed mapping using an AUV. Sea Technology, 2002. 43(8): p.40-45.
    [13] A. Martins, J.M. Almeida, E. Silva. Coordinated maneuver for gradient search using multiple AUVs. Oceans Conference Record (IEEE). 2003. p.347-352.
    [14]徐东.多机器人系统的关键技术研究.应用科技, 2004. 31(7): p.37-39.
    [15] Ranjith R, Rajeev U P, Dinesh Pai A. A Decentralized Guidance Strategy for Multi-Aircrafts Flight Formation. Proceedings of the International Conference on Advances in Control and Optimization of Dynamical Systems (ACODS2007). 2007. p.443-446.
    [16] Yanli Yang, Ali A. Minai, Marios M. Polycarpou. Evidential map-building approaches for multi-UAV cooperative search. Proceedings of the 2005 American Control Conference, ACC. 2005. p.116-121.
    [17] David W. Casbeer, Randal W. Beard, Timothy W. McLain, Sai-Ming Li, Raman K. Mehra. Forest fire monitoring with multiple small UAVs. Proceedings of the 2005 American Control Conference, ACC. 2005. p.3530-3535.
    [18] Mauricio Castillo-Effen, Wendy Alvis, Carlos Castillo, Wilfrido A. Moreno, Kimon P. Valavanis. Modeling and visualization of multiple autonomous heterogeneous vehicles. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics. 2005. p.2001-2007.
    [19] P.B. Sujit, D. Ghose. Multiple UAV search using agent based negotiation scheme. Proceedings of the American Control Conference. 2005. p.2995-3000.
    [20] J.J. Enright, E. Frazzoli, K. Savla, F. Bullo. On multiple UAV routing with stochastic targets: Performance bounds and algorithms. Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference. 2005. p.113-127.
    [21] Tal Shima, Steven J. Rasmussen, Andrew G. Sparks. UAV cooperative multiple task assignments using genetic algorithms. Proceedings of the 2005 American Control Conference, ACC. 2005. p.2989-2994.
    [22] Thomas Lemaire, Rachid Alami, Simon Lacroix. A distributed tasks allocation scheme in multi-UAV context. Proceedings - 2004 IEEE International Conference on Robotics and Automation. 2004. p.3622-3627.
    [23] Tomonari Furukawa, Frederic Bourgault, Hugh F. Durrant-Whyte, Gamini Dissanayake. Dynamic allocation and control of coordinated UAVs to engage multiple targets in a time-optimal manner. Proceedings - 2004 IEEE International Conference on Robotics and Automation. 2004. p.2353-2358.
    [24] Dario Bauso, Laura Giarre, Raffaele Pesenti. Multiple UAV cooperative path planning via neuro-dynamic programming. Proceedings of the IEEE Conference on Decision and Control. 2004. p.1087-1092.
    [25] Frank Roberts, Ted Ferrazano. Multiple Unmanned Aerial Vehicle (UAV) experimentation: Forward look. AIAA 3rd "Unmanned-Unlimited" Technical Conference, Workshop, and Exhibit. 2004. p.942-953.
    [26] Allison Ryan, Marco Zennaro, Adam Howell, Raja Sengupta, J. Karl Hedrick. An overview of emerging results in cooperative UAV control. Proceedings of the IEEE Conference on Decision and Control. 2004. p.602-607.
    [27] Christiane N. Duarte, Gerald R. Martel, Eugene Eberbach, Christine Buzzell. Talk amongst yourselves: Getting multiple autonomous vehicles to cooperate. 2004 IEEE/OES Autonomous Underwater Vehicles. 2004. p.96-101.
    [28] Randal W. Beard, Timothy W. McLain. Multiple UAV Cooperative Search under Collision Avoidance and Limited Range Communication Constraints. Proceedings of the IEEE Conference on Decision and Control. 2003. p.25-30.
    [29] Yongxing Hao, Benjamin Laxton, Sunil K. Agrawal, Edward Lee, Eric Benson. Planning and control of UGV formations in a dynamic environment: A practical framework with experiments. Proceedings - IEEE International Conference on Robotics and Automation. 2003. p.1209-1214.
    [30] Matthew Flint, Marios Polycarpou, Emmanuel Fernandez-Gaucherand. Cooperative control for multiple autonomous UAV's searching for targets. Proceedings of the IEEE Conference on Decision and Control. 2002. p.2823-2828.
