深水钻井隔水管寿命管理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合国家高技术研究发展(863)计划海洋技术领域重大项目“深水钻完井关键技术”部分内容展开,对深水钻井隔水管系统寿命管理技术作了较系统的研究,采用理论分析、数值计算和计算机仿真等方法,在深水钻井隔水管失效模式识别和损伤评估、寿命管理方法研究、监测和检测方法与技术分析、寿命管理体系应用等方面取得一定的研究进展。主要研究进展总结如下:
     1.深水钻井隔水管失效模式识别和损伤评估
     深水钻井隔水管系统作业环境和载荷复杂多变,面临多种失效可能,首先对腐蚀、疲劳和磨损三种主要失效模式分别进行机理分析和定量损伤评估,这是寿命预测和管理的基础。采用许用应力法进行腐蚀缺陷评估;考虑腐蚀缺陷造成的管壁应力集中,在计算系统疲劳寿命时引入应力集中系数,给出一种综合评估两种损伤的可行方法。疲劳损伤评估从波致疲劳和涡激疲劳两方面展开,波致疲劳针对每一种典型海况分别讨论然后加权累积,无缺陷单根和有缺陷单根的损伤评估分别采用S-N曲线法和裂纹扩展理论;涡激疲劳评估则是基于隔水管系统的模态分析,根据流剖面和振动能量筛选出对疲劳损伤贡献最大的响应模态,确定其应力幅和应力范围用于损伤计算。磨损评估中采用偏心圆筒模型模拟隔水管磨损,以管壁磨损最深处内壁的环向应力达到某种强度极限作为失效判断条件,进行磨损剩余强度计算。
     2.深水钻井隔水管寿命管理方法研究
     提出了隔水管系统在一个钻井作业周期内的寿命管理策略,包括系统损伤和寿命预测、单根适用性评价、作业过程监测、作业后检测、建立隔水管信息数据库等部分。含缺陷单根的使用寿命取决于缺陷临界尺寸和损伤发展速率两方面:首先按照缺陷类型分析单根的临界缺陷尺寸,裂纹型缺陷的临界深度取为隔水管壁厚或更小尺寸,腐蚀和磨损缺陷的临界尺寸根据管壁缺陷位置的应力强度准则确定;则临界尺寸与缺陷发展速率的比值为隔水管寿命的预测值。定义了一个5,000ft钻井隔水管系统,以其为目标进行作业周期寿命管理,并根据寿命预测值对疲劳、腐蚀和磨损三种损伤模式划分损伤等级,损伤等级高的管段应在作业过程之中和之后给与重点监测和检测。对于使用含缺陷单根的实际隔水管系统,缺陷单根应布置在损伤预测最低的位置以获得最大系统可靠性。
     借鉴完整性管理理论初步建立单根寿命管理策略,在缺陷类型识别和失效机理评价的基础上分析失效概率和失效后果,由此确定单根的失效风险,风险评价值是检测和维修决策的重要依据。对隔水管单根进行疲劳、腐蚀和磨损可靠性分析:疲劳可靠性分析分为无缺陷单根和含裂纹型缺陷单根两种情况,分别由损伤关系和裂纹扩展寿命关系建立极限状态方程;最大腐蚀深度认为服从I型极大值分布,根据腐蚀深度准则计算可靠度;磨损可靠度则为磨损值低于临界磨损量的概率。认为隔水管属于串联系统,但单根之间具有一定相关性,采用区间估计法对目标隔水管系统进行了系统可靠度计算。
     3.隔水管系统监测和检测方法与技术分析
     通过对运动/应变监测方法以及单机/实时监测系统的分析,综合考虑监测成本、安装情况、线路可靠性等因素,确定采用分布式单机运动监测系统进行深水钻井隔水管监测,并对所需传感器数量、监测覆盖范围以及传感器最佳安装位置进行了分析。提出了一种深水隔水管VIV监测位置优化方法:基于隔水管有限元模型进行模态分析,识别对VIV疲劳贡献最大的模态作为监测对象;对于每一阶主要模态,考虑隔水管倾斜和重力影响,寻找使响应加速度幅值达到最大的所有位置;从中确定最佳位置安装监测装置,使该位置处的其他模态响应为最小。
     4.深水钻井隔水管寿命管理体系应用
     深水隔水管系统的悬挂模式需给于足够重视,在悬挂固有频率、轴向动力放大系数和轴向响应分析的基础上,对目标隔水管系统的硬悬挂模式进行案例讨论。起下作业过程中,要求在每个单根下放或回收之后整个隔水管柱均满足无压缩和轴向载荷条件。悬挂分析中讨论有/无防喷器组两种情况,根据无压缩准则确定最大允许加速度,计算此时的悬挂系统轴向载荷,若载荷值大于支撑装置承载能力应考虑采用软悬挂方式,或回收一定数量单根直至轴向载荷满足条件。
     结合目标系统讨论了隔水管损伤减缓措施,对于隔水管涡激疲劳采用改变顶张力和内部泥浆密度以及交错布置浮力单根的方法;对于隔水管磨损,通过调整钻井船偏移和顶张力减小隔水管弯曲角度,从而降低管壁磨损。
     初步建立隔水管作业信息数据库和单根检测数据库,前者是对隔水管系统的描述和管理过程记录,涵盖隔水管作业过程中涉及的环境信息、钻井船和作业信息、隔水管系统的配置和组成、作业过程监测数据以及对隔水管的操作等内容;后者包括单根检测结果以及单根评估记录,是单根适用性评价和检测计划更新的依据。
The dissertation focuses on life management technique for deepwater drilling risers, which is a part of the“863”High Technology Research and Development Program of China (No.2006AA09A106-4) of the key technologies of deepwater drilling and completion. Life management technique for deepwater drilling risers is investigated systemically based on theoretical research, numerical calculation and computer simulation, including failure mode identification and damage assessment, comprehensive study on life management method, analysis on monitoring and inspection method and technology, as well as life management system application of deepwater drilling risers. The main works are summarized as follows:
     1 Failure Mode Identification and Damage Assessment of Deepwater Drilling Risers
