喹喔啉/喹唑啉类磷脂酰肌醇3-激酶(PI3K)小分子抑制剂的设计、合成和活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤正成为威胁人类健康的头号疾病。临床应用的直接作用于细胞有丝分裂或DNA合成修复等过程的传统抗肿瘤药物往往存在疗效不佳、毒副作用大等缺点。作用于细胞内信号通路上关键靶点的小分子抑制剂是一类新型的抗肿瘤药物。这些小分子抑制剂和传统的肿瘤治疗药物相比往往具有更好的疗效和较小的毒副作用。磷脂酰肌醇3-激酶(P13K)是细胞内参与调控包括细胞增殖、存活、生长、转移、凋亡等重要生命活动的一类脂激酶。大量研究表明P13K家族中的α亚型和肿瘤的发生发展关系最为密切,是有希望的肿瘤治疗靶点。近年来,P13K小分子抑制剂由于其在肿瘤治疗方面的潜在应用前景而备受关注。
     本文根据文献报道的P13K抑制剂的结构特征及它们与P13K的作用模式,结合该位点抑制剂中出现的喹喔啉结构母核,利用理性药物设计原理,通过在喹喔啉环的2位引入不同的芳胺片段并在喹喔啉环的3位引入不同的芳磺酰基或芳磺酰肼基片段,设计、合成了53个结构全新的N-芳基喹喔啉胺类衍生物。体外抗肿瘤活性筛选结果表明:大部分化合物的细胞增殖抑制活性优于阳性对照,其中部分化合物(如化合物1-27、1-51和1-61)对部分受试细胞株增殖抑制的IC50达到了纳摩尔级。初步构效关系研究显示,3-芳磺酰基取代优于3-芳磺酰肼基取代;2-芳胺基芳环上引入甲氧基、氨基、羟基等取代基时对活性有利。目标化合物的P13Ka抑制实验表明,化合物1-27(IC50:0.07μM)和化合物1-61(IC50:0.47μM)具有较强的P13Ka抑制活性。
     在上述实验基础上,进而利用计算机辅助药物设计方法,通过Catalyst软件包构建了P13Kα的药效团模型Hypol,并对数据库进行虚拟筛选。根据筛选得到的高活性吗啉喹喔啉类化合物WR01(2-30)的结构特征,结合生物电子等排和类似物设计等方法,进一步设计合成了93个2-脂环胺取代的喹喔啉类化合物。体外细胞抗肿瘤活性测试的结果表明,大部分化合物显示了优于阳性对照的细胞增殖抑制活性。构效关系研究表明喹喔啉2位不同的脂环胺片段对活性有不同影响:吡咯烷和氢化异喹啉环取代时活性较差、吗啉环取代时活性较好、羟基哌啶和各种哌嗪环取代时活性最好,达纳摩尔级。PI3Kα抑制实验表明,羟基哌啶喹喔啉类化合物(如2-72,IC50:0.077μM;2-75,IC50:0.025μM)和各种哌嗪喹喔啉类化合物显示了良好的PI3Ka抑制活性,以上结果和药效团Hypol预测的活性基本一致,验证了Hypol的可靠性。Akt蛋白磷酸化抑制实验表明,化合物2-75显示了明显的Akt蛋白磷酸化抑制作用,再次证明了该化合物是通过作用于PI3K信号通路而发挥其抗肿瘤活性的。以上结果表明化合物2-75是有潜力的P13Kα中制剂。
     此外,本文根据文献报道的2-苯基-4-吗啉基喹唑啉类PI3K抑制剂,利用拼合原理,通过在吗啉喹唑啉母核的6位引入芳亚甲胺侧链、芳磺酰胺基侧链、吡咯烷二酮氨基侧链和马来酰亚胺基侧链共设计合成了五类49个结构新颖的吗啉喹唑啉类衍生物。体外抗肿瘤活性测试结果表明,喹唑啉2位苯基的存在有利于抗肿瘤活性的提高;芳磺酰胺基侧链取代的化合物活性好于芳亚甲胺侧链取代的化合物;吡咯烷二酮氨基侧链取代的化合物活性中等;具有马来酰亚胺基侧链的化合物显示了良好的细胞增殖抑制活性(如化合物3-68和3-69)。该研究为喹唑啉类抗肿瘤药物的开发提供了新的思路。
Cancer is becoming the number-one threat to human health worldwide. Traditional anti-cancer agents, which directly interfere with mitosis, DNA synthesis, and repair systems, are often connected with drawbacks such as low efficacy and high toxicity. Small-molecule inhibitors targeting key knots of cellular signaling pathways are new class of anti-cancer agents. These small-molecule inhibitors may be more effective than current anti-cancer treatments and less harmful to normal cells. Phosphoinositide3-kianses (PI3Ks) are family of lipid kinases that regulate crucial cellular events such as proliferation, survival, growth, metastasis and apoptosis. Extensive studies have established the close connection between tumor genesis&progression and the a isoform of PI3Ks, making PI3Kα a promising target for cancer treatment. Consequently, the research on small-molecule PI3K inhibitors has attracted considerable attention in recent years.
     Enlightened by the structural features and binding mode of PI3K inhibitors, using the quinoxaline core presented in reported inhibitors, target compounds were constructed through the introduction of different arylamino moiety into the2-position and either arylsulfonyl or arylsulfonylhydrazide group at the3-position of the quinoxaline core. Herein, series of53novel N-arylquinoxalinylamine derivatives were synthesized and biologically evaluated for their in vitro anti-tumor activities, the result of which showed that most target compounds exhibited better anti-proliferation activity against tested cell lines than that of the positive control and some compounds (e.g.1-27,1-51and1-61) exhibited nanomolar potency. Preliminary SAR study revealed that compounds with a3-arylsulfonyl substituent exhibited better activity than that with a3-arylsulfonylhydrazide substitutent and the introduction of methoxy, amino, and hydroxyl group at the2-arylamino group was beneficial for potency. Enzymatic assay against PI3Ka showed that compound1-27(IC50:0.07μM) and compound1-61(IC50:0.47μM) exhibited potent PI3Ka inhibitory activity.
     Based on the results obtained above, a PI3Ka pharmacophore model Hypol was established using Catalyst software package, followed by virtual screening against databases. Then series of93aliphatic-cyclic-aminoquinoxalines were designed and synthesized based on the structural features of a virtual-screening identified potent morpholinoquinoxaline compound WR01(2-30) according to principles of bioisosterism and design of analogues. In vitro evaluation against human cancer cell lines showed that most target compounds exhibited better anti-proliferative activity than that of the positive control. PI3Ka assay showed that hydroxylpiperidinylquinoxaline (e.g.2-72, IC50:0.077μM;2-75, IC50:0.025μM) and various piperazinylquinoxaline derivatives exhibited potent inhibitory activity against PI3Ka. The experimental data of PI3Ka assay were consistent well with the pharmacophore-based predicted values, which validated the accuracy of the established model Hypol. A following assay showed that2-75exhibited significant suppressive effect against Akt phosphorylation. The above results demonstrate that2-75is a promising PI3Ka inhibitor.
     Besides, based on reported2-phenyl-4-morpholinoquinazoline PI3K inhibitors, five series of49novel morpholinoquinazoline derivatives were designed and synthesized in this study according to combination principle through the introduction of arylideneamino, arylsulfonylamino, dioxopyrrolidinylamino, and maleinimide chains into the6-position of the morpholinoquinazoline core. In vitro anti-tumor evaluation revealed that the presence of the2-phenyl group was beneficial for potency, compounds with an arylsulfonylamino chain showed better activity than that with an arylideneamino chain, dioxopyrrolidinylamino substituted compounds showed moderate potency, and compounds substituted by maleinimide chains (e.g.3-68and3-69) showed potent inhibitory anti-tumor activity. This study provides new insights for the development of quinazolines as anti-cancer agents.
引文
1. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D., Global cancer statistics. CA-Cancer J. Clin.2011,61, (2),69-90.
    2. Ma, W. W.; Adjei, A. A., Novel agents on the horizon for cancer therapy. CA-Cancer J. Clin.2009, 59, (2),111-137.
    3. Garcia-Echeverria, C.; Sellers, W. R., Drug discovery approaches targeting the P13K/Akt pathway in cancer. Oncogene 2008,27, (41),5511-5526.
    4. Vanhaesebroeck, B.; Waterfield, M. D., Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res.1999,253, (1),239-254.
    5. Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B., The emerging mechanisms of isoform-specific P13K signalling. Nat. Rev. Mol. Cell Biol.2010,11, (5),329-341.
    6. Denley, A.; Kang, S.; Karst, U.; Vogt, P. K., Oncogenic signaling of class I PI3K isoforms. Oncogene 2007,27, (18),2561-2574.
    7. Endemann, G.; Dunn, S. N.; Cantley, L. C., Bovine brain contains two types of phosphatidylinositol kinase. Biochemistry 1987,26, (21),6845-6852.
    8. Carpenter, C. L.; Cantley, L. C., Phosphoinositide kinases. Biochemistry 1990,29, (51), 11147-11156.
    9. Kaplan, D. R.; Whitman, M.; Schaffhausen, B.; Pallas, D. C.; White, M.; Cantley, L.; Roberts, T. M., Common elements in growth factor stimulation and oncogenic transformation:85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 1987,50, (7),1021-1029.
