纳米镍基氧化物的制备及其乙烷氧化脱氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用天然气资源直接或间接地生产乙烯可以有效的缓解因石油资源短缺而引发的矛盾。乙烷是天然气中的主要成分,以乙烷为原料生产乙烯对我国的石化工业具有重要的意义。工业上乙烷转化为乙烯主要是通过蒸汽裂解,该过程为一强吸热反应,耗能高,且受热力学平衡的限制。近年来,研究者开始致力于研究乙烷的催化氧化脱氢。但由于各种副反应的存在,且在热力学上这些副反应一般都要比乙烷氧化脱氢制乙烯反应更为有利。因此,如何在较低温度下获得较高乙烯收率具有重要的现实意义。
     纳米颗粒的氧化镍催化剂对乙烷氧化脱氢制乙烯(ODHE)反应具有较好的低温催化活性。本文首先用研磨法、直接沉淀法、尿素均匀沉淀法、溶胶凝胶法制备了纳米颗粒的NiO,并考察其乙烷氧化脱氢的催化性能,结果表明尿素均匀沉淀法制备的纳米氧化镍具有较好的催化活性,这可能与均匀沉淀法制备的催化剂颗粒较小,比表面积较大有关。在此基础上,我们用尿素沉淀法,通过简单的步骤合成了花状氧化镍,并考察了不同沉淀温度、不同沉淀时间对合成纳米片自组装的花状NiO的影响。由于其特殊的形貌具有堆积孔结构,具有较好的还原性能,因此与常规尺寸的NiO相比,花状的NiO具有较好的乙烷氧化脱氢催化活性。
     另外,由于介孔材料具有较大的比表面积、窄的孔径分布和大的孔道结构,本论文还采用了不同的制备方法合成了介孔NiO,发现在相同的反应条件下,软模板法制备的介孔NiO催化剂乙烯收率明显高于硬模板法制备的介孔NiO。因此通过软模板法选择不同表面活性剂合成了介孔NiO,并比较其乙烷氧化脱氢活性,结果表明,以十二烷基硫酸钠(SOD)为模板剂合成的介孔氧化镍具有较好的催化活性,在450℃时,可以获得25.6%的乙烯收率。在介孔氧化镍的研究基础上,添加不同的助剂,研究了双组分NiMO (M=Li、Mg、Al、Y、Zr)催化剂对乙烷氧化脱氢制乙烯活性的影响。结果表明,与单组分介孔NiO相比,除了NiLiO外,其他二组分催化剂的活性均有所提高,在450℃时,NiZrO催化剂可获得最高的乙烯收率34.6%。同时,采用XRD,氮气吸脱附,H2-TPR,及拉曼等方法对NiMO催化剂进行表征,结果表明,添加的助剂可以少量取代Ni离子进入晶格结构,从而使催化剂的还原性能和氧脱附性能有所改变,从而对其催化活性产生一定的影响。
The effective use of natural gas resources can alleviate the shortage of oil resources. As the main component of natural gas, the conversion of ethane to ethylen is significant. Ethylene is currently produced mainly by the steam cracking of ethane. The steam cracking, however, is operated at a high temperature, consumes much energy. In recent years, the catalytic oxidative dehydrogenation of ethane(ODE) to ethylene has received much attention because it is an exothermic reaction that can be carried out at a low temperature with high conversion and selectivity. The disadvantage of this reaction is the existence of a variety of side-reaction. Therefore, it is import to get a low-temperature catalyst with high performance.
     Nanoscaled nickel oxide can greatly reduce the reaction temperature of oxidation dehydrogenation of ethane. In this thesis we firstly prepared nanoscaled NiO by grinding, direct precipitation, urea homogeneous precipitation method, sol-gel method and then investigated their catalytic performance on oxidative dehydrogenation of ethane to ethylene. The results indicated the NiO catalyst prepared with urea homogeneous precipitation method showed better catalytic performance. It may be related the small granule and large surface of the catalyst. On this basis we synthesized flower-like NiO via a simple route and investigated the effect of precipitating temperature and time on the self-assembled film of a flower-like NiO. Compared with the conventional bulk NiO, the flower-like NiO showed better catalytic performance for ODHE reaction. It's attributed to its special morphology with accumulation of holes.