    [31] Steven J. Rasmussen, Phillip R. Chandler. MultiUAV: A multiple UAV simulation for investigation of cooperative control. Winter Simulation Conference Proceedings. 2002. p.869-877.
    [32] Joao Borges De Sousa, Fernando Lobo Pereira. Specification and design of coordinated motions for autonomous vehicles. Proceedings of the IEEE Conference on Decision and Control. 2002. p.101-106.
    [33] Brian Yamauchi. Decentralized coordination for multirobot exploration. Robotics and Autonomous Systems, 1999. 29(2): p.111-118.
    [34] Anouck Renee Girard, Joao Borges De Sousa, J. Karl Hedrick. An overview of emerging results in networked multi-vehicle systems. Proceedings of the IEEE Conference on Decision and Control. 2001. p.1485-1490.
    [35] J S Albus, D.R. Blidberg. A Control System Architecture for Multiple Autonomous Undersea Vehicles (MAUV). Proceedings of the Fifth International Symposium on Unmanned, Untethered Submersible Technology. 1987. p.444-466.
    [36] Martin Herman, James S. Albus. Overview of the Multiple Autonomous Underwater Vehicles (MAUV) Project. IEEE Journal of Oceanic Engineering, 1988. p.618-620.
    [37] J S Albus: System Description and Design Architecture for Multiple Autonomous Underwater Vehicles. In NIST Technical Note 1251. 1988
    [26] Allison Ryan, Marco Zennaro, Adam Howell, Raja Sengupta, J. Karl Hedrick. An overview of emerging results in cooperative UAV control. Proceedings of the IEEE Conference on Decision and Control. 2004. p.602-607.
    [27] Christiane N. Duarte, Gerald R. Martel, Eugene Eberbach, Christine Buzzell. Talk amongst yourselves: Getting multiple autonomous vehicles to cooperate. 2004 IEEE/OES Autonomous Underwater Vehicles. 2004. p.96-101.
    [28] Randal W. Beard, Timothy W. McLain. Multiple UAV Cooperative Search under Collision Avoidance and Limited Range Communication Constraints. Proceedings of the IEEE Conference on Decision and Control. 2003. p.25-30.
    [29] Yongxing Hao, Benjamin Laxton, Sunil K. Agrawal, Edward Lee, Eric Benson. Planning and control of UGV formations in a dynamic environment: A practical framework with experiments. Proceedings - IEEE International Conference on Robotics and Automation. 2003. p.1209-1214.
    [30] Matthew Flint, Marios Polycarpou, Emmanuel Fernandez-Gaucherand. Cooperative control for multiple autonomous UAV's searching for targets. Proceedings of the IEEE Conference on Decision and Control. 2002. p.2823-2828.
    [31] Steven J. Rasmussen, Phillip R. Chandler. MultiUAV: A multiple UAV simulation for investigation of cooperative control. Winter Simulation Conference Proceedings. 2002. p.869-877.
    [32] Joao Borges De Sousa, Fernando Lobo Pereira. Specification and design of coordinated motions for autonomous vehicles. Proceedings of the IEEE Conference on Decision and Control. 2002. p.101-106.
    [33] Brian Yamauchi. Decentralized coordination for multirobot exploration. Robotics and Autonomous Systems, 1999. 29(2): p.111-118.
    [34] Anouck Renee Girard, Joao Borges De Sousa, J. Karl Hedrick. An overview of emerging results in networked multi-vehicle systems. Proceedings of the IEEE Conference on Decision and Control. 2001. p.1485-1490.
    [35] J S Albus, D.R. Blidberg. A Control System Architecture for Multiple Autonomous Undersea Vehicles (MAUV). Proceedings of the Fifth International Symposium on Unmanned, Untethered Submersible Technology. 1987. p.444-466.
    [36] Martin Herman, James S. Albus. Overview of the Multiple Autonomous Underwater Vehicles (MAUV) Project. IEEE Journal of Oceanic Engineering, 1988. p.618-620.
    [37] J S Albus: System Description and Design Architecture for Multiple Autonomous Underwater Vehicles. In NIST Technical Note 1251. 1988
    [53] Maja J. Mataric. Issues and approaches in the design of collective autonomous agents. Robotics and Autonomous Systems, 1995. 16(2-4): p.321-331.