    10. Kaplan, D. R.; Whitman, M.; Schaffhausen, B.; Raptis, L.; Garcea, R. L.; Pallas, D.; Roberts, T. M.; Cantley, L., Phosphatidylinositol metabolism and polyoma-mediated transformation. Proc. Natl. Acad. Sci. U. S. A.1986,83, (11),3624-3628.
    11. Shaw, R. J.; Cantley, L. C., Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006,441, (7092),424.
    12. Whitman, M.; Kaplan, D. R.; Schaffhausen, B.; Cantley, L.; Roberts, T. M., Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 1985,315, (6016),239-242.
    13. Marone, R.; Cmiljanovic, V.; Giese, B.; Wymann, M. P., Targeting phosphoinositide 3-kinase-Moving towards therapy. BBA-Proteins Proteomics 2008,1784, (1),159-185.
    14. Lee, J. W.; Soung, Y. H.; Kim, S. Y.; Lee, H. W.; Park, W. S.; Nam, S. W.; Kim, S. H.; Lee, J. Y; Yoo, N. J.; Lee, S. H., PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 2005,24, (8),1477-1480.
    15. Saal, L. H.; Holm, K.; Maurer, M.; Memeo, L.; Su, T.; Wang, X. M.; Yu, J. S.; Malmstrom, P. O.; Mansukhani, M.; Enoksson, J.; Hibshoosh, H.; Borg, A.; Parsons, R., PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res.2005,65, (7),2554-2559.
    16. Velho, S.; Oliveira, C.; Ferreira, A.; Ferreira, A. C.; Suriano, G.; Schwartz, S.; Duval, A.; Carneiro, F.; Machado, J. C.; Hamelin, R.; Seruca, R., The prevalence of PIK3CA mutations in gastric and colon cancer. Eur. J. Cancer 2005,41, (11),1649-1654.
    17. Campbell, I. G.; Russell, S. E.; Choong, D. Y. H.; Montgomery, K. G.; Ciavarella, M. L.; Hooi, C. S. F.; Cristiano, B. E.; Pearson, R. B.; Phillips, W. A., Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res.2004,64, (21),7678-7681.
    18. Wee, S.; Wiederschain, D.; Maira, S.-M.; Loo, A.; Miller, C.; deBeaumont, R.; Stegmeier, F.; Yao, Y.-M.; Lengauer, C., PTEN-deficient cancers depend on P1K3CB. Proc. Natl. Acad. Sci. U. S. A. 2008,105,(35),13057-13062.
    19. Hollander, M. C.; Blumenthal, G. M.; Dennis, P. A., PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer2011,11, (4),289-301.
    20. Bunney, T. D.; Katan, M., Phosphoinositide signalling in cancer:beyond P13K and PTEN. Nat. Rev. Cancer 2010,10, (5),342-352.
    21. Vlietstra, R. J.; van Alewijk, D. C.; Hermans, K. G.; van Steenbrugge, G. J.; Trapman, J., Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res.1998,58, (13), 2720-2723.
    22. Cheng, J. Q.; Lindsley, C. W.; Cheng, G. Z.; Yang, H.; Nicosia, S. V., The Akt//PKB pathway: molecular target for cancer drug discovery. Oncogene 2005,24, (50),7482-7492.
    23. Nicholson, K. M.; Anderson, N. G., The protein kinase B/Akt signalling pathway in human malignancy. Cell. Signal.2002,14, (5),381-395.
    24. Barnett, S. F.; Bilodeau, M. T.; Lindsley, C. W., The Akt/PKB family of protein kinases:a review of small molecule inhibitors and progress towards target validation. Curr. Top. Med. Chem.2005,5, (2), 109-125.
    25. Wu, P.; Liu, T.; Hu, Y. z., PI3K inhibitors for cancer therapy:what has been achieved so far? Curr. Med. Chem.2009,16,916-930.
    26. Knight, Z. A.; Chiang, G. G.; Alaimo, P. J.; Kenski, D. M.; Ho, C. B.; Coan, K.; Abraham, R. T.; Shokat, K. M., Isoform-specific phosphoinositide 3-kinase inhibitors from an arylmorpholine scaffold. Bioorg. Med. Chem.2004,12, (17),4749-4759.
    27. Walker, E. H.; Pacold, M. E.; Perisic, O.; Stephens, L.; Hawkins, P. T.; Wymann, M. P.; Williams, R. L., Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 2000,6, (4),909-919.
    28. Huang, C.-H.; Mandelker, D.; Schmidt-Kittler, O.; Samuels, Y; Velculescu, V. E.; Kinzler, K. W.; Vogelstein, B.; Gabelli, S. B.; Amzel, L. M., The Structure of a human p110a/p85a complex elucidates the effects of oncogenic P13Ka mutations. Science 2007,318, (5857),1744-1748.
    29. Zask, A.; Verheijen, J. C.; Curran, K.; Kaplan, J.; Richard, D. J.; Nowak, P.; Malwitz, D. J.; Brooijmans, N.; Bard, J.; Svenson, K.; Lucas, J.; Toral-Barza, L.; Zhang, W.-G.; Hollander, I.; Gibbons, J. J.; Abraham, R. T.; Ayral-Kaloustian, S.; Mansour, T. S.; Yu, K., ATP-competitive inhibitors of the mammalian target of Rapamycin:design and synthesis of highly potent and selective pyrazolopyrimidines. J. Med. Chem.2009,52, (16),5013-5016.
    30. Vlahos, C. J.; Matter, W. F.; Hui, K. Y.; Brown, R. F., A specific inhibitor of phosphatidylinositol 3-kinase,2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem.1994, 269,(7),5241-5248.
    31. Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Parker, P.; Workman, P.; Waterfield, M., Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel P13 kinase p110a inhibitors. Bioorg. Med. Chem.2006,14, (20),6847-6858.
    32. Wu, P.; Hu, Y. Z., P13K/Akt/mTOR pathway inhibitors in cancer:a perspective on clinical progress. Curr. Med. Chem.2010,17,4326-4341.
    33. Bajjalieh, W.; Bannen, L. C.; Brown, S. D.; Kearney, P.; Mac, M.; Marlowe, C. K.; Nuss, J. M.; Tesfai, Z.; Wang, Y; Xu, W., Phosphatidylinositol 3-kinase inhibitors and methods of their use. WO 2007/044729 A2.
    34. Prana, I.; LoRusso, P.; Baselga, J.; Heath, E.; Patnaik, A.; Gendreau, S.; Douglas Laird, A.; Papadopoulos, K., A phase 1 dose-escalation study of the safety, pharmacokinetics and pharmacodynamics of XL765, a P13K/TORC1/TORC2 inhibitor administered orally to patients with advanced solid tumors. Abstract of papers No.3030, ASCO Annual Meeting, Chicago,IL, United States, June 4-8,2010.
    35. Yu, Y.; Luo, Z. W.; Yang, X. L.; Hu, X. Y.; Chen, Z. Q.; Sun, L. L.; Zhou, L. P., Method for preparing dichloroquinoxaline, and nitro-derivative CN 2007/1958578.
    36. Li, P. F.; Wang, B. L.; Ma, N.; Wang, S. H.; Li, Z. M., Synthesis and characterization of new 4-(substituted pyrimidin-2-yl)-l-(substituted benzensulfonyl)semicarbazides. Chin. J. Org. Chem. 2005,25,(9),1057-1061.
    37. Drees, B. E.; Weipert, A.; Hudson, H.; Ferguson, C. G.; Chakaravarty, L.; Prestwich, G. D., Competitive fluorescence polarization assays for the detection of phosphoinositide kinase and phosphatase activity. Comb. Chem. High Throughput Screen.2003,6, (4),321-330.
    38. Dudek, H.; Datta, S. R.; Franke, T. F.; Birnbaum, M. J.; Yao, R.; Cooper, G. M.; Segal, R. A.; Kaplan, D. R.; Greenberg, M. E., Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997,275, (5300),661-665.
    39. Altomare, D. A.; Testa, J. R., Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005,24, (50),7455-7464.
    40. Bellacosa, A.; Testa; Staal, S.; Tsichlis, P., A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 1991,254, (5029),274-277.
    41. Knight, S. D.; Adams, N. D.; Burgess, J. L.; Chaudhari, A. M.; Darcy, M. G.; Donatelli, C. A.; Luengo, J.1.; Newlander, K. A.; Parrish, C. A.; Ridgers, L. H.; Sarpong, M. A.; Schmidt, S. J.; Van Aller, G. S.; Carson, J. D.; Diamond, M. A.; Elkins, P. A.; Gardiner, C. M.; Garver, E.; Gilbert, S. A.; Gontarek, R. R.; Jackson, J. R.; Kershner, K. L.; Luo, L.; Raha, K.; Sherk, C. S.; Sung, C.-M.; Sutton, D.; Tummino, P. J.; Wegrzyn, R. J.; Auger, K. R.; Dhanak, D., Discovery of GSK2126458, a highly potent inhibitor of P13K and the mammalian target of rapamycin. ACS Med. Chem. Lett.2010,1, (1), 39-43.
    42. Litvinenko, L. M; Dadali, V. A.; Savelova, V. A.; Krichevtsova, T. I., A new method of synthesis of arenesulfonic acid bromides and iodides. Zhurnal Obshchei Khimii 1964,34, (11),3730-3733.
