水下无线传感器网络的部署研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业技术的飞速发展,能源需求的日益增加,海洋资源的开发逐渐成为海洋国家的焦点,水下无线传感器网络已引起各国政府、研究机构和企业的高度关注,它在军事作战、海洋数据采集,污染预测,远洋开采,海难避免,海洋监测等领域都有着广阔的应用前景。这些因素使得研制具有低成本、高可靠性能的水下无线传感器网络逐渐成为一个新的研究热点。
     节点部署是UWSN的基本问题,节点部署的方式影响了网络的构建成本、覆盖质量、拓扑结构和路由算法,是覆盖控制问题的基础。本文从提高能量效率的角度,研究了包括最少节点覆盖集和密度递减的节点部署和高能效的移动部署在内的若干问题,主要研究工作有:
     (1)最小节点覆盖集问题
     在UWSN中,节点被大量布撒在目标区域中。当所有节点处于工作状态时,可以完全覆盖目标区域,但是很多位置被重复覆盖,造成大量能量的浪费。本文针对上述情况,提出了水下无线传感器网络的最小节点覆盖集问题,目的是寻找满足覆盖率和节点个数要求的最小覆盖集。
     (2)针对能量空洞的密度递减部署
     能耗均衡问题是UWSN中重要的问题,是分析和解决覆盖控制问题的基础。针对UWSN中的能量空洞问题,本章基于传感器网络的数据收集特性,从提高能量效率,降低剩余能量的角度,提出了节点密度递减的随机部署方式。新部署机制减小了部署节点的密度,降低了搭建网络的硬件成本和剩余能量,提高了能量利用效率。
     (3)高能效的移动部署策略
     在区域覆盖问题中,假设自由分布的传感器节点是可移动的,推导了理想的最大覆盖效率的传感器节点分布。以此为基础,考虑无效移动、边界效应和最佳移动距离等因素,改进了虚拟力算法VFA,提出了高能效的虚拟力算法FVFA。仿真结果表明FVFA是一种简化的自组织算法,它能够有效地提高小规模的UWSN的覆盖率和覆盖效率。
     综上所述,本文针对能量高效的节点部署问题提出了相应的解决方案,对于推进水下无线传感器网络的研究和实用化具有一定的理论意义和应用价值。
With the rapid development of industry technology and growing requirement of energy, the exploitation of ocean resource has become a focus by relative countries. The UWSN has attracted the attention of governments, research institutions and companies because of its broad future application in the fields of military battle, ocean data acquisition, pollution prediction, ocean exploiting, sea-disaster avoiding and sea-state monitoring. These factors have gradually brought the low-cost and reliable UWSN to a new hot research topic.
     Deployment of the sensors is the basic issue of UWSN. The way of deployment is the foundation of the coverage management. It influences the building cost, coverage quality, topological structure and routing algorithm of the network. From the aspect of raising energy efficiency, this paper discusses several problems including the minimum sensors coverage set, the density-decreasing sensors deployment, and the high efficiency mobile deployment. The main work is as follows:
     (1) The problem of the minimum sensors coverage set
     The sensors in UWSN are broadly deployed in the target area. They can surely cover the whole area when they’re all working. But the multiple coverage in some places cause a great waste of energy. According to the situation, the problem of the minimum node coverage set is raised in this paper, in order to find a minimum coverage set that satisfies the requirement of coverage rate and number of sensors.
     (2)The density-decreasing deployment against the energy hole
     Energy equalization is an important issue in UWSN. It’s a basic to the analyzing and solving of coverage management. For this issue, based on the data acquisition characteristic of the networks, the density-decreasing deployment that can improve energy efficiency and eliminate the rest energy is given in this thesis. The deployment reduces the density of deployed nodes, decreases the hardware cost and rest energy to construct the network, and raises the efficiency of energy.
     (3)The high efficiency mobile deployment strategy
     Suppose that the free-distributed sensor nodes are movable in area coverage, the ideal distribution of sensors with maximum coverage rate is deduced. Furthermore, the high efficiency virtual force algorithm FVFA - an improved algorithm of VFA - is raised, considering the factors of useless movement, boundary effect, and optimal moving distance and so on. The simulation suggests the FVFA is a simplified self-recognized algorithm, which can efficiently increase the coverage rate and coverage efficient of the small-scale UWSN.