    [54] T. Curtin, J. Bellingham, J. Catipovic, D. Webb. Autonomous ocean sampling networks. Oceanography, 1993. 6(3): p.86-94.
    [55] Mathieu Kemp, Andrea L. Bertozzi, Daniel Marthaler. Multi-UUV perimeter surveillance. IEEE/OES Autonomous Underwater Vehicles. 2004. p.102-107.
    [56] J.R. Edwards. Real-time classification of buried targets with teams of unmanned vehicles. Oceans Conference Record (IEEE). 2002. p.316-319.
    [57] C. W. Warren. A technique for autonomous underwater vehicle route planning. Proceedings of the Symposium on Autonomous Underwater Vehicle Technology. 1990. p.201-205.
    [58] C. Vasudevan, K. Ganesan. Case-based path planning for autonomous underwater vehicles. IEEE International Symposium on Intelligent Control - Proceedings. 1994. p.160-165.
    [59] E. Rippel, A. Bar-Gill, N. Shimkin. Fast graph-search algorithms for general-aviation flight trajectory generation. Journal of Guidance, Control, and Dynamics, 2005. 28(4): p.801-811.
    [60] Jason R. Stack, Cheryl M. Smith, John C. Hyland. Efficient reacquisition path planning for multiple autonomous underwater vehicles. Ocean '04 - MTS/IEEE Techno-Ocean '04: Bridges across the Oceans - Conference Proceedings. 2004. p.1564-1569.
    [61] D.B. Fogel, L.J. Fogel. Optimal routing of multiple autonomous underwater vehicles through evolutionary programming. Proceedings of the Symposium on Autonomous Underwater Vehicle Technology. 1990. p.44-47.
    [62] Shin Kato, Sakae Nishiyama, Jun'ichi Takeno. Coordinating Mobile Robots by Applying Traffic Rules. Proc. of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems. 1992. p.1535-1541.
    [63] D.B. Edwards, T.A. Bean, D.L. Odell, M.J. Anderson. A leader-follower algorithm for multiple AUV formations. 2004 IEEE/OES Autonomous Underwater Vehicles. 2004. p.40-46.
    [64] J. Shao, G. Xie, L. Wang. Leader-following formation control of multiple mobile vehicles. IET Control Theory and Applications, 2007. 1(2): p.545-552.
    [65] T. Balch, R.C. Arkin. Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 1998. 14(6): p.926-939.
    [66]张磊,秦元庆,孙德宝,肖俊.基于行为的多机器人任意队形的控制.控制工程, 2005. 12(2): p.174-176.
    [67] M. Anthony Lewis, Kar-Han Tan. High precision formation control of mobile robots using virtual structures. Autonomous Robots, 1997. 4(4): p.387-403.
    [68] Bruno Jouvencel, Vincent Creuze, Philippe Baccou. A new method for multiple AUV coordination a reactive approach. IEEE Symposium on Emerging Technologies and Factory Automation, ETFA. 2001. p.51-55.
    [69] Naomi Ehrich Leonard, Edward Fiorelli. Virtual leaders, artificial potentials and coordinated control of groups. Proceedings of the IEEE Conference on Decision and Control. 2001. p.2968-2973.
    [70] Troy R. Smith, Heinz Hanssmann, Naomi Ehrich Leonard. Orientation control of multiple underwater vehicles with symmetry-breaking potentials. Proceedings of the IEEE Conference on Decision and Control. 2001. p.4598-4603.
    [71]任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法.软件学报, 2006. 17(3): p.422.
    [72] Atsuyuki Okabe, Atsuo Suzuki. Locational optimization problems solved through Voronoi diagrams. European Journal of Operational Research, 1997. 98(3): p.445-456.
    [73] Qiang Du, Vance Faber, Max Gunzburger. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review, 1999. 41(4): p.637-676.
    [74] Jorge Cortes, Sonia Martinez, Timur Karatas, Francesco Bullo. Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 2004. 20(2): p.243-255.
    [75] Ian F. Akyildiz, Dario Pompili, Tommaso Melodia. Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 2005. 3(3): p.257-279.
    [76] Jun-Hong Cui, Jiejun Kong, Mario Gerla, Shengli Zhou. The challenges of building scalable mobile underwater wireless sensor networks for aquatic applications. IEEE Network, 2006. 20(3): p.12-18.