     Mesoporous materials have attracted a lot of attention because of their high surface area, narrow pore size distribution, and large pore volume. In this thesis, we also prepared mesoporous NiO with different method. The results indicated that under the same experimental conditions, the ethylene yield obtained on the mesoporous NiO catalyst synthesized with soft template was higher than the hard template. Therefore, different surfactant was used to prepared meso-NiO by soft template synthesis method and their catalytic activity was investigated. Thereinto the meso-NiO using SOD as surfactant showed better catalytic performance and the yield of ethylene can reach 25.6% under 450℃.
     On the basis of study of mesoporius nickel oxide, bi-component oxide NiMO (M=Li, Mg, Al, Y, Zr) catalyst was investigated on the the oxidative dehydrogenation of ethane to ethylene activity. Compared with meso-NiO, the performance of NiMO catalyst were improved catalytic activity beside NiLiO. At 450℃, the ethylene yield of 34.6% can be obtained on the NiZrO catalyst. The catalysts were characterized by XRD, nitrogen adsorption, H2-TPR, and Raman et al., and the results indicated that the M ion could substitute Ni in the lattice, and thus affect the reduction and disorption properties of the NiMO catalysts, thereby their catalytic performance on the oxidative dehydrogenation of ethane was promoted.
引文
[1]Bodke A S, Olschki D A, Schmidt L D, et al. High selectivities to ethylene by partial oxidation of ethane[J].Science,1999,285:712-715.
    [2]Mendelovici L, Lunsford J H. Parial oxidation of ethane to ethylene and acetaldehyde over a supported molybdenum catalyst[J]. J. Catal.,1985,94:37-50.
    [3]Bars A, Auroux M, Forissier, et al. Active sites of V2O5/γ-Al2O3 catalysts in the oxidative dehydrogenation of ethane[J]. J. Catal.,1996,162:250-259.
    [4]Oncepcion J M, Lopez Nieto, Perez-Pariente. Oxidative dehydrogenation of ethane on a magnesium-vanadium aluminophosphate (MgVAPO-5) catalyst[J].Catal. Lett.,1994,28:9-15.
    [5]Bars J L, Vedrine J C, Auroux A, et al. Role of surface acidity on vanadia/silica catalysts used in the oxidative dehydrogenation of ethane[J].Appl. Catal. A., 1992,88:179-195.
    [6]Chao Z S, Ruckenstein E A. Comparison of catalytic oxidative dehydrogenation of ethane over mixed V-mg oxides and over those prepared via a mesoporous V-Mg-O pathway[J].Catal. Lett.,2003,88:147-154.
    [7]Blasco T, Galli A, Lopez Nieto J M, et al. Oxidative dehydrogenation of ethane and n-butane on VOX/Al2O3 catalysts [J]. J. Catal.,1997,169:203-211.
    [8]Casaletto M P, Lisi L, Mattogno G, et al. Oxidative dehydrogenation of etane on γ-Al2O3 supported vanadyl and iron vanadyl phosphates physico-chemical charaterisation and catalytic activity[J].Appl. Catal. A.,2002,226:41-48.
    [9]Blasco T, Lopez Nieto J M. Oxidative dehydrogenation of shor chain alkanes on supported vanadium oxide catalysts[J].Appl.Catal.A.,1997,157:17-142.
    [10]Klose F, Joshi M, Hamel C, et al. Selective oxidation of ethane over a VOX/γ-Al2O3 catalyst-investigation of the reaction network[J].Appl. Catal. A,2004,260:101-110.