     In summary, this dissertation gives the solution to the problem of high energy efficiency node deployment. It has significant theoretical and practical value to improving the research and application of UWSN.
引文
[1]郭忠文,罗汉江,等.水下无线传感器网络的研究进展[J].计算机研究与进展,2010,47(3):377-389.
    [2]王静,陈建峰,张立杰,等.水下无线传感器网络[J].声学技术,2009,28(1):89-95.
    [3]胡荣春.无线传感嚣网络中的节点定位方法研究[D].中国科学技术大学,2007,5.
    [4]王焱欣.无线传感器网络中的自定位研究[D].中国科学技术大学,2007,5.
    [5]孙利民,李建中,陈渝,等.无线传感器网络[M].清华大学出版社,2005,135-155.
    [6] Cao Y T, He C, Jiang L. A distributed virtual backbone formation for wireless Ad Hoc and sensor networks[J]. Journal of Shanghai Jiaotong University(Science), 2007, E-12(1):23-28.
    [7] Cai W Y, Jin X Y, Zhang Y, et a1. A load-balanced minimum energy routing algorithm for wireless Ad Hoc sensor network[J]. Journal of Zhejiang University SCIENCE A, 2006, 7(4):502-506.
    [8] Wang Y F, Wang W D. A novel interest coverage method based Jensen-Shannon divergence in sensor networks[J]. Journal of Electronics(China), July 2007, 24(4):484-489.
    [9] Zhang S, Lu Q N, Zhang Z, et a1. Low-energy routing based on ant colony algorithm genetic algorithm in wireless sensor networks[J]. Proc. Of SPIE, 2006, 6357. 635756(1-8).
    [10] Zhu Q M, Aldridge S L, Resha T N. Hierarchical collective agent network (HCAN) for efficient fusion and management of multiple networked sensors[J]. Information Fusion, 2007, 8(3):266-280.
    [11] Chaffey M, Bird L, Erickson J, et a1. MBARI’s buoy based seafloor observatory design[C]. MTTS/ IEEE Techno-Ocean’04, 9-12 NOV.2004, 4:1975-1984.
    [12] O’Reilly T, Herlien R A., et a1. Satellite link management for an ocean observing network[C]. MTS 2007.
    [13] Paul W, Chaffey M, et a1. The use of snubbers as strain limiters in ocean moorings[C]. Proceedings of MTS/IEEE, September 2005.
    [14] Hamilton A, Chaffey M. Use of an electro-optical-mechanical mooting cable for oceanographic buoys: Modeling and validation[C]. 2005 24th International Conference on Offshore Mechanics and Arctic Engineering, 2005:12-16.
    [15] Colett L J, Fitzwater S E. Wireless network allows monitoring of a dynamic coastal resource. Monterey bay aquarium research institute[R].
    [16] Chan T, Liu C C, Howe B M, et a1. Optimization based load management for the NEPTUNE power system[C]. IEEE Power Engineering Society General Meeting. 2007:1-6.
    [17] Donnell J O, Codigal D, Edwards C, et a1. Front resolving observational network with telemetry(FRONT)[J]. A National Oceanographic Partnership Program Award, Award Number: N00014-99-1-1020.
    [18]范高俊.无线传感器网络覆盖性能评估与提高[D].长沙:国防科技大学, 2009,9.
    [19]温俊.能量高效的无线传感器网络覆盖控制研究技术[D].长沙:国防科技大学,2009,4.
    [20] Chakrabarty K, Iyengar S S, Qi H, Cho E. Grid Coverage for Surveillance and Target Location in Distributed Sensor Networks [J]. IEEE Transactions on Computers, 2002(12): 1448~1453.
    [21] Harvard. Sensor Networks Lab. http://fiji.eecs.harvard.edu/Macroprogramming.
    [22] Rappaport T S. Wireless Communications: Principles and Practice [M]. New Jersey: Prentice Hall, 1996.
    [23] Zou Y, Chakraharty K. Sensor deployment and target localization in distributed sensor networks[J]. ACM Trans on Embedded Computing Systems. 2004, 3(1):61-91.
    [24] Zou Y, Chakrabarty K. Sensor Deployment and Target Localization Based on Virtual Forces[C]//Proc.of 2003 IEEE INFOCOM Conference. San Francisco, USA: [s. n.], 2003.