    [77] Petter Ogren, Edward Fiorelli, Naomi Ehrich Leonard. Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Transactions on Automatic Control, 2004. 49(8): p.1292-1302.
    [78] http://blogs.zdnet.com/emergingtech/?p=310.
    [79] Dan O. Popa, Arthur C. Sanderson, Rick J. Komerska, Sai S. Mupparapu, D. Richard Blidberg, Steven G. Chappel. Adaptive sampling algorithms for multiple autonomous underwater vehicles. 2004 IEEE/OES Autonomous Underwater Vehicles. 2004. p.108-118.
    [80] Edward Fiorelli, Naomi Ehrich Leonard, Pradeep Bhatta, Derek Paley, Ralf Bachmayer, David M. Fratantoni. Multi-AUV control and adaptive sampling in monterey bay. 2004 IEEE/OES Autonomous Underwater Vehicles. 2004. p.134-147.
    [81] Edward Fiorelli, Pradeep Bhatta, Naomi Ehrich Leonard. Adaptive Sampling Using Feedback Control of an Autonomous Underwater Glider Fleet. Proc. 13th Int. Symp. on Unmanned Untethered Submersible Technology (UUST). 2003.
    [82] Mathieu Kemp, Brett Hobson, Jim Meyer, Ryan Moody, Heather Pinnix, Bryan Schulz. MASA: A multi-AUV underwater search and data acquisition system. Oceans Conference Record (IEEE). 2002. p.311-315.
    [83] M. Stojanovic, L. Freitag, J. Leonard, P. Newman. A network protocol for multiple AUV localization. Oceans Conference Record (IEEE). 2002. p.604-611.
    [84] Charles Benton, James Kenney, Robert Nitzel, D. Richard Blidberg, Steve Chappell, Sai Mupparapu. Autonomous undersea systems network (AUSNet) - Protocols to support ad-hoc AUV communications. 2004 IEEE/OES Autonomous Underwater Vehicles. 2004. p.83-87.
    [85] Ryo Kurazume, Shigeo Hirose. Experimental study of a Cooperative Positioning System. Autonomous Robots, 2000. 8(1): p.43-52.
    [86] Anibal Matos, Nuno Cruz, Alfredo Martins, Fernando Lobo Pereira. Development and implementation of a low-cost LBL navigation system for an AUV. Oceans Conference Record (IEEE). 1999. p.774-779.
    [87] P. Baccou, B. Jouvencel, V. Creuze, C. Rabaud. Cooperative positioning and navigation for multiple AUV operations. Oceans Conference Record (IEEE). 2001. p.1816-1821.
    [88] N. Cruz, L. Madureira, A. Matos, F.L. Pereira. A versatile acoustic beacon for navigation and remote tracking of multiple underwater vehicles. Oceans Conference Record (IEEE). 2001. p.1829-1834.
    [89] S.K. Choi, S.A. Menor, J. Yuh. Distributed Virtual Environment Collaborative Simulator for underwater robots. IEEE International Conference on Intelligent Robots and Systems. 2000. p.861-866.
    [90] Joao Borges de Sousa, Aleks Gollu. Simulation environment for the coordinated operation of multiple Autonomous Underwater Vehicles. Winter Simulation Conference Proceedings. 1997. p.1169-1175.
    [91] Christopher J. Cannell, Daniel J. Stilwell, Jay A. Austin. A simulation tool to support the development of adaptive sampling algorithms for multiple autonomous underwater vehicles. 2004 IEEE/OES Autonomous Underwater Vehicles. 2004. p.127-133.
    [92] Bryan Schulz, Brett Hobson, Mathieu Kemp, Jim Meyer, Ryan Moody, Heather Pinnix, Mathew St. Clair. Field results of multi-UUV missions using ranger micro-UUVS. Oceans Conference Record (IEEE). 2003. p.956-961.
    [93] Anthony J. Healey. Application of formation control for multi-vehicle robotic minesweeping. Proceedings of the IEEE Conference on Decision and Control. 2001. p.1497-1502.
    [94] Andrew G. Rajala, Dean B. Edwards, Michael O'Rourke. Collaborative behavior for Vehicle replacement in AUV formations. Proceedings of the ASME Dynamic Systems and Control Division 2005. 2005. p.141-149.