    [11]Thorsteinson E M, Wilson T P, Young T P, et al. The oxidative dehydrogenation of ethane over catalysts containing mixed oxides of molybdenum and vanadium[J].J. Catal.,1978,52:116-132.
    [12]Huff M, Schmidt L D. Ethylene formation by oxidative dehydrogenation of ethane over monoliths at very short-contact times[J].J. Phys. chem. B,1933, 97:11815-11822.
    [13]Huff M, Tormiainen P M, Schmidt L D. Partial oxidation of alkanes over noble-metal coated monoliths[J]. Catal Today,1944,21:113-128.
    [14]张玉东,李树本,刘育等.天然气中甲烷和乙烷直接转化制乙烯[J].天然气化工,1998,23(2):1-5.
    [15]Ducarme V, Martin G A. Low temperature oxidative dehydrogenation of ethane over Ni-based catalysts[J].Catal. Lett.,1994,23:97-101.
    [16]Ducarme V, Swaan H M, Thaib A, et al. Oxidative dehydrogenation of ethane at low temperature over nickel catalysts:influence of morphology and chemical state of the solid during reaction [J]. Stud. Surf. Sci.Catal.,1997,107:361-366.
    [17]Schuurman, Ducarme V, Chen T, et al. Low temperature oxidative dehydrogenation of ethane over catalysts based on group VIII metals [J].Appl.Catal.A,1997,163: 227-235.
    [18]Zhang X J, Liu J X, Jing Y, et al. Investigation of Ni-based alumina-supported catalysts for the oxidation dehydrogenation of ethane to ethylene:structural characterization and reactivity studies[J].J. Catal.,2005,231:159-171.
    [19]吴瑛,陈铜,操小栋等.纳米NiO催化乙烷低温氧化脱氢制乙烯[J].催化学报,2003,24(6):403-404.
    [20]Heracleous E, Lee A F, Wilson K, et al. Investigation of Ni-based alumina-suppored catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies[J]. J. Catal.,2005,231:129-171.
    [21]Heracleous E, Lemonidou A A. Ni-Nb-O mixed oxides as highly active and selective catalysts for ethane production via ethane oxidative dehydrogenation. Part Ⅱ:Mechanistic aspects and kinetic modeling[J]. J. Catal.,2006,237:175-189.
    [22]吴彬福,吴廷华,吴瑛.纳米氧化镍的乙烷氧化脱氢催化性能的研究[J].广州化工,2008,36(1):28-23.
    [23]孙建,余林,郝志峰等.乙烷氧化脱氢制乙烯反应中制备方法及助剂对镍基催化剂性能的影响[J].分子催化,2007,21(3):209-214.
    [24]陈铜,李文钊,于春英.氧化镍与载体相互作用对乙烷氧化脱氢的影响[J].物理化学学报,1999,15(7):613-618.
    [25]Nakamura K 1, Miyake T, Konishi T, et al. Oxidative dehydrogenation of ethane to ethylene over NiO loaded on high surface area MgO[J].J Mol Catal A-Chem,2006,260(1-2):144-151.
    [26]Guilory J P,. Kolts J H. Catalyst composition and method for the oxidative conversion of organic compounds: 欧洲, EP0205765A2 [P]. Dec.30,1986.
    [27]Morales E, Lunsford J H. Oxidative dehydrogenation of ethane over a lithiumpromo-ted Magnesium oxide catalyst [J]. J.Catal.,1989,118:255-265.
    [28]蔡炳新,郑小明.Li+/MgO上乙烷氧化脱氢制乙烯的影响因素[J].石油化工,1955,24:772-779.
    [29]蔡炳新,郑小明.Li+/MgO上乙烷氧化脱氢制乙烯的研究(Ⅱ):催化作用机理[J].高等学校化学学报,1955,16(6):929-932.
    [30]Ji L, Liu J S,Chen X.Oxidative dehydrogenation of ethane over lithiumcismuth-calcium oxide catalysts [J]. Appl. Catal. A,1994,114:207-214.