     The drilling riser system is facing a variety of possible failures with the complicated operating environment and load conditions. First of all, the mechanisms of corrosion, fatigue and wear are analysized respectively, and the damage for each of the three kinds of failure modes is assessed quantitatively. The evaluation of corrosion flaws is based on the Allowable Stress Approach. The effect of the corrosion defects is taken into account multiplying the nominal stresses by stress concentration factors of the riser joints containing corrosion defects. The fatigue analyses are performed considering the wave loads and the vortex-induced vibrations. The wave fatigue is weighted-integrating of fatigue damage of each typical sea state. For ideal joints and joints containing corrosion pits, the fatigue damage is calculated with S-N curve and crack propagation theory. As to the VIV fatigue damage assessment, a modal analysis of the riser is performed and the major response modes are determined according to profile and vibration energy. The stress range of the vibration modes then can be used to compute the fatigue damage. In the wear assessment, the cross section shape of worn riser is analogized as an eccentric cylinder. The rupture capacity of the crescent-shaped wear riser is predicted when the internal circumferential stress reaches to a certain limit.
     2 Comprehensive Study on Life Management Method of Deepwater Drilling Risers
     The life management strategy in a drilling cycle for the drilling riser system is presented in the paper, including the damage and life prediction, applicability evaluation of joints, operation process monitoring, riser inspection, establishment of riser information database, and so on. The life of riser joints containing defects is decided by the critical dimensions of flaws as well as development rate of damage. The critical dimensions are determined in view of different kinds of defects. The critical crack depth is not greater than riser wall thickness, and the critical dimensions of corrosion and wear can be anticipated according to stress intensity criteria. A 5,000ft deepwater drilling riser system is defined as the object of life management during the drilling operation. Damage level of riser is classified based on life prediction results in view of corrosion, fatigue and wear of joints, and the joints with high damage level should be given priority monitoring and inspection. Concerning to real drilling riser system with joints which containing defects, the joints with defects should be arranged where the damage predictions are as small as possible to ensure the reliability of the whole system.
     The life management strategy for riser joints is proposed using integrity management theory for reference. The probability of failure and consequences of failure are analysized based on failure mode identification and failure mechanism appraisal. Then the risk of failure of joints is decided, which is the foundation of inspection and maintenance. The fatigue, corrosion and wear reliability of riser joints are evaluated respectively. For joints without and with crack defects, the limit state equations are formed according to damage and crack propagation life relationship separately. The maximum depth of corrosion defect is deemed to obey I type maximum value distribution through analysis, and reliability of corrosion is calculated in accordance with corrosion allowance. Reliability of wear is the probability that the wear of riser joint is less than the critical wear. The drilling riser pertains to series system while there is certain correlation among different joints, so the system reliability can be determined by interval estimation method.