    [25] Hefeeda M and Ahmadi H. A Probabilistic Coverage Protocol for Wireless Sensor Networks, In Proc. of IEEE International Conference on Network Protocols (ICNP'07), Beijing, China, 2007.
    [26]陶丹.视频传感器网络覆盖控制及协作处理方法研究[D].北京:北京邮电大学计算机科学与技术学院,2007.
    [27] Ai J, Abouzeid A A. Coverage by Directional Sensors in Randomly Deployed Wireless Sensor Networks [J]. Journal of Combinatorial Optimization, 2006 (11): 21~41.
    [28] Wu Q, Rao N S V, Du X, et al. On Efficient Deployment of Sensors on Planar Grid [J]. Computer Communications, 2007 (30): 2721~2734.
    [29] Younis M, Akkaya K. Strategies and Techniques for Node Placement in Wireless Sensor Networks: A Survey [J]. Ad Hoc Networks, 2008(6): 621~655.
    [30] Wan P J, Yi C W. Coverage by Randomly Deployed Wireless Sensor Networks [J]. IEEE Transactions on Information Theory, 2006(6): 2658~2669.
    [31] Benyuan L, Peter B, Olivier D. Mobility improves coverage of sensor networks[J]//Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing, ACM Press,Urbana-Champaign, USA, 2005.
    [32] Zhong H, Jennifer H. On deriving the upper bound of a-lifetime for large sensor networks[J]. Proceedings of the 5th ACM international symposium on Mobile adhoc networking and computing, ACM, Roppongi Hills, Tokyo, Japan, 2004.
    [33] Liu B, Towsley D. A Study of the Coverage of Large-scale Sensor Networks[J]. The 1st IEEE International Conference on Mobile Ad-hoc and Sensor Systems, Fort Lauderdale, Florida, USA, 2004.
    [34] Howard A, Mataric M J, Sukhatme G S. Mobile Sensor Network Deployment using Potential Fields: A Distributed, Scalable Solution to the Area Coverage Problem[J]. Proceedings of the 6th International Conference on Distributed Autonomous Robotic Systems, Fukuoka, Japan, 2002, pp. 299-308.
    [35] Howard A, Mataric M J, Sukhatme G S. An Incremental Self-Deployment Algorithm for Mobile Sensor Networks[J]. Autonomous Robots, Special Issue on Intelligent Embedded Systems, 13 (2002), pp. 113-126.
    [36] Heo N, Varshney P K. A Distributed Self Spreading Algorithm for Mobile Wireless Sensor Networks[J]. Proceedings of IEEE Wireless Communications and Networking Conference(WCNC'03), Louisiana, USA, 2003.
    [37] Locateli M, Raber U. Packing Equal Circles in a Square: a Deterministic Global Optimization Approach[J].Discrete Applied Mathematics, 122 (2002).
    [38] Paola F, Giuseppe P, Nicola S. Self-deployment of mobile sensors on a ring[J]. Theoretical Computer Science, 402 (2008), pp. 67-80.
    [39] Poduri S, Sukhatme G S. Constrained Coverage for Mobile Sensor Networks[J]. Proceedings of IEEE International Conference on Robotics and Automation(ICRA'04), New Orleans, LA,USA, 2004.
    [40] Barrameda E M, Das S, Santoro N. Deployment of asynchronous robotic sensors in unknown orthogonal environments[J]. Proceedings of 4th International Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSOR'08), 2008.
    [41] Chen X, Jiang Z, Wu J. Mobility control schemes with quick convergence in wireless sensor networks[J].IEEE International Symposium on Parallel and Distributed Processing(IPDPS 2008), Miami, Florida,USA, 2008, pp. 1-7.
    [42] Wu J, Yang S.SMART: A Scan-Based Movement Assisted Sensor Deployment Method in Wireless Sensor Networks[J].Proceedings of IEEE INFOCOM, Miami, 2005.
    [43] Guiling W, Guo H C, La P T. A Bidding Protocol for Deploying Mobile Sensors[J].Proceedings of the 11th IEEE International Conference on Network Protocols, IEEE Computer Society, 2003.
    [44] Wang G, Cao G, Porta T L. Proxy-based Sensor Deployment for Mobile Sensor Networks[J].Proceedings of the 1st IEEE International Conference on Mobile Ad-hoc and Sensor Systems(MASS'04), Fort Lauderdale, Florida, 2004.