    43. Joshi, K. C; Pathak, V. N.; Garg, U., Synthesis of some new fluorine-containing 5-amino-1,3-disubstituted pyrazoles and 1H-pyrazolo[3,4-b]pyridines. J. Heterocycl. Chem.1979,16, (6),1141-1145.
    44. Trivedi, B. K., (1,2,4)Triazole(4,3-a)quinoxaline-4-amines. US 1988/4780464.
    45. Sarges, R.; Howard, H. R.; Browne, R. G.; Lebel, L. A.; Seymour, P. A.; Koe, B. K., 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. J. Med. Chem.1990,33, (8),2240-2254.
    1. Chun, M. S.; L., S. J.; Joo, C. T., Recent advances in computer-aided drug design. Brief. Bioinform.2009,10, (5),579-591.
    2. Park, H.; Choi, H.; Hong, S.; Kim, D.; Oh, D.-S.; Hong, S., Structure-based virtual screening approach to the discovery of phosphoinositide 3-kinase alpha inhibitors. Bioorg. Med. Chem. Lett.2011,21, (7),2021-2024.
    3. Taft, C. A.; Barreto da Silva, V.; Tomich de Paula da Silva, C. H., Current topics in computer-aided drug design. J. Pharm. Sci.2008,97, (3),1089-1098.
    4. Vacek, G.; Mullally, D.; Christensen, K., Trends in high-performance computing requirements for computer-aided drug design Curr. Comput.-Aided Drug Des.2008,4, (1),2-12.
    5. Sanders, M. P. A.; McGuire, R.; Roumen, L.; de Esch, I. J. P.; de Vlieg, J.; Klomp, J. P. G.; de Graaf, C., From the protein's perspective:the benefits and challenges of protein structure-based pharmacophore modeling. MedChemComm 2012,3,28-38.
    6. Badrinarayan, P.; Narahari Sastry, G, Virtual high throughput screening in new lead identification Comb. Chem. High Throughput Screen.2011,14, (10),840-860.
    7. Leach, A. R.; Gillet, V. J.; Lewis, R. A.; Taylor, R., Three-dimensional pharmacophore methods in drug discovery J. Med. Chem.2010,53, (2),539-558.
    8. Holmes, D., P13K pathway inhibitors approach junction. Nat. Rev. Drug Discov.2011,10, (8), 563-564.
    9. Ciraolo, E.; Morello, F.; Hirsch, E., Present and future of P13K pathway inhibition in cancer: perspectives and limitations. Curr. Med. Chem.2011,2011, (18),2674-2685.
    10. Wu, P.; Hu, Y. Z., P13K/Akt/mTOR pathway inhibitors in cancer:a perspective on clinical progress. Curr. Med. Chem.2010,17,4326-4341.
    11. Shuttleworth, S. J.; Silva, F. A.; Cecil, A. R. L.; Tomassi, C. D.; Hill, T. J.; Raynaud, F. I.; Clarke, P. A.; Workman, P., Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (P13K) inhibitors. Curr. Med. Chem.2011, 18,2686-2714.
    12. Walker, E. H.; Pacold, M. E.; Perisic, O.; Stephens, L.; Hawkins, P. T.; Wymann, M. P.; Williams, R. L., Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 2000,6, (4),909-919.
    13. Knight, Z. A.; Gonzalez, B.; Feldman, M. E.; Zunder, E. R.; Goldenberg, D. D.; Williams, O.; Loewith, R.; Stokoe, D.; Balla, A.; Toth, B.; Balla, T.; Weiss, W. A.; Williams, R. L.; Shokat, K. M., A Pharmacological Map of the P13-K Family Defines a Role for p110a in Insulin Signaling. Cell 2006,125, (4),733-747.
    14. Wu, P.; Su, Y.; Liu, X.; Zhang, L.; Ye, Y.; Xu, J.; Weng, S.; Li, Y.; Liu, T.; Huang, S.; Yang, B.; He, Q.; Hu, Y., Synthesis and biological evaluation of novel 2-arylamino-3-(arylsulfonyl)quinoxalines as P13Ka inhbitors. Eur. J. Med. Chem.2011,46, (11), 5540-5548.
    15. Barnum, D.; Greene, J.; Smellie, A.; Sprague, P., Identification of common functional configurations among molecules. J. Chem. Inf. Model.1996,36, (3),563-571.
    16. Patel, Y.; Gillet, V. J.; Bravi, G.; Leach, A. R., A comparison of the pharmacophore identification programs:Catalyst, DISCO and GASP. J. Compnt. Aid. Mol. Des.2002,16, (8/9), 653-681.
    17. Knight, Z. A.; Chiang, G. G.; Alaimo, P. J.; Kenski, D. M.; Ho, C. B.; Coan, K.; Abraham, R. T.; Shokat, K. M., Isoform-specific phosphoinositide 3-kinase inhibitors from an arylmorpholine scaffold. Bioorg. Med. Chem.2004,12, (17),4749-4759.
    18. Marone, R.; Cmiljanovic, V.; Giese, B.; Wymann, M. P., Targeting phosphoinositide 3-kinase-moving towards therapy. BBA-Proteins Proteomics 2008,1784, (1),159-185.
    19. Hayakawa, M.; Kaizawa, H.; Kawaguchi, K.-i.; Ishikawa, N.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Raynaud, F. I.; Waterfield, M. D.; Parker, P.; Workman, P., Synthesis and biological evaluation of imidazo[1,2-a]pyridine derivatives as novel P13 kinase p110a inhibitors. Bioorg. Med. Chem.2007,15, (1),403-412.
    20. Hayakawa, M.; Kawaguchi, K.-i.; Kaizawa, H.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Raynaud, F. I.; Parker, P.; Workman, P.; Waterfield, M. D., Synthesis and biological evaluation of sulfonylhydrazone-substituted imidazo[1,2-a]pyridines as novel PI3 kinase p110a inhibitors. Bioorg. Med. Chem.2007,15, (17),5837-5844.
    21. Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Raynaud, F. I.; Workman, P.; Waterfield, M. D.; Parker, P., Synthesis and biological evaluation of pyrido[3',2':4,5]furo[3,2-d]pyrimidine derivatives as novel P13 kinase p110a inhibitors. Bioorg. Med. Chem. Lett.2007,17, (9),2438-2442.
    22. Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Parker, P.; Workman, P.; Waterfield, M., Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel P13 kinase p110a inhibitors. Bioorg. Med. Chem.2006,14, (20),6847-6858.
    23. Stauffer, F.; Maira, S.-M.; Furet, P.; Garcia-Echeverria, C., Imidazo[4,5-c]quinolines as inhibitors of the P13K/PKB-pathway. Bioorg. Med. Chem. Lett.2008,18, (3),1027-1030.
    24. Kendall, J. D.; Rewcastle, G. W.; Frederick, R.; Mawson, C.; Denny, W. A.; Marshall, E. S.; Baguley, B. C.; Chaussade, C.; Jackson, S. P.; Shepherd, P. R., Synthesis, biological evaluation and molecular modelling of sulfonohydrazides as selective P13K p110a inhibitors. Bioorg. Med. Chem.2007,15, (24),7677-7687.
    25. Alaimo, P. J.; Knight, Z. A.; Shokat, K. M., Targeting the gatekeeper residue in phosphoinositide 3-kinases. Bioorg. Med. Chem.2005,13, (8),2825-2836.
    26. Alexander, R.; Balasundaram, A.; Batchelor, M.; Brookings, D.; Crepy, K.; Crabbe, T.; Deltent, M.-F.; Driessens, F.; Gill, A.; Harris, S.; Hutchinson, G.; Kulisa, C.; Merriman, M.; Mistry, P.; Parton, T.; Turner, J.; Whitcombe, I.; Wright, S.,4-(1,3-Thiazol-2-yl)morpholine derivatives as inhibitors of phosphoinositide 3-kinase. Bioorg. Med. Chem.2008,18, (15),4316-4320.
    27. Evans, D. A.; Doman, T. N.; Thomer, D. A.; Bodkin, M. J.,3D QSAR methods:phase and catalyst compared. J. Chem. Inf. Model.2007,47, (3),1248-1257.
    28. Stevenson, J. M.; Mulready, P. D., Pipeline Pilot 2.1 by Scitegic,9665 Chesapeake Drive, Suite 401, San Diego, CA 92123-1365. J. Am. Chem. Soc.2003,125, (5),1437-1438.
    29. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev.2001,46, (1-3),3-26.
    30. Li, P. F.; Wang, B. L.; Ma, N.; Wang, S. H.; Li, Z. M., Synthesis and characterization of new 4-(substituted pyrimidin-2-yl)-1-(substituted benzensulfonyl)semicarbazides. Chin. J. Org. Chem.2005,25, (9),1057-1061.
    31. Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Parker, P.; Workman, P.; Waterfield, M., Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110α inhibitors. Bioorg. Med. Chem.2006,14, (20),6847-6858.