    [31]袁晓红,赵玉宝,金燕仙等.LiCl/SO42-ZrO2催化剂上乙烷氧化脱氢制乙烯[J].催化学报,2006,27(1):79-85.
    [32]Kennedy E M, Cant N W. Comparison of the oxidative dehydrogenation of ethane and oxidative coupling of methane over rare earth oxides[J]. Appl. Catal.A,1991,75: 321-330.
    [33]Choudhary V R, Rane V H. Pulse microreactor studies on conversion of methane, ethane, and ethylene over rare earth oxides in the absence and presence of freeoxygen[J].J.Catal.,1992,135:310-316.
    [34]Au C T, Chen K D, Dai H X, et al. Oxidative dehydrogenation of ethane to etnene over BaO and BaBr2-modified Ho2O3 catalysts[J]. J. Catal.,1998,179:300-308.
    [35]Dai H X, Liu Y W, Ng C F, et al. The performance and characterization of BaO-and BaX2 (X=F,Cl,and Br)-promated Y2O3 catalysts for the selective oxidation of ethane to ethane [J]. J. Catal.,1999,187:59-76.
    [36]Dai H X, Ng C F, Au C T. Raman spectroscopic and EPR investigations of oxygen species on SrCl2-promoted Ln2O3 (Ln=Sm and Nd) catalysts for ethane selective oxidation to ethane[J]. Appl. Catal. A,2000,202:1-15.
    [37]Dai H X, Ng C F, Au C T. SrCl2-promoted REOx(RE=Ce,Pr,Tb) catalysts for the selective oxidation of ethane:a study on performance ad defect structures for ethaneformation[J].J.Catal.,2001,199:177-192.
    [38]陈铜,李文钊,于春英等.乙烷在钛酸盐复合氧化物上的氧化脱氢Ⅰ.锂掺杂对催化性能的影响[J].催化学报,1997,18(2):120-124.
    [39]李露,李英春,解从霞等.中孔分子筛催化剂的研究进展[J].现代化工2001,21(6):20-24.
    [40]袁艳萍,翁维正,李建梅等.乙烷氧化脱氢制乙烯纳米Sm2O3催化剂的研究[J].厦门大学学报(自然科学版),2003,42(2):208-212.
    [41]Zhong W, Dai H X, Ng C F, et al. A comparison of nanoscale and large-size BaCl2-modified Er2O3 catalysts for the selective oxidation of ethane to ethylene [J]. Appl. Catal. A,2000,203:239-250.
    [42]操小栋,陈铜,吴瑛等.锆促进纳米氧化镍催化剂的制备及其乙烷氧化脱氢制乙烯的催化性能[J].催化学报,2005,26(2):148-152.
    [43]Banares M A. Supported metal oxide and other catalysts for ethane conversion: a review [J]. Catal. Today,1999,51:319-348.
    [44]Kubacka A, Wloch E, Sulikowski B, et al. Oxidative dehydrogenation of propane on zeolite catalysts[J].Catal. Today,2000,61:343-352.
    [45]Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J].J. catal.,1989,115(2):301-309.
    [46]吉文欣,李永昕NiO/SnO2-ZrO2催化剂的制备及甲烷燃烧催化性能的研究[J].燃烧化学学报,2003,31(1):22-26,
    [47]Wang D B, Song C X, Hu Z S, et al. Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures[J].J. Phys.Chem.,2005,109(3):1125-1129.
    [48]Justin P, Sumantn K M, Rangn R. Tuning of Capacitance Behavior of NiO Using Anionic, Cationic, and Nonionic Surfactants by Hydrothermal Synthesis [J]. J. Phys. Chem. C.,2010,114:5203-5210.
    [49]Zhu Z F, Wei N, Liu H, et al. Microwave-assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO [J]. Adv Powder Technol.,doi:10.1016/j.apt.2010.06.008.
