3.0T磁共振功能成像对正常胰腺及胰腺癌的评估价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:3.0T MR动态增强扫描对正常胰腺及胰腺癌定量分析研究
     目的:利用3.0T MR快速三维动态增强扫描序列所得数据,对正常胰腺及胰腺癌的灌注过程进行定量分析研究,探讨其对胰腺癌诊断的临床应用价值。
     材料与方法:对43例经病理证实的胰腺癌患者(胰腺癌组)及37例非胰腺疾病患者(对照组)行全胰腺LAVA九期动态增强序列扫描,将所得数据传至ADW 4.2工作站处理,分别测量对照组胰腺的头、体、尾及胰腺癌组病变区域及非病变区域的30s强化率(SER30)、90 s强化率(SER90)、曲线下面积(PEI)、达峰时间(TTP)及最大强化斜率(MSI),并使用SPSS 11.5统计软件进行组内及组间各项参数的比较。
     结果:对照组胰腺头、体、尾的SER30、SER90、PEI、TTP及MSI差异均无统计学意义。胰腺癌组病变区与非病变区的SER30、PEI、TTP、MSI均有显著性差异,SER90不具有统计学差异。胰腺癌组非病变区与对照组对应区域的SER90及TTP有统计学差异,两组的SER30不具有统计学差异。
     结论:正常胰腺的不同部位间无灌注差异。胰腺癌病变区域与非病变区域的灌注差异可以反映癌组织浸润范围。胰腺癌非病变区域与正常胰腺间TTP的差异可能反映潜在病变的可能。
     第二部分:3.0 T MR在体氢质子波谱分析对正常胰腺及胰腺癌代谢特征的研究
     目的:利用3.0T MR在体氢质子波谱分析技术,分析正常胰腺及胰腺癌的代谢特征。
     材料与方法:选取29例经病理证实的胰腺癌患者(胰腺癌组;胰头癌19例,胰体尾癌10例),其中男14例,女15例,中位年龄55岁;27例非胰腺疾病患者(对照组),其中男15例,女12例,中位年龄56岁。采用GE公司的3.0 T磁共振扫描仪,分别对胰腺癌组的病变区与非病变区及对照组的胰头和胰体尾设定感兴趣区,并行单体素1H-MRS,将所得数据传至ADW 4.2工作站处理,分别测得胰腺癌组及对照组的各感兴趣区的脂肪酸(FA,5.4 ppm)、总胆碱复合物(t-Cho,3.2 ppm)、脂肪(Lip,1.3 ppm)及内生水(InW,4.7 ppm)的曲线下面积,并计算各感兴趣区的FA/InW、t-Cho/InW及Lip/InW的比值,使用SPSS 11.5统计软件对组内及组间所得各项比值进行比较。
     结果:①对照组胰头区和胰体尾区FA/InW及Lip/InW的比值差异无统计学意义,t-Cho/InW的比值胰头区小于胰尾区,且有显著差异。②胰腺癌组病变区与非病变区的FA/InW及Lip/InW的比值有显著差异;19例胰头癌的t-Cho/InW的比值,胰头病变区小于胰体尾非病变区,且有显著差异;10例胰尾癌的t-Cho/InW的比值差异无统计学意义。③胰腺癌组非病变区与对照组对应区域所有参数的比值的差异均无统计学意义。
     结论:3.0T MR1H-MRS正常胰腺及胰腺癌的代谢特点:①正常胰腺的代谢特征:t-Cho胰头区小于胰体尾区,FA及Lip无明显差异。②胰腺癌的代谢特征是:FA、t-Cho及Lip均在病变区减低。③胰腺癌非病变区与正常胰腺无明显代谢差异,提示非病变区相对正常,对外科手术范围有提示作用。
Part I:
     Quantitative analysis of normal pancreas and pancreatic adenocarcinoma with dynamic contrast-enhanced MR imaging on a 3.0T system
     Purpose:To quantify the perfusion parameters of normal pancreas and pancreatic carcinoma with three-dimension (3D) fast spoiled gradient echo dynamic contrast enhanced (DCE) MRI on 3.0T MR system, and to assess the value of 3D DCE-MRI in the diagnosis of pancreatic carcinoma.