    [95] Ratnesh Kumar, James A. Stover. Behavior-based intelligent control architecture with application to coordination of multiple underwater vehicles. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans, 2000 30(6): p.767-784.
    [96]尚游,徐玉如.多水下机器人的协调规划策略研究.哈尔滨工程大学学报, 1999. 20(4): p.8-13.
    [97]常文君,由光鑫,庞永杰,徐玉如.基于混合体系结构的多水下机器人协调控制体系.中国海洋平台, 2002. 17(3): p.12-16.
    [98] MENG Xian-song, XU Hong-gen, ZHANG Ming-jun. Research on framework for formation control of multiple underwater robots in a dynamic environment. Journal of Marine Science and Application, 2004. 3(2).
    [99] Satoshi Endo, Koichi Suzumori, Takefumi Kanda, Naomi Kato, Hiroyoshi Suzuki, Yoshito Ando. Flexible and functional pectoral fin actuator for underwater robots. Proceedings of the SICE Annual Conference, SICE 2005 Annual Conference in Okayama. 2005. p.3838-3841.
    [100] Jenhwa Guo, Yung-Jyi Joeng. Guidance and control of a biomimetic autonomous underwater vehicle using body-fin propulsion. Journal of Engineering for the Maritime Environment, 2004. 218(3): p.93-111.
    [101] Forng-Chen Chiu, Chi-Kang Chen, Jenhwa Guo. A practical method for simulating pectoral fin locomotion of a biomimetic autonomous underwater vehicle. Proceedings of the 2004 International Symposium on Underwater Technology, UT'04. 2004. p.323-329.
    [1] SNAME: Nomenclature for treating the motion of a submerged body through a fluid. In Technical and Research Bulletin. The society of naval architects and marine engineers, 1950.
    [2] Thor I. Fossen. Guidance and Control of Ocean Vehicles. Chichester: JOHN WILEY & SONS, 1994.
    [3] Sheppard S W. Quaternion from rotation matrix. Journal of Guidance and Control, 1978. 1(3): p.223-224.
    [4] Z feng, R Allen: Modelling of Subzero II. In ISVR Technical Memorandum 880. 2001:3-10.
    [5]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科学技术出版社, 2000.
    [6]朱继懋.潜水器设计.上海:上海交通大学出版社, 1992.
    [7] S. Miyamoto, T. Aoki, T. Maeda, K. Hirokawa, T. Ichikawa, T. Saitou, H. Kobayashi, E. Kobayashi, S. Iwasaki. Maneuvering control system design for autonomous underwater vehicle. Oceans Conference Record (IEEE). 2001. p.482-489.
    [8] Li-Rong Wang, Jian-Chen Liu, Hua-Nan Yu, Yu-Ru Xu. Sliding mode control of an autonomous underwater vehicle. Proceedings of 2002 International Conference on Machine Learning and Cybernetics. 2002. p.247-251.
    [9] Thor I. Fossen, Svein I. Sagatun. Adaptive control of nonlinear underwater robotic systems. IEEE International Conference on Robotics and Automation. 1991. p.1687-1694.
    [10] S.M. Smith, G.J.S. Rae, D.T. Anderson, A.M. Shein. Fuzzy logic control of an autonomous underwater vehicle. Control Engineering Practice, 1994. 2(2): p.321-331.
    [11] S.M. Smith, G.J.S. Rae, D.T. Anderson. Applications of fuzzy logic to the control of an autonomous underwater vehicle. IEEE International Conference on Fuzzy Systems. 1993. p.1099-1106.
    [12] Xiangming Feng, He Tian, David Y.Y. Yun. Autonomous underwater vehicle control by neural network. Intelligent Engineering Systems Through Artificial Neural Networks, 1992. 2(p.649-654.
    [13] Junku Yuh. Neural net controller for underwater robotic vehicles. IEEE Journal of Oceanic Engineering, 1990. 15(3): p.161-166.
    [14] J. Golten, A. Verwer. Control System Design and Simulation. McGraw-Hill, 1991.
    [15] Katsuhiko Ogata. Modern Control Engineering, 2nd ed.: Prentice Hall, 1990.
    [16] Lofti A. Zadeh. Fuzzy Logic. Computer 1988. 21(4): p.83-93.
