基于大鼠体素模型的体外辐射蒙特卡罗模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着层析成像技术和计算机技术的迅速发展,开发准确而真实的生物体解剖模型已经成为可能,原有的许多非常重要的生物电离辐射效应的观点和结论都需要被重新审视和评估。与此同时,随着辐射防护和应用的研究发展,建立评价非人类物种电离辐射影响的框架等新的需求也开始出现。要对这些重要的新旧观点进行重新审视和评估,必须开发出新的、准确而真实的生物体解剖模型,并将其运用到辐射研究领域并获得新的数据。
     本文通过一套小动物成像系统获取了Sprague Dawley(SD)大鼠的高精度断层图像数据集,运用自动、半自动和手动方法对其进行分割,并基于其分割结果数据集构建了一个全新的、真实的、具有大鼠准确解剖结构信息的体素模型。
     本文运用MCNPX蒙特卡罗辐射模拟代码,模拟了在多种辐射条件(DV、VD、LLAT、RLAT、ISO)、多种辐射能级(0.01~100 MeV)下,多种外部辐射粒子(光子、电子)与大鼠组织器官之间的物理反应。通过设置具体辐射条件、物理模型和物理反应,本文首次基于大鼠体素模型计算获得了在外部粒子辐射条件下一套完整的大鼠组织器官的吸收剂量(Absorbed Dose)和大鼠的有效剂量(Effective Dose),并以表格形式给出计算结果。
     本文搭建了一个可行的辐射剂量模拟计算平台,通过该计算平台可以模拟计算出其它小动物组织器官在给定辐射条件下获得的组织器官吸收剂量的分布。
     计算结果表明大鼠组织器官的体积、形状、位置和分布等解剖结构特征对其吸收剂量的分布有着重要的影响。外部辐射条件,如粒子类型、辐射方向、辐射能量也影响着大鼠组织器官的吸收剂量的分布。
     研究证明通过将生物体准确的解剖模型和计算机模拟计算相结合的方法,为获得外部粒子辐射对典型小动物的影响和其辐射吸收剂量分布信息提供了一种有效的手段。这些数据填补了目前非人类物种辐射计量数据集的空白,也为研究生物体解剖结构对放射剂量分布的影响提供了数据基础,从而为临床放疗规划、核医药、核辐射防护的动物试验设计提供精确量化参考。同时这些数据和结论可以推广到核辐射对其他小动物影响的研究上,也为建立一个非人类物种辐射效应评估框架提供了数据基础,对促进人类核防护和核医疗的进步有着重要意义。
Recently, with the development of the tomograph imaging technologies and the computer technologies, a new anatomic voxel model of animal could be constructed to review and evaluated the old points made with the old mathmetic or simple models. Furthermore a framework for assessing the impact of ionising radiation on non-human spacies is advised to promoting radiation protection and utilization for human. For those reasons, the new anatomical models need be developed and be applied to acquire the new data in dosimety.
     In this paper, a Sprague Dawley (SD) rat anatomy atlas was acquired by a cryosection imaging system for small animal study. Through manual, self-automatic and automatic segmentation methods, an anatomically realistic rat model was developed based on the segmented images data of the rat.
     In this study, the procedures of the development of the voxel rat model for external photon and electron dosimetry and for broad range of incident energy (0.01~102 MeV ) under idealized irradiation geometries (DV、VD、LLAT、RLAT、ISO) have been detailed. A set of organ absorbed dose and effective dose results are computed and tabulated firstly.
     A simulated computation workstation is built, from which any animals organ dose distribution could be got.
     The results show that the organ dose distributions of the rat are distinctly influenced by the anatomical characteristics, including organ volume, shape, location, and orientation, and the radiation conditions, such as the particl type, the incident energy and the irradiation directions and so on.
     Research proves that the method combining the accurate anatomical model with the Monte Carlo code is an effective way to study the organs dose distributions and the reasons. The resulted data fill a data gas between exposure and dose and between dose and certain categories of effect for the no-human species. The data is also capable of offering exact quantitative references to animal experiments in clinic radiation therapy, radionuclide therapy and radiation protection. The experience and data concerning dose assessment from the rat model will be able to be deducted to small mammals, contribute to building the same framework for small mammals and improve the radiation therapy and protection for human ultimately.