    32. Folkes, A. J.; Ahmadi, K.; Alderton, W. K.; Alix, S.; Baker, S. J.; Box, G.; Chuckowree, I. S.; Clarke, P. A.; Depledge, P.; Eccles, S. A.; Friedman, L. S.; Hayes, A.; Hancox, T. C.; Kugendradas, A.; Lensun, L.; Moore, P.; Olivero, A. G.; Pang, J.; Patel, S.; Pergl-Wilson, G. H.; Raynaud, F. I.; Robson, A.; Saghir, N.; Salphati, L.; Sohal, S.; Ultsch, M. H.; Valenti, M.; Wallweber, H. J. A.; Wan, N. C.; Wiesmann, C.; Workman, P.; Zhyvoloup, A.; Zvelebil, M. J.; Shuttleworth, S. J., The identification of 2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class Ⅰ PI3 kinase for the treatment of cancer. J. Med. Chem.2008,51, (18),5522-5532.
    33. Raynaud, F. I.; Eccles, S. A.; Patel, S.; Alix, S.; Box, G.; Chuckowree, I.; Folkes, A.; Gowan, S.; De Haven Brandon, A.; Di Stefano, F.; Hayes, A.; Henley, A. T.; Lensun, L.; Pergl-Wilson, G.; Robson, A.; Saghir, N.; Zhyvoloup, A.; McDonald, E.; Sheldrake, P.; Shuttleworth, S.; Valenti, M.; Wan, N. C.; Clarke, P. A.; Workman, P., Biological properties of potent inhibitors of class Ⅰ phosphatidylinositide 3-kinases:from PI-103 through P1-540, PI-620 to the oral agent GDC-0941. Mol, Cancer Ther.2009,8, (7),1725-1738.
    34. Niemiec, E., Sulfanilamide derivatives containing urea, thiourea, or hydrazide groupings. J. Am. Chem. Soc.1948,70,1067-1068.
    35. Goncharov,I. N.; Postovskii, I. Y., Benzodiazines Ⅱ. Some 2,3-amino derivatives of quinoxaline. Russ. J. Gen. Chem.1962,32,3332-3339.
    36. Mosher, H. S.; Cornell, J., Jr.; Stafford, O. L.; Roe, T., Jr., Synthesis of piperazines by reductive cyclization. J. Am. Chem. Soc.1953,75,4949-4951.
    37. Moore, T. S.; Boyle, M.; Thorn, V. M., N-Substituted derivatives of piperazine and ethylenediamine. Ⅰ. Preparation of N-monosubstituted derivatives. J. Chem. Soc.1929,39-51.
    38. Desai, M.; Watthey, J. W. H.; Zuckerman, M., A convenient preparation of 1-aroylpiperazines. Org. Prep. Proced. Int.1976,8, (1-2),85-86.
    39. Bali, A.; Sharma, K.; Bhalla, A.; Bala, S.; Reddy, D.; Singh, A.; Kumar, A., Synthesis, evaluation and computational studies on a series of acetophenone based 1-(aryloxypropyl)-4-(chloroaryl) piperazines as potential atypical antipsychotics. Eur. J. Med. Chem.2010,45, (6),2656-2662.
    40. Acharyulu, P. V. R.; Dubey, P. K.; Reddy, P. V. V. P.; Suresh, T., Synthesis of 2-(4-substituted sulfonyl piperazin-1-yl-methyl)-3-aryl-quinazolin-4(3H)-one. Indian J. Chem. Sect B-Org. Chem. Incl. Med. Chem.2010,49B, (7),923-928.
    41. Hall, H. K., Jr., Field and inductive effects on the base strengths of amines. J. Am. Chem. Soc. 1956,78,2570-2572.
    42. Hu, Y.; Sheng, R.; Zhou, N.; Shi, Y.; Xu, Y.; Yang, F., Nitrogen-containing indole derivatives as histamine H3 receptor antagonists or agonists and their preparation. CN 2009/101560179.
    1. Ma, W. W.; Adjei, A. A., Novel agents on the horizon for cancer therapy. CA-Cancer J. Clin. 2009,59,(2),111-137.
    2. Endemann, G.; Dunn, S. N.; Cantley, L. C., Bovine brain contains two types of phosphatidylinositol kinase. Biochemistry 1987,26, (21),6845-6852.
    3. Carpenter, C. L.; Cantley, L. C., Phosphoinositide kinases. Biochemistry 1990,29, (51), 11147-11156.
    4. Kaplan, D. R.; Whitman, M.; Schaffhausen, B.; Pallas, D. C.; White, M.; Cantley, L.; Roberts, T. M., Common elements in growth factor stimulation and oncogenic transformation:85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 1987,50, (7),1021-1029.
    5. Kaplan, D. R.; Whitman, M.; Schaffhausen, B.; Raptis, L.; Garcea, R. L.; Pallas, D.; Roberts, T. M.; Cantley, L., Phosphatidylinositol metabolism and polyoma-mediated transformation. Proc. Natl. Acad. Sci. U. S. A.1986,83, (11),3624-3628.
    6. Shaw, R. J.; Cantley, L. C., Ras, P1(3)K and mTOR signalling controls tumour cell growth. Nature 2006,441, (7092),424.
    7. Whitman, M.; Kaplan, D. R.; Schaffhausen, B.; Cantley, L.; Roberts, T. M., Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 1985,315, (6016),239-242.
    8. Vanhaesebroeck, B.; Waterfield, M. D., Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res.1999,253, (1),239-254.
    9. Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B., The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol.2010,11, (5), 329-341.
    10. Denley, A.; Kang, S.; Karst, U.; Vogt, P. K., Oncogenic signaling of class Ⅰ PI3K isoforms. Oncogene 2007,27, (18),2561-2574.
    11. Marone, R.; Cmiljanovic, V.; Giese, B.; Wymann, M. P., Targeting phosphoinositide 3-kinase--Moving towards therapy. BBA-Proteins Proteomics 2008,1784, (1),159-185.
    12. Lee, J. W.; Soung, Y. H.; Kim, S. Y.; Lee, H. W.; Park, W. S.; Nam, S. W.; Kim, S. H.; Lee, J. Y.; Yoo, N. J.; Lee, S. H., PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 2005,24, (8),1477-1480.
    13. Saal, L. H.; Holm, K.; Maurer, M.; Memeo, L.; Su, T.; Wang, X. M.; Yu, J. S.; Malmstrom, P. O.; Mansukhani, M.; Enoksson, J.; Hibshoosh, H.; Borg, A.; Parsons, R., PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res.2005,65, (7),2554-2559.
    14. Velho, S.; Oliveira, C.; Ferreira, A.; Ferreira, A. C.; Suriano, G.; Schwartz, S.; Duval, A.; Carneiro, F.; Machado, J. C.; Hamelin, R.; Seruca, R., The prevalence of PIK3CA mutations in gastric and colon cancer. Eur. J. Cancer 2005,41, (11),1649-1654.
    15. Campbell, I. G.; Russell, S. E.; Choong, D. Y. H.; Montgomery, K. G.; Ciavarella, M. L.; Hooi, C. S. F.; Cristiano, B. E.; Pearson, R. B.; Phillips, W. A., Mutation of the P1K3CA gene in ovarian and breast cancer. Cancer Res.2004,64, (21),7678-7681.
    16. Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S. M.; Riggins, G. J.; Willson, J. K. V.; Markowitz, S.; Kinzler, K. W.; Vogelstein, B.; Velculescu, V. E., High frequency of mutations of the PIK3CA gene in human cancers. Science 2004,304, (5670),554.
    17. Wu, P.; Liu, T.; Hu, Y. z., PI3K inhibitors for cancer therapy:what has been achieved so far? Curr. Med. Chem.2009,16,916-930.
    18. Vlahos, C. J.; Matter, W. F.; Hui, K. Y.; Brown, R. F., A specific inhibitor of phosphatidylinositol 3-kinase,2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem.1994,269, (7),5241-5248.
    19. Walker, E. H.; Pacold, M. E.; Perisic, O.; Stephens, L.; Hawkins, P. T.; Wymann, M. P.; Williams, R. L., Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 2000,6, (4),909-919.
    20. Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Parker, P.; Workman, P.; Waterfield, M., Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel P13 kinase p110a inhibitors. Bioorg. Med. Chem.2006,14, (20),6847-6858.
    21. Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Raynaud, F. I.; Workman, P.; Waterfield, M. D.; Parker, P., Synthesis and biological evaluation of pyrido[3',2':4,5]furo[3,2-d]pyrimidine derivatives as novel P13 kinase p110a inhibitors. Bioorg. Med. Chem. Lett.2007,17, (9),2438-2442.
    22. Hayakawa, M.; Kaizawa, H.; Kawaguchi, K.-i.; Ishikawa, N.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Raynaud, F. I.; Waterfield, M. D.; Parker, P.; Workman, P., Synthesis and biological evaluation of imidazo[l,2-a]pyridine derivatives as novel PI3 kinase p110a inhibitors. Bioorg. Med. Chem.2007,15, (1),403-412.
    23. Hayakawa, M.; Kawaguchi, K.-i.; Kaizawa, H.; Koizumi, T.; Ohishi, T; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Raynaud, F. I.; Parker, P.; Workman, P.; Waterfield, M. D., Synthesis and biological evaluation of sulfonylhydrazone-substituted imidazo[l,2-a]pyridines as novel P13 kinase p110a inhibitors. Bioorg. Med. Chem.2007,15, (17),5837-5844.
    24. Bogert, M. T.; Scatchard, G., Quinazolines, XXXIV. Synthesis of certain nitro-and aminobenzoyleneureas and some compounds related thereto. J. Am. Chem. Soc.1920,41, 2052-2068.