     Materials and methods:Forty-three patients with pathology verified pancreatic carcinoma and thirty-seven control subjects with normal pancreas (without pancreatic diseases) underwent DCE-MRI with 3D LAVA sequence of ten phases. The data were processed on ADW4.2 workstation. The perfusion parameters of the head, body and tail of normal pancreas, together with lesion and non-lesion area of pancreatic carcinoma were measured and statistically analyzed, including signal enhancement ratio at 30 seconds after injection (SER30), signal enhancement ratio at 90 seconds after injection(SER9o), positive enhancement integral (PEI), time to peak (TTP) and maximum slope of increase (MSI).
     Results:There was no significant perfusion difference among head, body or tail of normal pancreas. The difference of SER30, PEI, TTP and MSI between lesion and non-lesion region of carcinous pancreas was significant. The TTP between normal pancreas and the non-lesion region of carcinous pancreas was significantly different.
     Conclusion:Normal pancreas has no regional perfusion difference. The data from DCE-MRI provide reliable information for the diagnosis of pancreatic cancer, and for the assessment of the invasion of pancreatic carcinoma. The difference in TTP between the normal pancreas and non-lesion region of carcinous pancreas suggest the existing of potential lesions.
     Part II:
     The metabolic analysis of normal pancreas and pancreatic adenocarcinoma by in vivo proton magnetic resonance spectroscopy at 3.0 T
     Purpose:To analyze metabolic features of normal pancreas and pancreatic adenocarcinoma by in vivo proton MRS at 3.0 T.
     Materials and methods:27 control subjects with normal pancreas (without pancreatic diseases) and 29 patients with pathology verified pancreatic adenocarcinoma and matching age and sex underwent single-voxel1H-MRS on a 3.0T MR system (GE Healthcare, HDxt) with 8-channel body coil. Breath-hold PRESS with TE/TR= 35ms/1500ms was used. The peaks area at 1.3 (lipid, Lip),3.2 (total choline, t-Cho) and 5.4 (fatty acids, FA) ppm of the head and body-tail in normal pancreas, together with lesion and non-lesion area in pancreatic carcinoma were measured by SAGE and their ratio to the peak area of none saturated (internal water, InW) at 4.7 ppm was calculated. Statistic analysis was made between different locations.
     Results:1) In normal pancreas, there were no statistical differences in the ratios of FA/InW and Lip/InW respectively, but t-Cho/InW of body-tail area was greater than that of head.2) In the pancreatic carcinoma, there was significant difference of the ratios in FA/InW and Lip/InW between lesion and non-lesion region respectively. There was no difference in the ratios of t-Cho/InW between lesion and non-lesion region in pancreatic body-tail cance. But in pancreatic head cancer, the ratio of t-Cho/InW in carcious region was smaller than that in non-lesion region.3) There were no statistical differences in the ratios of FA/InW、t-Cho/InWand Lip/InW between normal pancreas and non-lesion region in pancreatic cancer (head vs head, body-tail vs body-tail).
     Conclusion:The metabolic features of the pancreatic carcinoma including:a) in normal pancreas, t-Cho of body-tail was greater than that of head. b) the FA, t-Cho and Lip were decreased in the carcious region. c) no difference can be found between the normal pancrease and the non-leision region of pancreatic carcinoma.
引文
1. Schima W, Ba-Ssalamah A, Kolblinger C, et al. Pancreatic adenocarcinoma [J].Eur Radiol,2007,17 (3):638-649.
    2. Liang Zhong. Magnetic resonance imaging in the detection of pancreatic neoplasms. Journal of Digestive Diseases 2007,8 (5):128-132.
    3. Pandharipande PV, Kriusky GA, Rusinek H, et al. Perfusion imaging of the liver: current challenges and future goals. Radiology,2005,234 (3):661-673.
    4. White MJ, O Gorman RL, Charles-Edwards EM, et al. Parametric mapping of the hepatic perfusion index with gadolinium-enhanced volumetric MRI. Br J Radiol,2007, 80(950):113-120.
    5.欧阳翼,谢传淼,伍尧泮,等.动态增强MRI定量参数及最大线性斜率比值对鉴别乳腺良恶性疾病的价值.中华放射学杂志,2008,42(6):569-572.