引文
[1] Hindorf C., Ljungberg M., Strand S. E. Evaluation of parameters influencing S values in mouse dosimetry. J Nucl Med, 2004, 45(11): 1960~1965
    [2] Bitar A., Lisbona A., Thedrez P., et al. A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP). Phys Med Biol, 2007, 52(4): 1013~1025
    [3] Wu Li, Zhang Guozhi, Liu Qian, et al. An image-based rat model for Monte Carlo organ dose calculations. Med Phys, 2008, 35(8): 3759~3764
    [4] International Commission on Radiological Protection (ICRP). Recommendations of the International Commission on Radiological Protection. ICRP Publication 60, Oxford, UK: Pergamon Press, 1991
    [5] The Rio Declaration and the Convention on Riological Diversity. United Nations Conference on Environment and Development. Rio de Janeiro, 1992
    [6] Pentreath R. J. Radiation protection of people and the enviornment: developing a common approach. J Radiol Prot, 2002, 22(1): 1~12
    [7] Tesla N. On roentgen streams. Elect Rev, 1896, 29: 277~282
    [8] Cember H. Introduction to health physics. Ed (3). New York: McGraw-Hill, 1997
    [9] Lloyd D. C. Biological dosimetry in radiological protection: recent developments. J Soc Radiol Prot, 1984, 4(1): 5~11
    [10] Greenstock C. L. Course material: Health effects and effective radiation protection. PEP-W-6, Health Physics Society 46th Annual Meeting, 2001
    [11] International Commission on Radiological Protection (ICRP). Recommendations of the International Commission on Radiological Protection. ICRP Publication 26. Oxford, UK: Pergamon Press, 1977
    [12] Introduction to Geant4 [EB/OL]. http: //www. asd. web. cern. ch/wwwasd/Geant4/ G4UsersDocu2metsWelcome/IntroductionToGeant4/html/index. html, 2004
    [13]叶沿,林应军,陈陶.高能物理与核物理领域面向对象软件技术的发展.原子核物理评论, 1997, 14(20): 125~129
    [14] Goudsmit S., Saunderson J. L. Multiple scattering of electrons. Phys Rev, 1940, 57(1): 24~29
    [15] Landau L. On the energy loss of fast particles by ionization. J Phys, 1944, 8(4): 201~205
    [16] Blunck O., Leisegang S. Zum energieverlust schneller elektronen in dunnen schichten. Z Phys, 1950, 128(3): 500~509
    [17] Petoussi-Henss N., Zankl M., Fill U., et al. The GSF family of voxel phantoms. Phys Med Biol, 2002, 47(1): 89~106
    [18] International Commission on Radiological Protection (ICRP). A Framework for Assessing the Impact of Ionising Radiation on Non-Human Species. ICRP Publication 91, New York: Oxford Pergamon, 2000
    [19] Hui T E, Fisher D R, Kuhn J A, et al. A mouse model for calculating cross-organ beta doses from yttrium-90-labeled immunoconjugates. Cancer, 1994, 73(s3): 951~957
    [20] Flynn A. A., Green A. J., Pedley R. B., et al. A mouse model for calculating the absorbed beta-particle dose from 131I- and 90Y-labeled immunoconjugates, including a method for dealing with heterogeneity in kidney and tumor. Radiat Res, 2001, 156(1): 28~35
    [21] Yoriyaz H., Stabin M. Electron and photon transport in a model of a 30 g mouse. J Nucl Med, 1997, 38 (Suppl): 228P
    [22] Funk T., Sun M. S., Hasegawa B. H. Radiation dose estimate in small animal SPECT and PET. Med Phys, 2004, 33(9): 2680~2686
    [23] Boone J. M., Velazquez O., Cherry S. R. Small-animal x ray dose from microCT. Molecular Imaging, 2004, 3(3): 149~158
    [24] Konijnenberg M. W., Bijster M., Krenning E. P., et al. A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with 90Y, 111In, or 177Lu. J Nucl Med, 2004, 45(7): 1260~1269
    [25] Kolbert K. S., Watson T., Matei C., et al. Murine S factors for liver, spleen, and kidney. J Nucl Med, 2003, 44(5): 784~91