     3 Analysis on Monitoring and Inspection Method and Technology of Deepwater Drilling Risers
     After the analysis of motion and strain monitoring method as well as standalone and real-time monitoring system, the monitoring strategy for deepwater drilling riser is proposed considering monitoring cost, installation, reliability, etc. Using distributed standalone system for motion monitoring, the number and spatial extent of the instrumentation as well as optimum sensor placement are discussed. An optimization approach for VIV monitoring locations is presented based on modal analysis of the riser system. The main modes that have significant contribution to fatigue are firstly identified. For each one of the modes, search for possible locations for installation according to the acceleration in response, considering the riser tilt and gravitational effects. Then the optimum location is that would give a near max-signal for one mode while at the same time being close to a zero-signal location for the other modes.
     4 Life Management System Applications of Deepwater Drilling Risers
     The natural frequency, amplification factor and axial response of the object system are discussed, based on which the hard hangoff of the riser is implemented. During the tripping operation, the stress of whole riser string should meet the criterion of no compressive loading after running or pulling each joint and the axial load is not overload. The hangoff analysis is discussed for riser system with and without BOP. The maximum allowable acceleration is determined by the criterion of no compressive. The axial load of hangoff riser system should not greater than load capacity of drill derrick, otherwise soft hangoff can be taken into account, or a number of joints should be recovered until there is no compressive stress in riser.
     The damage alleviation for drilling riser system is discussed. As to vortex-induced fatigue, the method of altering top tension and mud density as well as layout of riser joints with staggered buoyancy is discussed. The flexible angle is reduced by adjusting vessel offset and top tension of riser system, and in this way, the riser wear damage can be modified.
     The information databases for drilling operation and riser joints are preliminary established. The drilling operation information database is the description of drilling riser system and the record of riser management, including environment information, vessel and operation information, drilling riser configuration, monitoring data and operation sequence, etc. The riser joints information database consist of inspection results of joints and evaluation report based on inspection data, which is the reference to applicability evaluation and inspection updating of joints.
引文
[1] Lee Fowler. Marine riser regulatory overview. AADE DEEPWATER INTEREST GROUP, 2004.
    [2]畅元江.深水钻井隔水管设计方法及其应用研究[D].东营:中国石油大学(华东), 2008.
    [3]许亮斌.深水钻井隔水管设计与应用技术研究[博士后论文].北京:中国海洋石油有限公司(北京)研究中心, 2006.
    [4]畅元江,陈国明,孙友义.深水钻井隔水管的准静态非线性分析[J].中国石油大学学报(自然科学版), 2008, 32(3): 114-118.
    [5]畅元江,陈国明,许亮斌.导向架隔水管在波流联合作用下的非线性动力响应[J].中国石油大学学报(自然科学版) , 2006, 30(5): 74-77.
    [6]畅元江,陈国明,许亮斌等.深水顶部张紧钻井隔水管非线性静力分析[J].中国海上油气, 2007, 19(3): 203-207.
    [7]彭朋,陈国明.海洋钻井隔水管适用性评价技术研究[J].石油机械, 2008, 36(5): 11-14.
    [8]彭朋,陈国明.深水钻井隔水管磨损评估及保护措施分析[J].中国造船, 2008, 49(A02): 427-432.
    [9]孙友义,陈国明,畅元江.深水铝合金隔水管涡激振动疲劳特性[J].中国石油大学学报(自然科学版), 2008, 32(1): 100-104.
    [10]孙友义,陈国明.基于风险增强的钻井隔水管VIV疲劳评估[J].中国造船, 2008, 49(A02): 415-420.
    [11]孙友义.海洋钻井隔水管系统涡激振动安全评估研究[D].东营:中国石油大学(华东), 2006.
    [12] J.B. Wanderley, C. Levi. Vortex induced loads on marine risers[C]. Ocean Engineering, 2005, v.32(11-12): 1281–1295.
    [13] Sakdirat Kaewunruen, Julapot Chiravatchradej, Somchai Chucheepsakul. Nonlinear free vibrations of marine risers/pipes transporting fluid[J]. Ocean Engineering, 2005, 32(3-4): 417–440.
    [14]畅元江,陈国明.基于波浪谱与钻井船RAO的钻井船运动模拟[J].系统仿真学报, 2009, 21(5): 1310-1313.
    [15]畅元江,陈国明,鞠少栋.国外深水钻井隔水管系统产品技术现状与进展[J].石油机械, 2008, 36(9): 205-209.