    6. Bali MA,Metens T, Denolin V, et al. Pancreatic perfusion:Noninvasive quantitative assessment with dynamic contrast-enhanced MR imaging without and with secretin stimulation in healthy volunteers-initial results. Radiology,2008,247 (1):115-121.
    7.张艳,袁军,李健,等.正常胰腺及胰腺癌MRI灌注成像的初步研究.实用放射学杂志,2008,24(9):1215-1217.
    8.王中秋,黎介寿,卢光明,等.胰腺癌的CT增强和瘤体微血管密度及病理分级的相关性研究.中华医学杂志,2003,83(21):1882-1886.
    9.张晶,田建明,郝强,等.磁共振灌注成像在胰腺癌中的应用初探.中国医学计算机成像杂志,2008,14(6):569-572.
    1. Schima W, Ba-Ssalamah A, Kolblinger C, et al. Pancreatic adenocarcinoma [J]. Eur Radiol,2007,17 (3):638-649.
    2. Shah N, Sattar A, Benanti M, et al. Magnetic Resonance Spectroscopy as an Imaging Tool for Cancer:A Review of the Literature [J]. JAOA,2006,106 (1):23-26.
    3. Soriano A, Castells A, Ayuso C, et al. Preoperative staging and tumor resectability assessment of pancreatic cancer:prospective study comparing endoscopic ultrasonography, helical computed tomography, magnetic resonance imaging, and angiography [J]. American Journal of Gastroenterology,2004,99 (3):492-501.
    4. Zhong L. Magnetic resonance imaging in the detection of pancreatic neoplasms [J]. Journal of Digestive Diseases 2007,8 (3):128-132.
    5. Fang F, He XH, Deng HW, et al. Discrimination of metabolic profiles of pancreatic cancer from chronic pancreatitis by high-resolution magic angle spinning 1H nuclear magnetic resonance and principal components analysis [J]. Cancer Sci,2007,98 (11): 1678-1682.
    6. Erturk SM, Alberich-Bayarri A, Herrmann KA, et al. Use of 3.0-T MR imaging for evaluation of the abdomen [J]. RadioGraphics 2009,29 (6):1547-1563.
    7. Kwock LA. Tuning in on tumor activity with proton MR spectroscopy [J]. AJNR Am J Neuroadiol,2001,22 (5):807-808.
    8. Gao XX, Xu YZ, Zhao MX, et al. Progress in nuclear magnetic resonance spectroscopy for early cancer diagnosis [J]. Guang Pu Xue Yu Guang Pu Fen Xi,2008, 28(8):1942-1950.
    9.马霄虹,周纯武,张红梅.磁共振功能成像在胰腺癌诊断中的应用及新进展[J].癌症进展,2009,7(6):605-609.
    10. Kaplan O, Kushnir T, Askenazy N, et al. Role of nuclear magnetic resonance spectroscopy (MRS) in cancer diagnosis and treatment:31P,23Na, and 1H MRS studies of three models of pancreatic cancer[J]. Cancer Research,1997,57 (8):1452-1459.
    11. Murphy M, Loosemore A, Clifton AG, et al. The contribution of proton magnetic resonance spectroscopy (1HMRS) to clinical brain tumour diagnosis [J]. Br J Neurosurg, 2002,16 (4):329-334.12. Yeung DK, Cheung HS, Tse GM. Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy-initial results [J]. Radiology,2001,220(1):40-46.
    13. Di Costanzo A, Trojsi F, Tosetti M, et al. Proton MR spectroscopy of the brain at 3 T: an update [J]. Eur Radiol,2007,17 (7):1651-62.
    14. Jacobs MA, Barker PB, Bottomley PA, et al. Proton magnetic resonance spectroscopic imaging of human breast cancer:a preliminary study [J]. J. Magn. Reson. Imaging,2004,19(1):68-75.
    15. Cho SG, Lee DH, Lee KY, et al. Differentiation of chronic focal panreatitis from pancreatic carcinoma by in vivo proton magnetic resonance spectroscopy [J]. J Comput Assist Tomogr,2005,29 (2):163-169.