    [50]张小细.镍、氧化镍及氢氧化镍纳米材料的制备和表征[硕士论文].合肥:合肥工业大学.2006.
    [51]Sing K S W, Everett D H, Haul R A W. Physical and biophysical chemical division commission on colloid and surface chemistry including catalysis.Pure Appl Chem, 1985,57:603-619.
    [52]Kresge C T, Leonowicz M E, Beck J S. Ordered Mesoporous Molecular-Sieves Synthesiszed by a Liquid-Crystal Template Methanism[J].Nature,1992,359: 710-712.
    [53]Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants[J]. Science,1995,269:1242-1244.
    [54]Inumaru K, Ishihara T, Yamanaka S,et al[J]. Highly Active Solid Acid Catalysts Composed of the Keggin-Type Polyoxometalate H3PW12O40 Immobilized in Hydrophobic Nanospaces of Organomodified Mesoporous Silica[J]. Angew Chem Int Ed,2007,46:7625-7628.
    [55]Rhijn W M V, Bossaert W D, Jacobs P A. Sulfonic acid functionalised ordered mesoporous materials as catalysts forcondensation and esterification reactions [J]. Chem. Commun.,1998:317-318.
    [56]Yuan Q, Yin A X, Yan C H, et al. Facile Synthesis for Ordered Mesoporous-Aluminas with High Thermal Stability[J]. J. Am. Chem. Soc,2008,130: 3465-3472.
    [57]Bodke A S, Olschki D A, Schmidt L D, et al. High selectivities to ethylene by partial oxidation of ethane [J].Science,1999,285:712-715.
    [58]Banerjee S, Santhanam A, Dhathathreyan A, et al. Synthesis of Ordered Hexagonal Mesostructured Nickel Oxide[J].Langmuir,2003,19:5522-5525.
    [59]Xing W, Li L, Yan Z F, et al. Synthesis and Characterization of Mesoporous Nickel Oxide and Its Application to Electrochemical Capacitor[J].Acta Chim Sin,2005,63:1775-1781.
    [60]Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes[J]. Chem. Commun.2003,17:2136-2137.
    [61]Kim T W, Kleitz.F, Paul B, et al. MCM-48-like Large Mesoporous Silicas with Ta ilored Pore Structue:Facile Synthesis Domain in a Ternary Triblock Copolymer-But anol-Water system[J]. J. Am. Chem. Soc.2005,127:7601-7610.
    [62]Feng J, Adrian H H, Andrew H. Synthesis of Ordered Mesoporous NiO with Crystalline Walls and a Bimodal Pore Size Distribution [J]. J. Am. Chem. Soc.2008,130:5262-5266
    [63]Banerjee S, Santhanam A, Dhathathreyan A,et al. Synthesis of Ordered Hexagonal Mesostructured Nickel Oxide [J].Langmuir,2003,19:5522-5525.
    [64]Xing W, Li L, Yan Z F, et al. Synthesis and Characterization of Mesoporous Nickel Oxide and Its Application to Electrochemical Capacitor[J]. Acta Chim Sin, 2005,19:1775-1781.
    [65]Li J H, Wang C C, Wan H L, et al. Oxidative Dehydrogenation of Ethane to Ethylene over Mesoporous Ni-Based Catalysts[J].Chin J Catal,2009,30:714-716.
    [66]陈铜,李文钊,于春英.氧化镍与载体相互作用对乙烷氧化脱氢的影响[J].物理化学学报,1999,15(7):613-618.
    [67]李建辉,李仁贵,汪彩彩等.介孔Ni基催化剂上乙烷氧化脱氢制乙烯[J].催化学报,2009,30(8):714-716.
    [68]Li J H, Wang C C, Wan H L, et al. Mesoporous nickel oxides as effective catalysts.for oxidative dehydrogenation of propane to propene[J].Appl Catal, 2010,382:99-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700