    [16] W.D.Iwan. The vortex induced oscillation of non-uniform structure systems [J]. Journal of Sound and Vibration, 1981, 79(2): 291-301.
    [17] R.D.Blevins. Flow-induced vibrations [M].2nd edn. New York: Van Nostrand & Co., 1990.
    [18] R.A.Skop, S.Balasubramanian. A new twist on an old model for vortex-excited vibrations[J]. Journal of Fluids and Structures, 1997, 11(4): 395-412.
    [19] S.Balasubramanian, R.A.Skop, F.L.Haan Jr, et al. Vortex-excited vibrations of uniform pivoted cylinders in uniform and shear flaw[J]. Journal of Fluids and Structures, 2000, 14(1): 65-85.
    [20] S.Krenk, S.R.K.Nielsen. Energy balanced double oscillator model for vortex-induced vibrations[J]. Journal of Engineering Mechanics, 1999, 125(3): 263-271.
    [21] N.W.Mureithi, H.Kanki, T.Nakamura. Bifurcation and perturbation analysis of some vortex shedding models[C]. 7th International Conference on Flow-Induced Vibrations. Lucerne, Switzerland, 2000.
    [22] P.Plaschko. Global chaos in flow-induced oscillations of cylinders[J]. Journal of Fluids and Structures, 2000, 14(6): 883-893.
    [23] M.L.Facchinetti, de Langre,E., F.Biolley. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(2): 123-140.
    [24] P.K.Stansby, A.Slaouti. Simulation of vortex shedding including blockage by the random-vortex and other methods[J]. International Journal of Numerical Methods in Fluids,1993, 17(11): 1003-1013.
    [25] J.R. Meneghini, P.W. Bearman. Numerical simulation of high amplitude oscillatory-flow about a circular cylinder using a discrete vortex method[J]. Journal of fluids and structures, 1995, 9(4): 435-455.
    [26] C.Y.ZHOU, R.M.C.SO, K.LAM. Vortex-induced vibrations of an elastic circular cylinder[J]. Journal of fluids and Structures, 1999, 13(2): 165-189.
    [27] R.Korpus, P.Jones, O.Oakley, et al. Prediction of viscous forces on oscillating cylinders by Reynolds-averaged Navier-Stokes solver[C]. International Offshore and Polar Engineering Conference. Seattle, USA, 2000.
    [28] E.Guilmineau, P.Queutey. Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow[J]. Journal of fluids and Structures, 2004, 19(4): 449-466.
    [29] M.Saghafian, P.K.Stansby, M.S.Saidi, et al. Simulation of turbulent flows around a circular cylinder using nonlinear eddy-viscosity modeling: steady and oscillatory ambient flows[J]. Journal of fluids and Structures, 2003, 17(8): 1213-1236.
    [30] C.Evangelinos, G.E.Karniadakis. Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations[J]. Journal of fluid Mechanics, 1999, 400(1): 91-124.
    [31] C.Evangelinos, D.Lucor, G.E.Karniadakis. DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration[J]. Journal of fluids and Structures, 2000, 14(3): 429-440.
    [32] D.Lucor, L.Imas, G.E.Karniadakis. Vortex dislocation and force distribution of long flexible cylinders subject to sheared flows[J]. Journal of fluids and Structures, 2001, 15(3-4): 641-650.
    [33] D.Lucor, G.E.Karniadakis. Effects of oblique inflow in vortex-induced vibrations[J]. Flow, Turbulence and Combustion, 2003, 71(1-4): 375-389.
    [34] Lu X, Dalton C, Zhang J. Application of large eddy simulation to an oscillating flow past a circular cylinder[J]. ASME Journal of fluids Engineering, 1997, 119(3): 519-525.
    [35] Y.Xu, C. Dalton. Computation of force on a cylinder in a shear flow[J]. Journal of Fluids and Structures, 2001, 15(7): 941-954.
    [36] M.Tutar, A.E.Holdo. Large eddy simulation of a smooth circular cylinder oscillating normal to a uniform flow[J]. ASME Journal of fluids Engineering, 2000,122(4): 694-702.
    [37] P.A.B. de Sampaio, A.L.G.A. Coutinho. Simulating vortex shedding at high Reynolds numbers[C]. International Offshore and Polar Engineering Conference. Seattle, USA, 2000.