    [45] Wang G, Cao G, Porta T L. Movement-Assisted Sensor Deployment[C]//Proceedings of IEEE INFOCOM’04, HongKong, 2004.
    [46] Joeng M H., David H C D., Ewa K. Energy Efficient Organization of Mobile Sensor Networks[J].Proceedings of the 2004 International Conference on Parallel Processing Workshops, IEEE Computer Society, Montreal,Quebec,Canada, 2004.
    [47] Jiang Z, Wu J, Kline R, Krantz J.Mobility Control for Complete Coverage in Wireless Sensor Networks[J].The 28th International Conference on Distributed Computing Systems Workshops(ICDCS'08) Beijing,China, 2008, pp. 291-296.
    [48] Jiang Z, Wu J, Agah A, Lu B.Topology Control for Secured Coverage in Wireless Sensor Networks[J].IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems( MASS 2007) Pisa,Italy, 2007, pp. 1-6.
    [49] Cortes J, Martinez S, Karatas T, Bullo F. Coverage Control for Mobile Sensing Networks [J]. IEEE Transaction on Robotics and Automation, 2004(2): 243~255.
    [50] Zhou Z H, Samir D, Gupta H. Connected K-Coverage Problem in Sensor Networks [C] //Proceedings of the Thirteenth International Conference on Computer Communications and Networks (ICCCN). Dallas: IEEE Computer Society, 2003: 373-378.
    [51] Huang C F, Tseng Y C. The Coverage Problem in a Wireless Sensor Network [C] //Proceedings of the ACM International Workshop on Wireless Sensor Networks and Applications (WSNA), San Diego: ACM Press, 2003: 115-121.
    [52] Zhang H, Hou J. On Deriving the Upper Bound ofα-Lifetime for Large Sensor Networks [C] // Charles E P, Tassiulas L (Eds.). The ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Tokyo: ACM Press, 2004: 121-132.
    [53] Kumar S, Lai T H, Balogh J. On K-Coverage in A Mostly Sleeping Sensor Network [C] // Zygmunt J H, Samir R D, Ravi J (Eds.). The Tenth International Conference on Mobile Computing and Networking (MobiCom), Philadelphia: ACM Press, 2004: 144-158.
    [54] Wan P J, Yi C W. Coverage by Randomly Deployed Wireless Sensor Networks [J]. IEEE Transactions on Information Theory, 2006(6): 2658-2669.
    [55] Liu B, Brass P, Dousse O. Mobility Improves Coverage of Sensor Networks [C] // Kumar P R, Campbell A T, Wattenhofer R (Eds.). The ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Illinois: ACM Press, 2005: 300-308.
    [56] Cardei M, Du D Z..Improving Wireless Sensor Network Lifetime through Power Aware Organization[J]. ACM Wireless Networks, 2005: 333-340.
    [57] Cardei M. Energy-efficient target coverage in wireless sensor networks[J]. In IEEE Infocom (2005).
    [58] Lu M, Wu J, Cardei M, Li M. Energy-Efficient Connected Coverage of DiscreteTargets in Wireless Sensor Networks[J].International Conference on Computer Networks and Mobile Computing, 2005.
    [59] Sen A, Das N, Zhou L, Shen B, Murthy S. Coverage Problem for Sensors Embedded in Temperature Sensitive Environments[J].Dept. of Computer Science and Engineering, Arizona State University, 2006.
    [60] Kar K, Banerjee S. Node Placement for Connected Coverage in Sensor Networks [C] // Proceedings of International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2003.
    [61] Meguerdichian S, Koushanfar F, Potkonjak M, Srivastava M B. Coverage Problems in Wireless Ad-Hoc Sensor Network [C] // The IEEE Conference on Computer Communications (INFOCOM), Anchorage: IEEE Computer Society, 2001: 1380-1387.
    [62] Meguerdichian S, Koushanfar F, Potkonjak M. Worst and Best-Case coverage in Sensor Networks [J]. IEEE Transactions on Mobile Computing, 2005(1): 84~92.
    [63] Kumar S, Lai T H, Arora A. Barrier Coverage With Wireless Sensors[J].n Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking (ACM MobiCom), Cologne, Germany, 2005, pp. 284-298.
    [64] Ai C, Santosh K, Ten H L. Designing localized algorithms for barrier coverage[J]. Proceedings of the 13th annual ACM international conference on Mobile computing and networking, ACM, Montréal, Québec, Canada, 2007.