    [17] Jia-Xin Chen, Wei Li. Application of fuzzy control PID algorithm in temperaturecontrolling systems. International Conference on Machine Learning and Cybernetics, 2003. 4): p.2601-2604.
    [18] T.R. Rangaswamy, J. Shanmugam, K.P. Source: Control and Intelligent Systems Mohammed, v 33, n 1, 2005, p 63-71. Adaptive fuzzy tuned PID controller for combustion of utility boiler. Control and Intelligent Systems, 2005. 33(1): p.63-71.
    [19] Junyou Yang, Rongbin Sun, Jiefan Cui, Xinping Ding. Application of composite fuzzy-PID algorithm to suspension system of maglev train. IECON 2004 - 30th Annual Conference of IEEE Industrial Eelctronics Society. 2004. p.2502-2505.
    [20] Shou-yuan Zhang, Li-hong Li. Study of fuzzy adjustment of PID control parameters in dynamic process. Kuangye Gongcheng/Mining and Metallurgical Engineering, 2000. 20(2): p.22-24.
    [1] C. W. Warren. A technique for autonomous underwater vehicle route planning. Proceedings of the Symposium on Autonomous Underwater Vehicle Technology. 1990. p.201-205.
    [2] C. Vasudevan, K. Ganesan. Case-based path planning for autonomous underwater vehicles. IEEE International Symposium on Intelligent Control - Proceedings. 1994. p.160-165.
    [3] E. Rippel, A. Bar-Gill, N. Shimkin. Fast graph-search algorithms for general-aviation flight trajectory generation. Journal of Guidance, Control, and Dynamics, 2005. 28(4): p.801-811.
    [4] D.B. Fogel, L.J. Fogel. Optimal routing of multiple autonomous underwater vehicles through evolutionary programming. Proceedings of the Symposium on Autonomous Underwater Vehicle Technology. 1990. p.44-47.
    [5] J.R. Stack, C.M. Smith, J.C. Hyland. Efficient reacquisition path planning for multiple autonomous underwater vehicles. MTS/IEEE Techno-Ocean '04: Bridges across the Oceans. 2004. p.1564-1569.
    [6] J.Y. Potvin. Genetic algorithms for the traveling salesman problem. Annals of Operations Research, 1996. 63): p.339.
    [7] Marco Dorigo, Luca Maria Gambardella, Martin Middenorf, Thomas Stutzle. Guest editorial: Special section on ant colony optimization. IEEE Transactions on Evolutionary Computation, 2002. 6(4): p.317-320.
    [1]谭民,王硕,曹志强.多机器人系统.北京:清华大学出版社, 2005.
    [2] Aveek K. Das, Rafael Fierro, Vijay; Ostrowski Kumar, James P., John Spletzer, Camillo J. Taylor. A vision-based formation control framework. IEEE Transactions on Robotics and Automation, 2002. 18(5): p.813-825.
    [3] K.D. Do, J. Pan. Nonlinear formation control of unicycle-type mobile robots. Robotics and Autonomous Systems, 2007. 55(3): p.191-204.
    [4] Anouck R. Girard, J. Karl Hedrick. Formation control of multiple vehicles using dynamic surface control and hybrid systems. International Journal of Control, 2003. 76(9-10): p.913-923.
    [5] Tove Gustavi, Xiaoming Hu. Formation control for mobile robots with limited sensor information. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. 2005. p.1791-1796.
    [6] Xiaohai Li, Jizhong Xiao, Jindong Tan. Modeling and controller design for multiple mobile robots formation control. IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2004, Proceedings. 2004. p.838-843.
    [7] Shicai Liu, Dalong Tan, Guangjun Liu. Distributed formation control of robots with directive visual measurement. IEEE International Conference on Mechatronics and Automation, ICMA 2005. 2005. p.1760-1765.
    [8] J. Shao, G. Xie, L. Wang. Leader-following formation control of multiple mobile vehicles. IET Control Theory and Applications, 2007. 1(2): p.545-552.
    [9] T. Balch, R.C. Arkin. Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 1998. 14(6): p.926-939.
    [10] M. Anthony Lewis, Kar-Han Tan. High precision formation control of mobile robots using virtual structures. Autonomous Robots, 1997. 4(4): p.387-403.