    [38] Al-Jamal H, Dalton C. Vortex induced vibrations using large eddy simulation at a moderate Reynolds number[J]. Journal of fluids and Structures, 2004, 19(1): 73-92.
    [39] P.W.Bearman, L.Johanning, J.C.Owen Large-scale laboratory experiments on vortex-induced vibration[C]. International Conference on Offshore Mechanics and Artic Engineering. Rio de Janeiro, Brazil, v1: 987-995, 2001.
    [40] J.R.Chaplin, P.W.Bearman, Y.Cheng, et al. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser[J]. Journal of Fluids and Structures, 2005, 21(1): 25-40.
    [41] J.R.Chaplin, P.W.Bearman, F.J. Huera Huarte, et al. Laboratory measurements of vortex-inducedvibrations of a vertical tension riser in a stepped current[J]. Journal of Fluids and Structures, 2005, 21(1): 3-24.
    [42] A.D.Trim, H.Braaten, H.Lie, et al. Experimental investigation of vortex-induced vibration of long marine risers[J]. Journal of Fluids and Structures, 2005, 21(3): 335-361.
    [43] MCS International. State of the art flexible riser integrity issues[R]. Proposal No. 99-2-1-031, Rev. 03, January 2000.
    [44] Health & Safety Executive. Monitoring methods for unbonded flexible pipes[R]. OTO 98018, 1998.
    [45] Health & Safety Executive. Guidelines for integrity monitoring of unbonded flexible pipes[R]. OTO98019, 1998.
    [46] Terje Olsen. Safe disconnect during drive-off/drift-off when drilling on DP[C]. IADC Drilling Northern Deepwater. Stavanger, Norway, 2001.
    [47] Darrel K. Pelley, Riddle E. Steddum, Andrew S. Westlake. Mooring and riser management in ultra-deep water and beyond[C]. SPE/IADC Drilling Conference, paper 92616. Amsterdam, The Netherlands, 2005.
    [48] James N. Brekke, Julian Soles, Momen A. Wishahy, et al. Drilling riser management for a DP drillship in large, rapidly– developing seastates in deepwater[C]. SPE/IADC Drilling Conference, paper 87123. Dallas, Texas, U.S.A., 2004.
    [49] James N. Brekke. Key elements in ultra-deep water drilling riser management[C]. SPE/IADC Drilling Conference, paper 67812. Amsterdam, The Netherlands, 2001.
    [50] M.J.Stahl, C.J.Hock. Design of a riser recoil control system and validation through full-scale testing[C]. SPE Annual Technical Conference and Exhibition, paper 62959. Dallas, Texas, 2000.
    [51] www.2hoffshore.com.
    [52] J.H.Heida, A.J.A.Bruinsma. D-sight technique for rapid impact damage detection on composite aircraft structures[C]. 7th European Conference on Non-destructive Testing, ECNDT’98. Copenhagen, 1998.
    [53] iar-ira.nrc-cnrc.gc.ca.
    [54] D.N.Alleyne, P.Cawley. Optimization of lamb wave inspection techniques[J]. NDT & International, 1992, 25(1): 11-22.
    [55] J.A.de Raad. Novel techniques for outside inspection of plant pipework[J]. Insight, 1995, 37(6): 409-412.
    [56] D.N.Alleyne, P.Cawley. The exitation of lamb waves in pipes using dry coupled piezoelectric transducers[J]. Journal of NDE, 1996, 15(1): 11-20.
    [57] D.N.Alleyne, P.Cawley. Long range propagation of lamb waves in chemical plant pipework[J]. Materials Evaluation, 1997, 55(4): 504-508.
    [58] D.N.Alleyne, P.Cawley, A.M.Lank, et al. The lamb wave inspection of chemical plant pipework[A], Review of progress in quantitative nondestructive evaluation[M]. D. O. Thompson and D. E. Chimenti, eds., New York, Plenum Press, 1997, Vol. 16B: 1269-1276.
    [59] J.Krautramer, H.Krautramer. Ultrasonic Testing of Materials[M]. 4th fully rev. ed. Berlin; New York: Springer-Verlag, 1990. ISBN 3540512314.
    [60] A.Singh, R.McClintock. Computer-controlled system for nondestructive thickness measurement of corroded steel structures[J]. Journal of Energy Resources Technology, 1983, 105(4): 499-502.
    [61] A.S.Birring. Overview of factors affecting ultrasonic inspection of tension leg platforms[C]. SixthASME Symposium on Offshore Mechanics and Arctic Engineering. Houston, TX, pp. 513-616, 1987.