    [26] Segars W. P., Tsui B. M. W., Frey E. C., et al. Development of a 4D digital mousephantom for molecular imaging research. Mol Imaging Biol, 2004, 6(3): 149~159
    [27] Situ P. D., Miller W. H., Hoffman T. J., et al. Voxel based absorbed fractions in mouse digestive organs for therapeutic beta emitters. J Nucl Med, 2005, 46(6): 2278
    [28] Stabin M. G. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med, 1996, 37(3): 538~546
    [29] Stabin M. G., Peterson T. E., Holburn G. E., et al. Voxel-based mouse and rat models for internal dose calculations. J Nucl Med, 2006, 47(Suppl): 655~659
    [30]白雪岭,刘谦,余雳等.适于小动物研究的断层解剖成像系统.航天医学与医学工程, 2006, 19(1): 62~65
    [31] Christensen G. E., Johnson H. J. Consistent image registration. IEEE Trans med imag, 2001, 20(7): 568~582
    [32]刘哲星,董武,李树祥等.连续组织切片图像的配准.第一军医大学学报, 2001, 21(11): 825~827
    [33] Liang K. H., Tjahajadi T., Yang Y. H. Roof edge detection using regularized cubic b-spline filtering, Pat Recog, 1997, 30(5): 719~728
    [34] Matalas L., Benjamin R., Kimey R. An edge detection technique using the facet model and parameterized relaxation labeling. IEEE Trans Pattern Anal Machine Intell, 1997, 19(4): 328~341
    [35] Wu M. F., Shen H. T. Representation of 3d surfaces by two-variable fourier descriptors. IEEE Trans Pattern Anal Machine Intell, 1998, 20(8): 858~863
    [36] Nitzberg M., Shiota T. Nonliear Image filtering with edge and corner enhancement. IEEE Trans Pattern Anal Machine Intell, 1992, 14(8): 826~833
    [37] Falcao A. X., Udupa J. K., Samarasekera S., et al. User-steered image segmentation paradigms: live wire and lave lane. Graph Models Imag Proc, 1998, 60(4): 233~260
    [38] Kass M., Witkin A. P., Terzopoulos D. Snakes: active contour models. Inter J Comput Vis, 1988, 1(4): 321~331
    [39] Lee C., Hun S., Ketter T. A., Unser M. Unsupervised connectivity based thresholding segmentation of midsaggital brain MR images. Comput Biol Med, 1998, 28(3): 309~338
    [40] Wan S. Y., Higgins W. E. Symmetric region growing. Proc IEEE Intern Conf ImageProcessing, Vancouver Canada, 2000, 96~99
    [41] Sled J., Zijdenbos A., Evans A. A nonparametric method for automatic correction of Intensity nonumformity in MRI data. IEEE Trans Med Imaging, 1998, 17(1): 87~97
    [42] Banerjee A., Burlina P., Alajaji F. Contagion-driven image segmentation and labeling. Proc Intern Conf Comp Vis, Bombay, India, 1998, 255~260
    [43] Gupta L., Sortrakul T. A Gaussian-mixture-based image segmentation algorithm Pat Recog, 1998, 31(3): 315~326
    [44] Jones T. N., Metaxas D. N. Image segmentation based on the integration of pixel affinity and deformable models. Proc IEEE Conf Comp Vis Pat Rec, Santa Barbara, 1998, 722~727
    [45] Pham D., Prince J. An adaptive fuzzy segmentation algorithm for three-dimensional MRI. Proc of Information Processing in Medical Imaging, Lecture Notes in Comp Sci, Visegrad, Hungary, 1999, 1613: 140~153
    [46] Ghosh A., Pal N. R., Pal S. K. Image segmentation using a neural network. Biol Cyber, 1991, 66(2): 15l~158
    [47] Park S. H., Yun I. D., Lee S. U. Color image segmentation based on 3-D clustring: Morphological Approach. Pat Recog, 1999, 31(8): 1061~1076
    [48] Jianping Fan, David K. Y. Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans Image Proc, 2001, 10(10): 1454~1466
    [49] Lee S. C., Kim H. K., Chun I. K., et al. A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging. Phys Med Biol, 2003, 48(24): 4173~4185
    [50] Iwaki T., Yamashita H., Hayakawa T. A color atlas of sectional anatomy of the mouse. Ed(1). Japan: Braintree Scientific Inc, 2001