    16.王秋实,刘辉,梁长虹.33例活体肝脏磁共振氢质子波谱分析[J].山东医药,2007,47 (23):67-68.
    17. Fischbach F, Schirmer T, Thormann M, et al. Quantitative proton magnetic resonance spectroscopy of the normal liver and malignant hepatic lesions at 3.0 Tesla [J]. Eur Radiol,2008,18 (11):2549-2558.
    18. Kuo YT, Li CW, Chen CY, et al. In vivo proton magnetic resonance spectroscopy of large focal hepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheter arterial chemoembolization using 3.0-T MR scanner[J]. J. Magn. Reson. Imaging,2004,19 (5):598-604.
    19. Podo F. Tumour phospholipid metabolism [J]. NMR Biomed,1999,12 (7):413-439.
    20. Janardhan S, Srivani P, Narahanri Sastri G. Choline kinase:an important target for cancer [J]. Current Medical Chemistry,2006,13 (10):1169-1186.
    21. Coakley FV, Kurhanewicz J, Lu Y, et al. Prostate cancer tumor volume:measurement with endorectal MR and MR spectroscopic imaging [J]. Radiology,2002,223 (1):91-97.
    22. Bartella L, Huang W. Proton (1H) MR spectroscopy of the breast [J]. RadioGraphics, 2007,27 (Suppl 1):S241-S252.
    23. Faria JF, Goldman SM, Szejnfeld J, et al. Adrenal masses:Characterization with in vivo proton MR spectroscopy-initial experience [J]. Radiology,2007,245 (3):788-797.
    24. Nikolaus M, Loening AM, Chamberlin AG, et al. Quantification of phosphocholine and glycerophosphocholine with 31P edited 1H NMR spectroscopy [J]. NMR Biomed, 2005,18 (7):413-420.
    25.里德等主编,武忠弼主译.里德病理学[M].上海:上海科学技术出版社,2007:737-740.
    26.马正中,阚秀,刘树范.诊断细胞病理学[M].郑州:河南科学技术出版社,2000:608-611.
    27. Esslimani-Sahla M, Thezenas S, Simony-Lafontaine J, et al. Increased expression of fatty acid synthase and progesterone receptor in early steps of human mammary carcinogenesis [J]. Int J Cancer,2007,120 (2):224-229.
    28. Hochachka PW, Rupert JL, Goldenberg L, et al. Going malignant:the hypoxia-cancer connection in the prostate [J]. Bioessays,2002,24 (8):749-757.
    1. Schima W, Ba-Ssalamah A, Kolblinger C, et al. Pancreatic adenocarcinoma [J]. Eur Radiol,2007,17 (3):638-649.
    2. Wang L, Yang GH, Lu XH, et al. Pancreatic cancer mortality in China(1991-2000) [J]. World J Gastroenterol,2003,9(8):1819-1823.
    3. Hirshberg B, Libutti SK, Alexander HR, et al. Blind distal Pancreatectomy for occult insulinoma, an inadvisable Procedure [J]. J Am Coll Surg,2002,194(6):761-764.
    4. Sugiyama M, Abe N, Tokuhara M, et al. Magnetic resonance cholangiopancreatography for postoperative follow-up of intraductal papillary-mucinous tumors of the pancreas [J]. Am J Surg,2003,185(3):251-255.
    5.张晓鹏.在宏观静止中感受微观运动:磁共振扩散加权成像临床应用的若干认识[J].中国医学影像技术,2005,21(12):1795-1798.
    6. Katahira K. DWIBS technique yields highly sensitive images in MR whole body scans [J]. Field Strength,2006,29:16-18.
    7. Burdette J, Durden D, Elster A, et al. High b-value diffusion-weighted MRI of normal brain [J]. J Computer Assistant Tomogr,2001,25(4):515-519.
    8.马婉玲,宦怡.磁共振扩散加权成像在恶性肿瘤诊断中的应用进展[J].国际医学放射学杂志,2008,31(4):271-275.
    9.李亚敏,郭顺林,雷军强.磁共振扩散加权成像在胰腺癌的初步应用[J].实用放射学杂志,2007,23(8):1053-1059.