    [62] K.Matthies. Thickness measurements with ultrasound[A]. DGZfP/DVS-Verlag, 1999.
    [63] Magnetic flux leakage (MFL) technology for natural gas pipeline inspection[R]. Battelle, Report Number GRI-91/0367 to the Gas Research Institute. Nov, 1992.
    [64] Magnetic flux leakage (MFL) technology for natural gas pipeline inspection[R]. Battelle, Report to the Gas Research Institute. Feb, 1999.
    [65] E.Veith, C.Bucherie, J.L.Lechien, et al. Inspection of offshore flexible risers with electromagnetic and radiographic techniques[J]. Insight, 2001, 43(1): 404-408.
    [66] Y.S.Sun, S.Udpa, W.Lord, et al. A remote field eddy current NDT probe for the inspection of metallic plates[J]. Materials Evaluation, 1996, 54(4): 510-512.
    [67] D.L.Atherton, S.Sullivan. The remote-field through-wall electromagnetic inspection technique for pressure tubes[J]. Materials Evaluation, 1986, Vol. 44(13): 1544-1550.
    [68] S.Sullivan, D.L.Atherton, T.R.Schmidt. Comparison of conventional, through-wall and remote field eddy current techniques[J]. NDT International, 1989, 22(4): 203-206.
    [69] de Raad, J.A. Novel techniques for outside inspection of plant pipework[J]. Insight, 1995, 37(6): 409-412.
    [70] J.R.Rudlin. Review of existing and possible techniques for corrosion under insulation and wall thickness measurement in steel pressure containments[J] Insight, 1997, 39(6): 413-417.
    [71] R.van Agthoven, J.A.de Raad. How to inspect platforms and risers: an effective approach and new challenges[C]. The Pipeline Pigging, Integrity Assessment, and Repair Conference. Houston, TX, 2003.
    [72] C.R.Marques, M.V.M Martins, D.A.Topp. Experiences in the use of ACFM for offshore platform inspection in Brazil[C]. 15th WCNDT. Rome, 2000.
    [73] M.C.Lugg, A.M.Lewis, D.H.Michael, et al. The non-contacting ACFM technique[C]. Electromagnetic Inspection, IOP Short Meetings 12. Institute of Physics Publ., Bristol, pp. 41-48, 1988.
    [74] J.R.Long, Riddle Steddum, R.D.Young. Analysis of a 6,000-ft riser during installation and storm hangoff[C]. OffshoreTechnology Conference, paper 4596. Houston,Texas,1983.
    [75] C-T.Kwan, T.L.Marion, T.N.Gardner. Storm disconnect of deepwater drilling risers[C]. Offshore Technology Conference, paper3586. Houston, 1979.
    [76] J.Wolgamon,R.Steddum. Heavy current influence on deep water risers-case history north sea location[C]. Deep Offshore Technology Conference. Palma de Mallorca, Spain, 2007.
    [77] E.B.Denison, M.M.Kolpak, D.L.Garrett. A comprehensive approach to deepwater marine riser management[J]. Journal of Petroleum Technology, 1985, 37(5): 835-842.
    [78] S.Takagawa. Riser technology and drilling operations for OD21. Part 1—2,500-m riser drilling vessel system development[C]. International Workshop on Riser Technology. Yokohama, 1996.
    [79] S.Takagawa. Riser technology and drilling operations for OD21. Part 2—simulation study on 4000-m riser system[C]. International Workshop on Riser Technology. Yokohama, 1996.
    [80] J.E.Miller, R.D.Young. Influence of mud column dynamics on top tension of suspended deepwater drilling riser[C]. OffshoreTechnology Conference, paper 5015. Houston,Texas, 1985.
    [81] Dong-ho Jung, Han-il Parkb, Wataru Koterayama, et al. Vibration of highly flexible free hanging pipe in calm water[J]. Ocean Engineering, 2005, 32(14-15): 1726–1739.
    [82] Vadim S. Tikhonov, Alexander I. Safronov. Effect of fluid column dynamics on longitudinal vibrations of an ultra deepwater riser[J]. Ocean Engineering, 2002, 29(1): 99–112.
    [83] Bill D. Ambrose, Frank Grealish, Kevin Whooley. Soft hangoff method for drilling risers in ultra deepwater[C]. ffshore Technology Conference, paper 13186. Houston, Texas, 2001.