    25. Bogert, M. T.; Scatchard, G., Researches on quinazolines. ⅩⅩⅩⅣ. The synthesis of certain nitro and amino benzoylene ureas and some compounds related thereto. J. Am. Chem. Soc.1919,41, (12),2052-2068.
    26. Hentrich, W.; Hardtmann, M., Nitrohaloquinazolines. US Patent 1880447 1932.
    27. Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y., A simple and efficient approach to quinazolinones under mild copper-catalyzed conditions. Angew. Chem.-Int. Edit.2009,48, (2),348-351.
    28. Yang, D.; Fu, H.; Hu, L.; Jiang, Y.; Zhao, Y., Environmentally friendly iron-catalyzed cascade synthesis of 1,2,4-benzothiadiazine 1,1-dioxide and quinazolinone derivatives. J. Comb. Chem. 2009,11,(4),653-657.
    29. Gaina, C., Synthesis and characterization of new compounds containing 1,4-dithiintetra-carboxydiimide units. Rev. Roum. Chim.2005,50,601-607.
    30. Augustin, M.; Schneider, B.; Koehler, M., Reaction of 2,3-dichloromaleimides with ethyoxycarbonylmethlenetriphenylphosphorane and secondary reactions. J. Prakt. Chemie (Leipzig) 1976,321,797-803.
    31. Wu, P.; Hu, Y., Synthesis of novel 1,4-benzoxazine-2,3-dicarboximides from maleic anhydride and substituted aromatic amines. Synth. Commun.2009,39, (1),70-84.
    32. Mao, Y. Q.; Maley, L.; Watson, W. H., Syntheses and structures of N-phenyl-maleimide-triazoles and by-products. J. Chem. Crystallogr.2005,35,385-403.
    33. Watson, W. H.; Chen, T.; Richmond, M. G., Synthesis, redox properties, and X-ray diffraction structure of 2,3-bis(ethylthio)-N-(p-MeOC6H4)maleimide.J. Chem. Crystallogr.2004,34, (11), 765-771.
    34. Patterson, T. S.; Todd, A. R., Action of phosphorus pentachloride on ethyl tartrate. J. Chem. Soc. 1929,1768-1771.
    1. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D., Global cancer statistics. CA-Cancer J. Clin.2011,61, (2),69-90.
    2. Ma, W. W.; Adjei, A. A., Novel Agents on the Horizon for Cancer Therapy. CA-Cancer J. Clin. 2009,59,(2),111-137.
    3. Wu, P.; Hu, Y. Z., PI3K/Akt/mTOR pathway inhibitors in cancer:a perspective on clinical progress. Curr. Med. Chem.2010,17,4326-4341.
    4. Garcia-Echeverria, C.; Sellers, W. R., Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 2008,27, (41),5511-5526.
    5. Karakas, B.; Bachman, K. E.; Park, B. H., Mutation of the PIK3CA oncogene in human cancers. Br. J. Cancer 2006,94, (4),455-459.
    6. Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S. M.; Riggins, G. J.; Willson, J. K. V.; Markowitz, S.; Kinzler, K. W.; Vogelstein, B.;
    Velculescu, V. E., High frequency of mutations of the PIK3CA gene in human cancers. Science 2004,
    304, (5670),554.
    7. Wu, P.; Liu, T.; Hu, Y. z., PI3K inhibitors for cancer therapy:what has been achieved so far? Curr. Med. Chem.2009,16,916-930.
    8. Endemann, G.; Dunn, S. N.; Cantley, L. C., Bovine brain contains two types of phosphatidylinositol kinase. Biochemistry 1987,26, (21),6845-6852.
    9. Kaplan, D. R.; Whitman, M.; Schaffhausen, B.; Raptis, L.; Garcea, R. L.; Pallas, D.; Roberts, T. M.; Cantley, L., Phosphatidylinositol metabolism and polyoma-mediated transformation. Proc. Natl. Acad. Sci. U. S. A.1986,83, (11),3624-3628.
    10. Kaplan, D. R.; Whitman, M.; Schaffhausen, B.; Pallas, D. C.; White, M.; Cantley, L.; Roberts, T. M., Common elements in growth factor stimulation and oncogenic transformation:85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 1987,50, (7),1021-1029.
    11. Whitman, M.; Kaplan, D. R.; Schaffhausen, B.; Cantley, L.; Roberts, T. M., Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 1985,315, (6016),239-242.
    12. Goncharov, I. N.; Postovskii,I. Y., Benzodiazines Ⅱ. Some 2,3-amino derivatives of quinoxaline. Russ. J. Gen. Chem.1962,32,3332-3339.
    13. Carpenter, C. L.; Cantley, L. C., Phosphoinositide kinases. Biochemistry 1990,29, (51), 11147-11156.
    14. Vanhaesebroeck, B.; Waterfield, M. D., Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res.1999,253, (1),239-254. 15. Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B., The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol.2010,11, (5),329-341.
    16. Denley, A.; Kang, S.; Karst, U.; Vogt, P. K., Oncogenic signaling of class Ⅰ PI3K isoforms. Oncogene 2007,27, (18),2561-2574.
    17. Marone, R.; Cmiljanovic, V.; Giese, B.; Wymann, M. P., Targeting phosphoinositide 3-kinase--Moving towards therapy. BBA-Proteins Proteomics 2008,1784, (1),159-185.
    18. Gaidarov, I.; Smith, M. E. K.; Domin, J.; Keen, J. H., The class Ⅱ phosphoinositide 3-kinase C2a is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol. Cell 2001,7, (2),443-449.
    19. Falasca, M.; Maffucci, T., Role of class Ⅱ phosphoinositide 3-kinase in cell signalling. Biochem. Soc. Trans.2007,35,211.
    20. Schu, P.; Takegawa, K.; Fry, M.; Stack, J.; Waterfield, M.; Emr, S., Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 1993,260, (5104), 88-91.
    21. Balla, A.; Balla, T., Phosphatidylinositol 4-kinases:old enzymes with emerging functions. Trends Cell Biol.2006,16, (7),351-361.
    22. Balla, A.; Tuymetova, G.; Barshishat, M.; Geiszt, M.; Balla, T., Characterization of type Ⅱ phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J. Biol. Chem.2002,277, (22),20041-20050.
    23. Sonenberg, N.; Pause, A., Signal transduction:protein synthesis and oncogenesis meet again. Science 2006,314, (5798),428-429.
    24. Tetsu, O.; McCormick, F., β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999,398, (6726),422-426.
    25. Liang, J.; Slingerland, J. M., Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell cycle 2003,2, (4),339-345.
    26. Li, Y.; Dowbenko, D.; Lasky, L. A., AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J. Biol. Chem.2002,277, (13),
    11352-11361.
    27. Juntilla, M. M.; Koretzky, G. A., Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol. Lett.2008,116, (2),104-110.
    28. Datta, S. R.; Dudek, H.; Tao, X.; Masters, S.; Fu, H.; Gotoh, Y.; Greenberg, M. E., Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997,91,
    (2),231-241.
    29. Okkenhaug, K.; Vanhaesebroeck, B., PI3K in lymphocyte development, differentiation and activation. Nature Reviews Immunology 2003,3, (4),317-330.
    30. Miranda, M. B.; Johnson, D. E., Signal transduction pathways that contribute to myeloid differentiation. Leukemia 2007,21, (7),1363-1377.
    31. Cardone, M. H.; Roy, N.; Stennicke, H. R.; Salvesen, G. S.; Franke, T. F.; Stanbridge, E.; Frisch, S.; Reed, J. C., Regulation of cell death protease caspase-9 by phosphorylation. Science 1998,282, (5392),1318-1321.
    32. Franke, T. F.; Kaplan, D. R.; Cantley, L. C, P13K:Downstream AKTion blocks apoptosis. Cell 1997,88, (4),435-437.
    33. Eccles, S. A.; Welch, D. R., Metastasis:recent discoveries and novel treatment strategies. Lancet 2007,369, (9574),1742-1757.
    34. Camps, M.; Ruckle, T.; Ji, H.; Ardissone, V.; Rintelen, F.; Shaw, J.; Ferrandi, C; Chabert, C.; Gillieron, C.; Francon, B.; Martin, T.; Gretener, D.; Perrin, D.; Leroy, D.; Vitte, P.-A.; Hirsch, E.; Wymann, M. P.; Cirillo, R.; Schwarz, M. K.; Rommel, C., Blockade of P13K[gamma] suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med.2005,11, (9), 936-943.
    35. Bader, A. G.; Kang, S.; Zhao, L.; Vogt, P. K., Oncogenic PI3K deregulates transcription and translation. Nat. Rev. Cancer 2005,5, (12),921-929.
    36. Bedogni, B.; O'Neill, M. S.; Welford, S. M.; Bouley, D. M.; Giaccia, A. J.; Denko, N. C.; Powell, M. B., Topical treatment with inhibitors of the phosphatidylinositol 3'-Kinase/Akt and Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways reduces melanoma development in severe combined immunodeficient mice. Cancer Res.2004,64, (7), 2552-2560.
    37. Ma, K..; Cheung, S. M.; Marshall, A. J.; Duronio, V., PI(3,4,5)P3 and PI(3,4)P2 levels correlate with PKB/akt phosphorylation at Thr308 and Ser473, respectively; PI(3,4)P2 levels determine PKB activity. Cell. Signal.2008,20, (4),684-694.