    10. Noriaki M, Hidemasa U, Hirohiko K, et al. Apparent Diffusion Coefficient in Pancreatic Cancer:Characterization and Histopathological Correlations [J]. J Magnetic Resonance Imaging,2008,27:1302-1308.
    11.史丽静,郭勇,林伟,等.MR扩散加权成像使用不同b值测量腹部脏器ADC值的比较[J].放射学实践,2008,23(3):316-319.
    12. Ichlkawa T, Erturk SM, Motosugi U, et al. High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma:preliminary result [J]. AJR Am J Roentgenol,2007, 188 (2):409-414.
    13. Matsuki M, Inada Y, Nakai G, et al. Diffusion-weighted MR imaging of pancreatic carcinoma [J]. Abdom Imaging,2007,32 (4):481-483.
    14. Nagihan I, Arzu A, Gur A, et al. Diffusion-weighted Imaging in the Differential Diagnosis of Cystic Lesion of the Pancreas [J]. AJR,2008,191:1115-1121.
    15. Fattahi R, Balci NC, Perman WH, et al. Pancreatic Diffusion-Weighted Imaging (DWI):Comparison Between Mass-Forming Focal Pancreatitis (FP), Pancreatic Cancer (PC), and Normal Pancreas [J]. J Magnetic Resonance Imaging,2009,29 (2):350-356.
    16.廖江,陈韵彬.磁共振扩散加权成像在腹部实质脏器肿瘤诊断中的应用[J].国际医学放射学杂志,2008,31(2):125-129.
    17. Niwa T, Ueno M, Ohkawa S, et al. Advanced pancreatic cancer:the use of the apparent diffusion coefficient to predict response to chemotherapy [J]. The British Journal of Radiology,2009,82 (973):28-34.
    18.任莹,郭启勇.胰腺的CT和MRI灌注成像进展[J].放射学实践,2006,21(5)433-434.
    19.张艳,袁军,李健,等.正常胰腺及胰腺癌MRI灌注成像的初步研究.实用放射学杂志[J],2008,9,24(9):1215-1217.
    20. Tajima Y, Kuroki T, Tsutsumi R, et al. Pancreatic carcinoma coexisting with chronic pancreatitis versus tumor-forming pancreatitis:dignostic utility of the time-signal intensity curve from dynamic contrast-enhanced MR imaging [J]. World J Gastroenterol, 2007,13 (6):858.
    21. Naishadh S, Ayesha S, Michael B, et al. Magnetic Resonance Spectroscopy as an Imaging Tool for Cancer:A Review of the Literature [J]. JAOA,2006,106(1):23-26.
    22. Cho SG, Lee DH, Lee KY, et al. Differentiation of chronic focal panreatitis from pancreatic carcinoma by in vivo proton magnetic resonance spectroscopy [J]. J Comput Assist Tomogr,2005,29 (2):163.
    23. Kaplan O, Kushnir T, Askenazy N, et al. Role of nuclear magnetic resonance spectroscopy(MRS) in cancer diagnosis and treatment:31P,23Na, and 1H MRS studies of three models of pancreatic cancer [J]. Cancer-Res,1997,57 (8):1452.
    24. Smith ICP, Stewart LC. Progress in Nuclear Magnetic Resonance Spectroscopy [J].2002,40:1.
    25. Valonen PK, Griffin JL, Lehtimaki KK, et al. High-resolution magnetic-angle-spinning 1H NMR spectroscopy reveals different responses in choline containing metabolites upon gene therapy-induced programmed cell death in rat brain glioma [J]. NMR in Biomedieine,2005,18 (4):252-259.
    26. Khan SA, Cox U, Thillainayagam AV, et al. Proton and phosphorus-31 nuclear magnetic resonace spectorscopy of human bile in hepatopancreatic obiliary cancer [J]. Eur J Gatroenteorl Hepatol,2005,17 (7):733.
    27. Del FC, Zanardi R, Nortlele K, et al. Advances in imaging for pancreatic disease [J]. Curr Gastroenterol Rep,2002,4 (2):140-148.
    28.吴苾,宋彬.影像学新技术在消化系统的临床应用.中国普外基础与临床杂志[J],2007,14(2):222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700