    [84] Minerals Management Service. Deepwater riser design, fatigue life and standards study report[R]. TA&R Project Number 572, Document No. 86330-20-R-RP-005, 2007.
    [85] www.mcs.com.
    [86] www.orcina.com
    [87] www.sintef.no.
    [88] web.mit.edu.
    [89] www.bpp-tech.com.
    [90] C. Le Cunff, F. Biolley, E. Fontaine, et al. Vortex-induced vibrations of risers: theoretical, numerical and experimental investigation[J]. Oil & Gas Science and Technology– Rev. IFP, 2002, 57(1): 59-69.
    [91] www.fugro.com.
    [92] www.seaflex.com.
    [93] U.S. Department of the Interior. Minerals Management Service Data Base for Pipeline Failure Statistics in the Gulf of Mexico[R]. 2002.
    [94] M.G.Lozev,R.W.Smith, B.B.Grimmett. Evaluation of methods for detecting and monitoring of corrosion damage in risers[C]. 22nd International Conference on Offshore Mechanics and Arctic Engineering. Cancun, Mexico, 2003.
    [95] R.G.Bea. A risk assessment & management based process for the re-qualification of marine pipelines[C]. Alaskan Arctic Offshore Pipeline Workshop. U.S. Minerals Management Service, Anchorage, AK, 1999.
    [96] M.Schurnacher. Sea water corrosion handbook[M]. Noyes Data Corporation, New Jersey, USA, 1979.
    [97] R.H.Heidersbach. Marine corrosion - specific industries and environments, corrosion[M]. ASM metals hand book, 1986, 13, 893-926.
    [98] ASME B31G-1991. Manual for determining the remaining strength of corroded pipelines[S]. 1991.
    [99]帅健,张春娥,陈福来.腐蚀管道剩余强度评价方法的对比研究[J].天然气工业, 2006, 26(11): 122-125.
    [100] API 579-1/ASME FFS-1, Fitness-For-Service[S]. 2007.
    [101]何东升,郭简,张鹏.腐蚀管道剩余强度评价方法及其应用[J].石油学报, 2007, 28(6): 125-128.
    [102] Det Norske Veritas. Corroded pipelines[S]. RECOMMENDED PRACTICE DNV-RP-F101.2004.
    [103] Det Norske Veritas Riser fatigue[S]. RECOMMENDED PRACTICE DNV-RP-F204, 2005.
    [104] Det Norske Veritas. Fatigue strength analysis of offshore steel structures[S]. RECOMMENDED PRACTICE DNV-RP-C203, 2001.
    [105] Tom Prosser. Riser system wear– an unrecognized drilling risk[C]. AADE National Drilling Conference, 2001.
    [106] G.T.Poss, R.W.Hall. Subsea drilling riser wear: a case history[C]. SPE/IADC Drilling Conference ,paper 29392. Amsterdam, 1995.
    [107] API RECOMMENDED PRACTICE 16Q. Recommended practice for design, selection, operation and maintenance of marine drilling riser systems[S]. 1993.
    [108] Yukihisa Kuriyama, Yasushi Tsukano, Toshitaro Mimaki, et al. Effect of wear of bending on casingcollapse strength[C]. Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, paper 24597. Washington, DC, 1992.
    [109] J.S. Song, Jerry Bowen, Frank Klementich. The internal pressure capacity of crescent-shaped wear casing[C]. IADC/SPE Drilling Conference, paper 23902. New Orleans, Louisiana, 1992.
    [110] J.F.Throop, R.R.Fujczak. Strain behavior of pressurized cracked thick-walled cylinders[C]. SESA Spring Meeting. San Francisco, CA, 1979.
    [111]严大凡,翁永基,董绍华.油气长输管道风险评价与完整性管理[M].北京:化学工业出版社, 2005.
    [112] R.W.Hall, A.Garkssi, W.G.Deskins, et al. Recent advances in casing wear technology[C]. IADC/SPE Drilling Conference, paper 27532. Dallas, 1994.
    [113] G.T.Poss, R.W.Hall. Subsea drilling riser wear: a case history[C]. IADC/SPE Drilling Conference, paper 29392. Amsterdam, 1995.
    [114] Det Norske Veritas. Riser Integrity Management[S]. RECOMMENDED PRACTICE DNV-RP-F206, 2008.
    [115] Det Norske Veritas. Risk based inspection of offshore topsides static mechanical equipment[S]. RECOMMENDED PRACTICE DNV-RP-G101, 2002.