    38. Dancey, J., mTOR signaling and drug development in cancer. Nat. Rev. Clin. Oncol.2010,7, (4),209-219.
    39. Shaw, R. J.; Cantley, L. C., Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006,441, (7092),424.
    40. Polak, P.; Hall, M. N., mTORC2 caught in a SINful Akt. Dev. Cell 2006,11, (4),433-434.
    41. Strimpakos, A. S.; Karapanagiotou, E. M.; Saif, M. W.; Syrigos, K. N., The role of mTOR in the management of solid tumors:An overview. Cancer Treat. Rev.2009,35, (2),148-159.
    42. Stambolic, V.; Suzuki, A.; de la Pompa, J. L.; Brothers, G. M.; Mirtsos, C.; Sasaki, T.; Ruland, J.; Penninger, J. M.; Siderovski, D. P.; Mak, T. W., Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998,95, (1),29-39.
    43. Hollander, M. C.; Blumenthal, G. M.; Dennis, P. A., PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer 2011,11, (4),289-301.
    44. Carracedo, A.; Pandolfi, P. P., The PTEN-P13K pathway:of feedbacks and cross-talks. Oncogene 2008,27, (41),5527-5541.
    45. Vazquez, F.; Sellers, W. R., The PTEN tumor suppressor protein:an antagonist of phosphoinositide 3-kinase signaling. Biochim. Biophys. Acta-Rev. Cancer 2000,1470, (1), M21-M35.
    46. Vara, J. A. F.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; Gonzalez-Baron, M., P13K/Akt signalling pathway and cancer. Cancer Treat. Rev.2004,30, (2),193-204.
    47. Cully, M.; You, H.; Levine, A. J.; Mak, T. W., Beyond PTEN mutations:the P13K pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer 2006,6, (3),184-192.
    48. Salmena, L.; Carracedo, A.; Pandolfi, P. P., Tenets of PTEN tumor suppression. Cell 2008,133, (3),403-414.
    49. Kisseleva, M. V.; Wilson, M. P.; Majerus, P. W., The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. J. Biol. Chem.2000,275, (26), 20110-20116.
    50. Zhang, X.; Vadas, O.; Perisic, O.; Anderson, K. E.; Clark, J.; Hawkins, P. T.; Stephens, L. R.; Williams, R. L., Structure of lipid kinase p110(3/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol. Cell 2011,41, (5),567-578.
    51. Berndt, A.; Miller, S.; Williams, O.; Le, D. D.; Houseman, B. T.; Pacold, J. I.; Gorrec, F.; Hon, W.-C; Ren, P.; Liu, Y.; Rommel, C; Gaillard, P.; Ruckle, T.; Schwarz, M. K.; Shokat, K. M.; Shaw, J. P.; Williams, R. L., The p110δ structure:mechanisms for selectivity and potency of new PI(3)K inhibitors. Nat. Chem. Biol.2010,6, (2),117-124.
    52. Walker, E. H.; Pacold, M. E.; Perisic, O.; Stephens, L.; Hawkins, P. T.; Wymann, M. P.; Williams, R. L., Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 2000,6, (4),909-919.
    53. Kendall, J. D.; Rewcastle, G. W.; Frederick, R.; Mawson, C; Denny, W. A.; Marshall, E. S.; Baguley, B. C; Chaussade, C.; Jackson, S. P.; Shepherd, P. R., Synthesis, biological evaluation and molecular modelling of sulfonohydrazides as selective PI3K pi 10a inhibitors. Bioorg. Med. Chem. 2007,15, (24),7677-7687.
    54. Knight, Z. A.; Chiang, G. G; Alaimo, P. J.; Kenski, D. M.; Ho, C. B.; Coan, K.; Abraham, R. T.; Shokat, K. M., Isoform-specific phosphoinositide 3-kinase inhibitors from an arylmorpholine scaffold. Bioorg. Med. Chem.2004,12, (17),4749-4759.
    55. Bussink, J.; van der Kogel, A. J.; Kaanders, J. H., Activation of the P13-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol.2008,9, (3), 288-296.
    56. Pedrero, J. M. G.; Carracedo, D. G.; Pinto, C. M.; Zapatero, A. H.; Rodrigo, J. P.; Nieto, C. S.; Gonzalez, M. V., Frequent genetic and biochemical alterations of the P13-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int. J. Cancer 2005,114, (2),242-248.
    57. Massion, P. P.; Kuo, W. L.; Stokoe, D.; Olshen, A. B.; Treseler, P. A.; Chin, K.; Chen, C.; Polikoff, D.; Jain, A. N.; Pinkel, D.; Albertson, D. G.; Jablons, D. M.; Gray, J. W., Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: Implications of the phosphatidylinositol 3-kinase pathway. Cancer Res.2002,62, (13),3636-3640.
    58. Wu, G. J.; Mambo, E.; Guo, Z. M.; Hu, S. Y.; Huang, X.; Gollin, S. M.; Trink, B.; Ladenson, P. W.; Sidransky, D.; Xing, M. Z., Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J. Clin. Endocrinol. Metab.2005,90, (8),4688-4693.
    59. Ma, Y. Y; Wei, S. J.; Lin, Y. C.; Lung, J. C.; Chang, T. C.; Whang-Peng, J.; Liu, J. M.; Yang, D. M.; Yang, W. K.; Shen, C. Y., PIK3CA as an oncogene in cervical cancer. Oncogene 2000,19, (23), 2739-2744.
    60. Miller, C. T.; Moy, J. R.; Lin, L.; Schipper, M.; Normolle, D.; Brenner, D. E.; Iannettoni, M. D.; Orringer, M. B.; Beer, D. G., Gene amplification in esophageal adenocarcinomas and Barrett's with high-grade dysplasia. Clin. Cancer Res.2003,9, (13),4819-4825.
    61. Lee, J. W.; Soung, Y. H.; Kim, S. Y.; Lee, H. W.; Park, W. S.; Nam, S. W.; Kim, S. H.; Lee, J. Y; Yoo, N. J.; Lee, S. H., PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 2005,24, (8),1477-1480.
    62. Saal, L. H.; Holm, K.; Maurer, M.; Memeo, L.; Su, T.; Wang, X. M.; Yu, J. S.; Malmstrom, P. O.; Mansukhani, M.; Enoksson, J.; Hibshoosh, H.; Borg, A.; Parsons, R., P1K3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res.2005,65, (7),2554-2559.
    63. Velho, S.; Oliveira, C.; Ferreira, A.; Ferreira, A. C.; Suriano, G.; Schwartz, S.; Duval, A.; Carneiro, F.; Machado, J. C.; Hamelin, R.; Seruca, R., The prevalence of PIK3CA mutations in gastric and colon cancer. Eur. J. Cancer 2005,43,(11),1649-1654.
    64. Campbell, I. G.; Russell, S. E.; Choong, D. Y. H.; Montgomery, K. G.; Ciavarella, M. L.; Hooi, C. S. F.; Cristiano, B. E.; Pearson, R. B.; Phillips, W. A., Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res.2004,64, (21),7678-7681.
    65. Kang, S.; Bader, A. G.; Vogt, P. K., Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc. Natl. Acad. Sci. U. S. A.2005,102, (3),802-807.
    66. Ikenoue, T.; Kanai, F.; Hikiba, Y.; Obata, T.; Tanaka, Y.; Imamura, J.; Ohta, M.; Jazag, A.; Guleng, B.; Tateishi, K.; Asaoka, Y.; Matsumura, M.; Kawabe, T.; Omata, M., Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res.2005,65, (11),4562-4567.
    67. Kang, S.; Bader, A. G.; Zhao, L.; Vogt, P. K., Mutated PI 3-kinases cancer targets on a silver platter. Cell Cycle 2005,4, (4),578-581.
    68. Vogt, P. K.; Kang, S.; Elsliger, M.-A.; Gymnopoulos, M., Cancer-specific mutations in phosphatidylinositol 3-kinase. Trends Biochem. Sci.2007,32, (7),342-349.
    69. Philp, A. J.; Campbell, I. G.; Leet, C; Vincan, E.; Rockman, S. P.; Whitehead, R. H.; Thomas, R. J. S.; Phillips, W. A., The Phosphatidylinositol 3'-kinase p85a gene is an oncogene in human ovarian and colon tumors. Cancer Res.2001,61, (20),7426-7429.
    70. Cairns, P.; Okami, K.; Halachmi, S.; Halachmi, N.; Esteller, M.; Herman, J. G.; Isaacs, W. B.; Bova, G. S.; Sidransky, D., Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res.1997,57, (22),4997-5000.
    71. Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S. I.; Puc, J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; Bigner, S. H.; Giovanella, B. C.; Ittmann, M.; Tycko, B.; Hibshoosh, H.; Wigler, M. H.; Parsons, R., PTEN, a putative protein yyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997,275, (5308),1943-1947.
    72. Jackson, S. P.; Schoenwaelder, S. M.; Goncalves,I.; Nesbitt, W. S.; Yap, C. L.; Wright, C. E.; Kenche, V.; Anderson, K. E.; Dopheide, S. M.; Yuan, Y.; Sturgeon, S. A.; Prabaharan, H.; Thompson, P. E.; Smith, G. D.; Shepherd, P. R.; Daniele, N.; Kulkarni, S.; Abbott, B.; Saylik, D.; Jones, C; Lu, L.; Giuliano, S.; Hughan, S. C.; Angus, J. A.; Robertson, A. D.; Salem, H. H., PI 3-kinase p110β:a new target for antithrombotic therapy. Nat. Med.2005,11, (5),507-514.