    [65] Ben Y L, Olivier D, Jie W, Anwar S. Strong barrier coverage of wireless sensor networks[J].Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and computing, ACM, Hong Kong, China, 2008.
    [66] Balister P, Bollobas B, Sarkar A, Kumar S. Reliable Density Estimates for Achieving Coverage and Connectivity in Thin Strips of Finite Length[J].In Proceedings of the 13th Annual International Conference on Mobile Computing and Networking (ACM MobiCom), Montreal, Canada, 2007.
    [67] Kershner R. The Number of Circles Covering a Set[J]. American Journal of Mathematics. 61 (1939):665-671.
    [68] Zhang H H, Hou C J. Maintaining sensing coverage and connectivity in large sensor networks[J]. Wireless Ad Hoc and Sensor Networks,2005,1(1-2):89-123.
    [69] Rajagopal I, Koushik K, Suman B.Low-coordination topologies for redundancy in sensor networks, Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing, ACM, Urbana-Champaign, IL, USA, 2005.
    [70] Bai X, Kumar S, Yun Z, Xuan D, Lai T H. Deploying Wireless Sensors to Achieve Both Coverage and Connectivity[J].In Proceedings of the SeventhInternational Symposium on Mobile Ad Hoc Networking and Computing (ACM MobiHoc), Florence,Italy, 2006.
    [71] Bai X, Yun Z, Xuan D, Lai T H, Jia W.Deploying Four-Connectivity and Full-Coverage Wireless Sensor Networks[J].IEEE International Conference on Computer Communications (INFOCOM), 2008.
    [72]刘巍,崔莉,黄长城.EasiFCCT:一种保证连通性的传感器网络局部覆盖算法[J].计算机研究与发展,2008,45(1):196-204.
    [73] Yan T , He T , Stankovic J. Differentiated surveillance for sensor networks[C]. In: Proc of ACM SENSYS 03. New York : ACM Press , 2003. 51– 62.
    [74] Choi W, Das S K. Trade-off between coverage and data reporting latency for energy conserving data gathering in wireless sensor networks [C]. In : Proc of IEEE Int’l Conf on Mobile Adhoc and Sensor Systems. Piscataway, NJ : IEEE Press , 2004.25– 27.
    [75]石高涛,廖明宏.大规模传感器网络随机睡眠调度节能机制[J].计算机研究与发展,2006,43 (4) : 579– 585.
    [76] Liu C, Wu K, King V. Randomized coverage-pre-serving scheduling schemes for wireless sensor networks [C]. In: Proc of IFIP Networking Conf. , LNCS 3462. Berlin: Springer, 2005. 956– 967.
    [77]吴小兵,陈贵海.无线传感器网络中节点非均匀分布的能量空洞问题[J].计算机学报,2008,31(2):253-261.
    [78] Li J,Mohapatra P.An analytical model for the energy hole problem in manyto-one sensor networks//Proceedings of the IEEE Vehicular Technology Conference. Dallas,TX,2005;2721 2725.
    [79] Bulusu N,Heidemann J,Estrin D A T T.Self-configuring Localigation Systems: Design and Experimental Evaluation[J]. ACM Transactions on Embedded Computing Systems, 2004,3(1):24-60.
    [80]王达山,黄刘生,徐宏力,等.基于矢量的无线传感网络能量有效配置算法[J].计算机研究与发展,2008,45(4):626 635.
    [81] Mhatre V, Rosenberg C. Design guidelines for wireless sensor networks: Communication,clustering and aggregation[J]. Ad Hoc Networks,004,2(1):45-63.
    [82] Cheng P, Chuah C, Liu X. Energy-aware node placement in wireless sensor networks[J]. IEEE Global Telecommunications Conference,Dallas,Texas,USA, 2004.
    [83] Poduri S, Sukhatme G S.Constrained coverage for mobile sensor networks[C]. In IEEE International Conference on Robotics and Automation, 2004, vol.1: 165-171.
    [84]刘丽萍,王智,孙优贤.无线传感器网络部署及其覆盖问题研究[J].电子与信息学报,2006,28(9):1752-1756.
    [85]蒋杰,方力,张鹤颖等.基于Voronoi划分的无线传感器网络最小连通覆盖集问题求解算法.软件学报,2006,17(2):175-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700