    [116]徐宏伟,喻天翔,成刚虎,张选生,张祖明.耐腐蚀的动态可靠性和寿命RD理论和方法[J].化工机械, 2002, 29(4): 214-217.
    [117]刘小宁.压力容器与管道耐腐蚀可靠性理论与方法[J].化工装备技术, 2004, 25(6): 59-62.
    [118]张桃先,刘小宁.预测压力管道腐蚀剩余寿命的可靠性方法[J].化工设计, 2004, 14(6): 31-32.
    [119] Ditlevsen O. Narrow reliability bounds for structural systems[J]. Journal of Structural Mechanics, 1979, 7(4): 453-472.
    [120]时米波.深水钻井隔水管系统疲劳可靠性分析[D].东营:中国石油大学(华东), 2008.
    [121] www.scimar.com.
    [122] D.Roberts, T.Moros. The successful development and deployment of a reusable composite shape-sensing mat to provide real-time load and cumulative fatigue data on deepwater production risers in the gulf of mexico[C]. Offshore Technology Conference, paper17951. Houston, TX, U.S.A., 2006.
    [123] www.force.dk/en.
    [124] I Cummins, E Neme, W Todd. Deepwater riser management[C]. IADC/SPE Drilling Conference, paper 59104. New Orleans, Louisiana, 2000.
    [125] Mat Podskarbi, Dave Walters. Integrated approach to riser design and integrity monitoring[C]. International Offshore Pipeline Forum (IOPF) 2006, IOPF2006-004. Houston, TX, USA, 2006.
    [126] Mat Podskarbi, David Walters. Review and evaluation of riser integrity monitoring systems and data processing methods[C]. Deep Offshore Technology. 2006.
    [127] J. Kim Vandiver, Hayden Marcollo. High mode number VIV experiments[C]. IUTAM Symposium On Integrated Modeling of Fully Coupled Fluid-Structure Interactions Using Analysis, Computations, and Experiments, June 2003, Kluwer Academic Publishers, Dordrecht.
    [128] Shreenaath Natarajan, Mateusz Podskarbi. Deepwater spar steel catenary riser monitoring strategy[C]. 26th International Conference on Offshore Mechanics and Arctic Engineering, 2007.
    [129] R.Thethi, H.Howells, S.Natarajan, et al. A fatigue monitoring strategy and implementation on a deepwater top tensioned riser[C]. Offshore Technology Conference, paper 17248. Houston, TX, U.S.A., 2005.
    [130] Karl E. Kaasen. Optimizing sensor locations for identification of riser VIV modes[C]. EleventhInternational Offshore and Polar Engineering Conference, 2001.
    [131] Stéphane F. A. Cornut, J. Kim Vandiver. Offshore VIV monitoring at SCHIEHALLION - analysis of riser VIV response[C]. ETCE/OMAE2000 Joint Conference, 2000.
    [132] Mark Lozev, Ben Grimmett, Eric Shell, et al. Evaluation of Methods for Detecting and Monitoring of Corrosion and Fatigue Damage in Risers[R]. Project No. 45891GTH, Contract Number 1435-01-02-CT-85094, 2002.
    [133] Det Norske Veritas. Rules for classification of offshore drilling and support units[S]. DNV-OSS-101, 2003.
    [134] www.deepwater.com.
    [135] C-T.Kwan, T.L.Marion, T.N.Gardner. Storm disconnect of deepwater drilling risers[C]. Offshore Technology Conference, paper 3568. Houston, Texas, 1979.
    [136] W.F.Andersen, O.Burgdo, T.F.Sweeney. Comparative analysis of 12,500 ft water depth steel and advanced composite drilling risers[C]. Offshore Technology Conference, paper 8732. Houston, Texas, 1998.
    [137] Riddle Steddum. The management of long, suspended strings of tubulars from floating drilling vessels[C]. Offshore Technology Conference, paper 15235. Houston, Texas, U.S.A., 2003.
    [138] E.B.Denisen, M.M.Kolpak, D.L.Garrett. A comprehensive approach to deepwater marine riser management[J]. Journal of petroleum technology, 1985, 37(5): 835-842.
    [139] J.M.Shaughnessy, W.K.Armagost, R.P.Herrmann, et al. Problems of ultradeepwater drilling[C]. SPE/IADC Drilling Conference, paper 52782. Amsterdam, Holland, 1999.
    [140] www.atkinsglobal.com.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700