    73. Hirsch, E.; Ciraolo, E.; Ghigo, A.; Costa, C., Taming the P13K team to hold inflammation and cancer at bay. Pharmacol. Ther.2008,118, (2),192-205.
    74. Billottet, C.; Grandage, V. L.; Gale, R. E.; Quattropani, A.; Rommel, C.; Vanhaesebroeck, B.; Khwaja, A., A selective inhibitor of the p110[delta] isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 2006,25, (50), 6648-6659.
    75. Chahwala, S. B.; Fleischman, L. F.; Cantley, L., Kinetic analysis of guanosine 5'-O-(3-thiotriphosphate) effects on phosphatidylinositol turnover in NRK cell homogenates. Biochemistry 1987,26, (2),612-622.
    76. Arcaro, A.; Wymann, M. P., Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor:the role of phosphatidylinositol 3,4,5-triphosphate in neutrophil responses. Biochem. J.1993,296, 297-301.
    77. Vlahos, C. J.; Matter, W. F.; Hui, K. Y.; Brown, R. F., A specific inhibitor of phosphatidylinositol 3-kinase,2-(4-morpholinyl)-8-phenyl-4H-l-benzopyran-4-one (LY294002). J. Biol. Chem.1994,269, (7),5241-5248.
    78. Wymann, M. P.; Bulgarelli-Leva, G.; Zvelebil, M. J.; Pirola, L.; Vanhaesebroeck, B.; Waterfield, M. D.; Panayotou, G., Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol. Cel. Biol.1996,16, (4), 1722-1733.
    79. Norman, B. H.; Shih, C.; Toth, J. E.; Ray, J. E.; Dodge, J. A.; Johnson, D. W.; Rutherford, P. G; Schultz, R. M.; Worzalla, J. F.; Vlahos, C. J., Studies on the mechanism of phosphatidylinositol 3-kinase inhibition by wortmannin and related analogs. J. Med. Chem.1996,39, (5),1106-1111.
    80. Srivastava, A. K., Inhibition of phosphorylase kinase, and tyrosine protein kinase activities by quercetin. Biochem. Biophys. Res. Commun.1985,131, (1),1-5.
    81. Yu, K.; Lucas, J.; Zhu, T.; Zask, A.; Gaydos, C.; Toral-Barza, L.; Gu, J.; Li, F.; Chaudhary, I.; Cai, P.; Lotvin, J.; Petersen, R.; Ruppen, M.; Fawzi, M.; Ayral-Kaloustian, S.; Skotnicki, J.; Mansour, T.; Frost, P.; Gibbons, J., PWT-458, a novel pegylated-17-hydroxywortmannin, inhibits phosphatidylinositol 3-kinase signaling and suppresses growth of solid tumors. Cancer Biol. Ther. 2005,4, (5),538-545.
    82. Marion, F.; Williams, D. E.; Patrick, B. O.; Hollander, I.; Mallon, R.; Kim, S. C; Roll, D. M.; Feldberg, L.; Van Soest, R.; Andersen, R. J., Liphagal, a selective inhibitor of P13 Kinase a isolated from the sponge Aka coralliphaga:structure elucidation and biomimetic synthesis. Org. lett.2005,8, (2),321-324.
    83. Foukas, L. C.; Daniele, N.; Ktori, C.; Anderson, K. E.; Jensen, J.; Shepherd, P. R., Direct effects of caffeine and theophylline on p1105 and other phosphoinositide 3-kinases. J. Biol. Chem.2002, 277, (40),37124-37130.
    84. Frojdo, S.; Cozzone, D.; Vidal, H.; Pirola, L., Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem. J.2007,406, (3),511-518.
    85. Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Parker, P.; Workman, P.; Waterfield, M., Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel P13 kinase p110a inhibitors. Bioorg. Med. Chem.2006,14, (20),6847-6858.
    86. Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Raynaud, F. I.; Workman, P.; Waterfield, M. D.; Parker, P., Synthesis and biological evaluation of pyrido[3',2':4.5]furo[3,2-d]pyrimidine derivatives as novel P13 kinase p110a inhibitors. Bioorg. Med. Chem. Lett.2007,17, (9),2438-2442.
    87. Hayakawa, M.; Kaizawa, H.; Kawaguchi, K.-i.; Ishikawa, N.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Raynaud, F.I.; Waterfield, M. D.; Parker, P.; Workman, P., Synthesis and biological evaluation of imidazo[1,2-a]pyridine derivatives as novel PI3 kinase p110a inhibitors. Bioorg. Med. Chem.2007,15, (1),403-412.
    88. Hayakawa, M.; Kawaguchi, K.-i.; Kaizawa, H.; Koizumi, T; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.-i.; Raynaud, F.I.; Parker, P.; Workman, P.; Waterfield, M. D., Synthesis and biological evaluation of sulfonylhydrazone-substituted imidazo[1,2-a]pyridines as novel PI3 kinase p110α inhibitors. Bioorg. Med. Chem.2007,15, (17),5837-5844.
    89. Pomel, V.; Klicic, J.; Covini, D.; Church, D. D.; Shaw, J. P.; Roulin, K.; Burgat-Charvillon, F.; Valognes, D.; Camps, M.; Chabert, C.; Gillieron, C.; Francon, B.; Perrin, D.; Leroy, D.; Gretener, D.; Nichols, A.; Vitte, P. A.; Carboni, S.; Rommel, C.; Schwarz, M. K.; Ruckle, T., Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinasey. J. Med. Chem.2006,49, (13),3857-3871.
    90. Alexander, R.; Balasundaram, A.; Batchelor, M.; Brookings, D.; Crepy, K.; Crabbe, T.; Deltent, M.-F.; Driessens, F.; Gill, A.; Harris, S.; Hutchinson, G.; Kulisa, C.; Merriman, M.; Mistry, P.; Parton, T.; Turner, J.; Whitcombe, I.; Wright, S.,4-(1,3-Thiazol-2-yl)morpholine derivatives as inhibitors of phosphoinositide 3-kinase. Bioorg. Med. Chem. Lett.2008,18, (15),4316-4320.
    91. Perry, B.; Alexander, R.; Bennett, G.; Buckley, G.; Ceska, T.; Crabbe, T.; Dale, V.; Gowers, L.; Horsley, H.; James, L.; Jenkins, K.; Crepy, K.; Kulisa, C.; Lightfoot, H.; Lock, C.; Mack, S.; Morgan, T.; Nicolas, A.-L.; Pitt, W.; Sabin, V.; Wright, S., Achieving multi-isoform P13K inhibition in a series of substituted 3,4-dihydro-2H-benzo[1,4]oxazines. Bioorg. Med. Chem. Lett.2008,18, (16), 4700-4704.
    92. Knight, Z. A.; Gonzalez, B.; Feldman, M. E.; Zunder, E. R.; Goldenberg, D. D.; Williams, O.; Loewith, R.; Stokoe, D.; Balla, A.; Toth, B.; Balla, T.; Weiss, W. A.; Williams, R. L.; Shokat, K. M., A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 2006, 125, (4),733-747.
    93. Kashishian, A.; Douangpanya, H.; Clark, D.; Schlachter, S. T.; Eary, C. T.; Schiro, J. G.; Huang, H.; Burgess, L. E.; Kesicki, E. A.; Halbrook, J., DNA-dependent protein kinase inhibitors as drug candidates for the treatment of cancer. Mol. Cancer Ther.2003,2, (12),1257-1264.
    94. Matsuno, T.; Karo, M.; Sasahara, H.; Watanabe, T.; Inaba, M.; Takahashi, M.; Yaguchi, S. I.; Yoshioka, K.; Sakato, M.; Kawashima, S., Synthesis and antitumor activity of benzimidazolyl-1,3,5-triazine and benzimidazolylpyrimidine derivatives. Chem. Pharm. Bull.2000, 48,(11),1778-1781.
    95. Yaguchi, S.; Izumisawa, Y; Sato, M.; Nakagane, T.; Koshimizu, I.; Sakita, K.; Kato, M.; Yoshioka, K.; Sakato, M.; Kawashima, S., In vitro cytotoxicity of imidazolyl-1,3,5-triazine derivatives. Biol. Pharm. Bull.1997,20, (6),698-700.
    96. Lohar, M. V.; Mundada, R.; Bhonde, M.; Padgaonkar, A.; Deore, V.; Yewalkar, N.; Bhatia, D.; Rathos, M.; Joshi, K.; Vishwakarma, R. A.; Kumar, S., Design and synthesis of novel furoquinoline based inhibitors of multiple targets in the P13K/Akt-mTOR pathway. Bioorg. Med. Chem. Lett.2008, 18, (12),3603-3606.
    97. Palanki, M. S. S.; Dneprovskaia, E.; Doukas, J.; Fine, R. M.; Hood, J.; Kang, X.; Lohse, D.; Martin, M.; Noronha, G.; Soil, R. M.; Wrasidlo, W.; Yee, S.; Zhu, H., Discovery of 3,3'-(2,4-diaminopteridine-6,7-diy1)diphenol as an isozyme-selective inhibitor of P13K for the treatment of ischemia reperfusion Injury associated with myocardial infarction. J. Med. Chem.2007, 50, (18),4279-4294.