    [51] Max N. Optical models for direct volume rendering. IEEE Transaction on Visualization and Computer Graphics, 1995, 1(2): 99-108
    [52] Keppe1 E. Approximating Complex surfaces by triangulation of contour lines. IBM J Res Dev, 1975, 19(1): 2~11
    [53] Lorensen W. E., Cline H. E. Marching Cubes: A high resolution 3D surface construction algorithm. Comp Graph, 1987, 21(4): 163~169
    [54] Cline H. E., Lorensen W. E. TWO algorithms for three-dimensional reconstruction of tomograms. Med Phys, 1998, 15(3): 320~327
    [55] Levoy M. Display of surfaces from volume data. IEEE CG&A, 1988, 8(3): 29~37
    [56] Max N. Optical models for direct volume rendering. IEEE Trans Vis Comp Graph, 1995, 1(2): 99~108
    [57] Schroeder W., Martin K. W., Lorensen W. The visualization toolkit: an object-oriented approach to 3-D graphics. Ed(1). Upper Saddle River, NJ, Prentice Hall PTR, 1996
    [58] Levoy M. Efficient ray tracing of volume data. ACM Transactions on Graphics, 1990, 9(3): 245~261
    [59] Parker S., Parker M., Livnat Y., et al. Interactive ray tracing for volume visualization. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(3): 238~250
    [60] Westover L. Footprint evaluation for volume rending. Computer Graphics, 1990, 24(4): 309~318
    [61] Lacroute P., Levoy M. Fast volume rendering using a shear-Warp factorization of the viewing transformation. Computer Graphics, Proceedings, 1994. 451~458
    [62] Cabral B., Cam N., Foran J. Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: Yagel R, ed. Proc of the ACM Symp on Volume Visualization'94. New York: ACM Press, 1994. 91~98
    [63] Totsuka T., Levoy M. Frequency domain volume rendering. SIGGRAPH '93, Proceedings, Anaheim, California, 1993. 271~278
    [64] Gross M. H., Lippert L., Dittrich R., et al. Two methods for wavelet-based volume rendering. Computer and Graphics, 1997, 21(2): 237~252
    [65] Hohne K. H., Plesser B., Pommert A., et al. A new representation of knowledge concerning human anatomy and function. Nat Med, 1995, 1(6): 506~511
    [66] Brinkley J. F., Wong B. A., Hinshaw K. P., et al. Design of an anatomy information system. IEEE Comp Graph Appl, 1999, 19(3): 38~48
    [67] Golland P., Kikinis R., Halle M., et al. Anatomy Browser: a novel approach to visualization and integration of medical information. Comput Aided Surg, 1999,4(3): 129~143
    [68] Li Wu, Bin Zhang, Ping Wu, et al. A high-resolution optical imaging system for obtaining the serial transverse section images of biologic tissue. Proc of SPIE, Volume 6535, 2007
    [69] Parfitt A. M., Drezner M. K., Glorieux F. H., et al. Bone histomorphometry: standardization of nomenclature, symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee. Bone Miner Res, 1987, 2(6): 595~610
    [70] Mechelli A., Price C. J., Friston K. J., et al. Voxel-based morphometry of the human brain: methods and applications. C Med Imag Rev, 2005, 26(1): 105~113
    [71] Ashburner J., Friston K. J. Voxel-based morphometry-the methods. NeuroImage, 2000, 11(6): 805~821
    [72] International Commission on Radiation Units and Measurements (ICRU). Photon, electron, proton, and neutron interaction data for body tissues. ICRU Report 46. Bethesda, MD: ICRU Publications, 1992
    [73] Woodard H. Q., White D. R. The composition of body tissues. Br J Radiaol, 1986, 59(708): 1209~1218
    [74] Jones D. G., Harrel C. R., Smith E. O., et al. Computerized threedimensional segmented human anatomy. Med Phys, 1994, 21(2): 299~302