    [11] W. Naeem, R. Sutton, S. M. Ahmad, R. S. Burns. A Review of Guidance Laws Applicable to Unmanned Underwater Vehicles. The Journal of Navigation, 2003. 56(1): p.15-29.
    [12] Xiaoping Wu, Zhengping Feng, Jimao Zhu, Robert Allen. Line of sight guidance with intelligent obstacle avoidance for autonomous underwater vehicles. Oceans'06 MTS/IEEE-Boston Conference and Exhibition. 2006. p.1-6.
    [13] L. Conradt, T.J. Roper. Group decision-making in animals. Nature, 2003. 421(6919): p.155-158.
    [14] Iain D. Couzin, Jens Krause, Nigel R. Franks, Simon A. Levin. Effective leadership and decision-making in animal groups on the move. Nature, 2005. 433(7025): p.513-516.
    [15] Shuzhi Sam Ge, Cheng-Heng Fua, Wei-Ming Liew. Swarm formations using the general formation potential function. 2004 IEEE Conference on Robotics, Automation and Mechatronics. 2004. p.655-660.
    [16] Dong Hun Kim, Hua Wang, Seiichi Shin. Decentralized control of autonomous swarm systems using artificial potential functions: Analytical design guidelines. Journal of Intelligent and Robotic Systems: Theory and Applications, 2006. 45(4): p.369-394.
    [17] Vincent Mirabet, Pierre Auger, Christophe Lett. Spatial structures in simulations of animal grouping. Ecological Modelling, 2007. 201(3-4): p.468-476.
    [18] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 1986. 5(1): p.90-98.
    [19] Naomi Ehrich Leonard, Edward Fiorelli. Virtual leaders, artificial potentials and coordinated control of groups. Proceedings of the IEEE Conference on Decision and Control. 2001. p.2968-2973.
    [20] Thor I. Fossen. Guidance and Control of Ocean Vehicles. Chichester: JOHN WILEY & SONS, 1994.
    [1] J. K. Parrish, S. V. Viscido, D. Grunbaum. Self-organized fish schools: an examination of emergent properties. Biological Bulletin, 2002. 202: p.296–305.
    [2] T. D. Seeley, S. C. Buhrman. Group decision-making in swarms of honey bees. Behavioral Ecology and Sociobiology, 1999. 45: p.19-31.
    [3] I. D. Couzin, J. Krause, N. R. Franks, S. A. Levin. Effective leadership and decision-making in animal groups on the move. Nature, 2005. 433: p.513–516.
    [4] L. Conradt, T. J. Roper. Group decision-making in animals. Nature, 2003. 421(p.155–158.
    [5] Jorge Cortes, Sonia Martinez, Timur Karatas, Francesco Bullo. Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 2004. 20(2): p.243-255.
    [6] M. Schwager, J. McLurkin, D. Rus. Distributed Coverage Control with Sensory Feedback for Networked Robots. Proceedings of Robotics: Science and Systems. 2006.
    [7] Scott D. Waun, Umit Ozguner. A coordination strategy for cooperative sensor network deception by autonomous vehicle teams. Proceedings of the IEEE Conference on Decision and Control (CDC). 2004. p.3370-3375.
    [8] Alvaro E. Gil, Kevin M. Passino, Sriram Ganapathy, Andrew Sparks. Cooperative Scheduling of Tasks for Networked Uninhabited Autonomous Vehicles. Proceedings of the IEEE Conference on Decision and Control. 2003. p.522-527.
    [9] Naomi Ehrich Leonard, Edward Fiorelli. Virtual leaders, artificial potentials and coordinated control of groups. Proceedings of the IEEE Conference on Decision and Control. 2001. p.2968-2973.
    [10] Qiang Du, Wang Xiaoqiang. Centroidal Voronoi tessellation based algorithms for vector fields visualization and segmentation. IEEE Visualization 2004 - Proceedings, VIS 2004. 2004. p.43-50.
    [11] N. Metropolis, S. Ulam. The Monte Carlo Method. Journal of the American Statistical Association, 1949. 44: p.335.
    [12] Jie Wu, Ivan Stojmenovic. Ad Hoc Networks. Computer, 2004. 37(2): p.29-31.
    [13] Franz Aurenhammer. Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure. ACM Computing Surveys, 1991. 23(3): p.345-405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700