    [75] Waters L. MCNPXTM User’s Manual, Version 2. 4. 0. Report No. LA-CP-02–408. Los Alamos National Laboratory, Los Alamos, NM, 2002
    [76] Snyder, W. S., Ford, M. R., Warner G. G. Estimates of Specific Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom. MIRD Pamphlet No. 5, Revised. New York, NY: Society of Nuclear Medicine, 1978
    [77] Judith F. Briesmeister, MCNPTM-A General Monte Carlo N-Particle Transport Code. Ver2sion 4C. LA-13709-M-Manual, 2000
    [78] International Commission on Radiological Protection (ICRP). Limits for intakes of radionuclides by workers. ICRP Publication 30. Oxford, UK: Pergamon Press, 1979
    [79] International Commission on Radiation Units and Measurements (ICRU). Measurement of dose equivalents from external photon and electron radiations.ICRU Report 47. Bethesda, MD: ICRU Publications, 1992
    [80]翟建才.简明医用原子核物理学.第1版.上海:原子能出版社, 2004
    [81] Berger M. J. Monte Carlo calculation of the penetration and diffusion of fast charged particles. In: Alder B, Fernbach S, Rotenberg M, eds. Methods in computational physics. New York: Academic Press, 1963
    [82] Goudsmit S., Saunderson J. L. Multiple scattering of electrons. Phys Rev, 1940, 57(6): 552-552
    [83] International Commission on Radiation Units and Measurements (ICRU). Dosimetry of external beta rays for radiation protection. ICRU Report 56. Bethesda, MD: ICRU Publications, 1997
    [84] International Commission on Radiological Protection (ICRP). Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (wR). ICRP Publication 92. Oxford, UK: Pergamon Press, 2003
    [85] International Commission on Radiological Protection (ICRP). The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Oxford, UK: Pergamon Press, 2007
    [86] Reynaert N., Palmans H., Thierens H. Parameter dependence of the MCNP electron transport in determining dose distributions. Med Phys, 2002, 29(10): 2446~2454
    [87] Wang R., Li X. A. Monte Carlo dose calculations of beta-emitting sources for intravascular brachytherapy: A comparison between EGS4, EGSnrc, and MCNP. Med Phys, 2001, 28(2): 134~141
    [88] Halbleib J. Structure and operation of the ITS code system. In: Jenkins T M., Nelson W R, and Rindi A. Monte Carlo Transport of Electrons and Photons. Edited by New York: Plenum Press, 1988. 249~262
    [89] Seltzer S. M. An overview of ETRAN Monte Carlo methods. In: Jenkins T M., Nelson W R, and Rindi A. Monte Carlo Transport of Electrons and Photons. New York: Plenum Press, 1988. 153~182
    [90] Storm E., Israel H. I. Photon Cross Sections from 0. 001 to 100 Mev for Elements 1 through 100. Los Alamos Scientific Laboratory report LA-3753, 1967
    [91] Hubbell J. H., Veigele W. J., Briggs E. A., et al. Atomic form factors, incoherentscattering functions, and photon scattering cross sections. J Phys Chem Ref Data, 1975, 4(3): 471~538
    [92] Everett C. J., Cashwell E. D. MCP code fluorescence-routine revision. Los Alamos Scientific Laboratory report LA-5240-MS, 1973
    [93] Cullen D. E., Chen M. H., Hubbell J. H., et al. Tables and graphs of photon-interaction cross sections from 10 eV to 100 GeV derived from the LLNL evaluated photon data library (EPDL). Lawrence Livermore National Laboratory report UCRL-50400, Vol. 6, 1989
    [94] Halbleib J. A., Kensek R. P., Mehlhorn T. A., et al. ITS version 3. 0: integrated TIGER series of coupled electron/photon Monte Carlo transport codes. Nuclear Science, 1992, 39(4): 1025~1030
    [95] Estes G., Cashwell E. MCNP1B variance error estimator. TD-6-27-78, 1978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700