    98. Shuttleworth, S. J.; Silva, F. A.; Cecil, A. R. L.; Tomassi, C. D.; Hill, T. J.; Raynaud, F. I.; Clarke, P. A.; Workman, P., Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors. Curr. Med. Chem.2011,18, 2686-2714.
    99. Schnell, C. R.; Arnal, S.; Becquet, M.; Allegrini, P.; Voliva, C.; Cozens, R.; Garcia-Echeverria, C.; Maira, S. M., NVP-BKM120, a pan class I PI3K inhibitor impairs microvascular permeability and tumor growth as detected by DCE-MRI and IFP measurements via radio-telemetry:Comparison with NVP-BEZ235 Abstract of papers No.4472, AACR Annual Meeting, Washington, DC, United States, April 17-21,2010.
    100. Herman, S. E. M.; Gordon, A. L.; Wagner, A. J.; Heerema, N. A.; Zhao, W.; Flynn, J. M.; Jones, J.; Andritsos, L.; Puri, K. D.; Lannutti, B. J.; Giese, N. A.; Zhang, X.; Wei, L.; Byrd, J. C; Johnson, A. J., Phosphatidylinositol 3-kinase-δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 2010,116, (12),2078-2088.
    101.Sadhu, C.; Masinovsky, B.; Dick, K.; Sowell, C. G.; Staunton, D. E., Essential role of phosphoinositide 3-kinase δ in neutrophil directional movement. J. Immunol.2003,170, (5), 2647-2654.
    102. Sadhu, C.; Dick, K.; Tino, W. T.; Staunton, D. E., Selective role of P13K[delta] in neutrophil inflammatory responses. Biochem. Biophys. Res. Commun.2003,308, (4),764-769.
    103. Raynaud, F. I.; Eccles, S. A.; Patel, S.; Alix, S.; Box, G.; Chuckowree, I.; Folkes, A.; Gowan, S.; De Haven Brandon, A.; Di Stefano, F.; Hayes, A.; Henley, A. T.; Lensun, L.; Pergl-Wilson, G.; Robson, A.; Saghir, N.; Zhyvoloup, A.; McDonald, E.; Sheldrake, P.; Shuttleworth, S.; Valenti, M.; Wan, N. C.; Clarke, P. A.; Workman, P., Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases:from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol. Cancer Ther.2009,8, (7),1725-1738.
    104. Folkes, A. J.; Ahmadi, K.; Alderton, W. K.; Alix, S.; Baker, S. J.; Box, G.; Chuckowree, I. S.; Clarke, P. A.; Depledge, P.; Eccles, S. A.; Friedman, L. S.; Hayes, A.; Hancox, T. C.; Kugendradas, A.; Lensun, L.; Moore, P.; Olivero, A. G.; Pang, J.; Patel, S.; Pergl-Wilson, G. H.; Raynaud, F.I.; Robson, A.; Saghir, N.; Salphati, L.; Sohal, S.; Ultsch, M. H.; Valenti, M.; Wallweber, H. J. A.; Wan, N. C.; Wiesmann, C.; Workman, P.; Zhyvoloup, A.; Zvelebil, M. J.; Shuttleworth, S. J., The Identification of 2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem.2008,51, (18),5522-5532.
    105. Ihle, T. N.; Williams, R.; Chow, S.; Chew, W.; Berggren, I. M.; Paine-Murrieta, G.; Minion, D. J.; Halter, J. R.; Wipf, P.; Abraham, R.; Kirkpatrick, L.; Powis, G., Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol. Cancer Ther.2004,3,763-772.
    106. Bajjalieh, W.; Bannen, L. C.; Brown, S. D.; Kearney, P.; Mac, M.; Marlowe, C. K.; Nuss, J. M.; Tesfai, Z.; Wang, Y.; Xu, W., Phosphatidylinositol 3-kinase inhibitors and methods of their use. WO 2007/044729 A2.
    107. Yaguchi, S.-i.; Fukui, Y.; Koshimizu, I.; Yoshimi, H.; Matsuno, T.; Gouda, H.; Hirono, S.; Yamazaki, K.; Yamori, T., Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J. Natl. Cancer Inst.2006,98, (8),545-556.
    108. Liu, N.; Rowley, B.; Schneider, C.; Bull, C.; Kaekoenen, S.; Hentemann, M.; Scott, W.; Mumberg, D.; Ziegelbauer, K., BAY 80-6946, a highly selective and potent pan class I P13K inhibitor induces tumor apoptosis in vitro and tumor regression in vivo in a sub-set of tumor models. Abstract of papers No.4476, AACR Annual Meeting, Washington, DC, United States, April 17-21, 2010.
    109. Liu, N.; Haegebarth, A.; Bull, C.; Schatz, C.; Wiehr, S.; Hauff, P.; Pichler, B. J.; Mumberg, D.; Jenkins, S.; Schwarz, T.; Ziegelbauer, K., BAY 80-6946, a highly potent and efficacious class I PI3K inhibitor, induces complete tumor regression or tumor stasis in rat xenograft tumor models with PIK3CA mutant or PTEN deletion Abstract of papers No.4478, AACR Annual Meeting, Washington, DC, United States, April 17-21,2010.
    110. Maira, S.-M.; Stauffer, F.; Brueggen, J.; Furet, P.; Schnell, C.; Fritsch, C.; Brachmann, S.; Chene, P.; De Pover, A.; Schoemaker, K.; Fabbro, D.; Gabriel, D.; Simonen, M.; Murphy, L.; Finan, P.; Sellers, W.; Garcia-Echeverria, C., Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther.2008,7, (7),1851-1863.
    111. Stauffer, F.; Maira, S.-M.; Furet, P.; Garcia-Echeverria, C., Imidazo[4,5-c]quinolines as inhibitors of the P13K/PKB-pathway. Bioorg. Med. Chem. Lett.2008,18, (3),1027-1030.
    112.Ohwada, J.; Ebiike, H.; Kawada, H.; Tsukazaki, M.; Nakamura, M.; Miyazaki, T.; Morikami, K.; Yoshinari, K.; Yoshida, M.; Kondoh, O.; Kuramoto, S.; Ogawa, K.; Aoki, Y.; Shimma, N., Discovery and biological activity of a novel class I P13K inhibitor, CH5132799. Bioorg. Med. Chem. Lett.2011, 21,(6),1767-1772.
    113. Knight, S. D.; Adams, N. D.; Burgess, J. L.; Chaudhari, A. M.; Darcy, M. G.; Donatelli, C. A.; Luengo, J. I.; Newlander, K. A.; Parrish, C. A.; Ridgers, L. H.; Sarpong, M. A.; Schmidt, S. J.; Van Aller, G. S.; Carson, J. D.; Diamond, M. A.; Elkins, P. A.; Gardiner, C. M.; Garver, E.; Gilbert, S. A.; Gontarek, R. R.; Jackson, J. R.; Kershner, K. L.; Luo, L.; Raha, K.; Sherk, C. S.; Sung, C.-M.; Sutton, D.; Tummino, P. J.; Wegrzyn, R. J.; Auger, K. R.; Dhanak, D., Discovery of GSK2126458, a highly potent inhibitor of P13K and the mammalian target of rapamycin. ACS Med. Chem. Lett.2010, 1,(1),39-43.
    114. Bagrodia, S.; Yua, J.; Cheng, H.; Chen, J.; Luu, K.; Zhang, E.; Lee, N. V.; Engebretsen, J.; Rafidi, K.; Wang, J.; Carlson, T.; Almaden, J.; McHarg, A.; Hemkens, M.; Marx, M. A.; Kan, J.; Pavlicek, A.; Ueno, L.; Sun, M.; Vogt, P.; Luo.Chun, PF-04691502, a potent and selective P13K/mTOR dual inhibitor with antitumor activity Abstract of papers No.4479, AACR Annual Meeting, Washington, DC, United States, April 17-21,2010.
    115. Cheng, H.; Bagrodia, S.; Bailey, S.; Edwards, M.; Hoffman, J.; Hu, Q.; Kania, R.; Knighton, D. R.; Marx, M. A.; Ninkovic, S.; Sun, S.; Zhang, E., Discovery of the highly potent P13K/mTOR dual inhibitor PF-04691502 through structure based drug design. Med. Chem. Comm.2010,1, (2), 139-144.
    116. Cheng, H.; Bagrodia, S.; Bailey, S.; Bhumalkar, D.; Dress, K.; Edwards, M.; Gehring, M. R.; Guo, L.; Hoffman, J.; Hu, Q.; Huang, X.; Johnson, C.; Johnson, T. O.; Kania, R.; Knighton, D. R.; Le, P.; Li, H.; Li, S.; Liu, K.; Liu, Z.; Marx, M. A.; Nambu, M.; Ninkovic, S.; Nowlin, D.; Pairish, M.; Pannifer, A.; Plewe, M.; Rodgers, C.; Smith, G.; Sun, S.; Tran, K.; Wang, H.; Zbieg, J.; Zhu, P., The discovery of the potent and selective P13K/mTOR dual inhibitor PF-04691502 through structure-based drug design Abstract of papers No.5779, AACR Annual Meeting, Washington, DC, United States, April 17-21,2010.
    117. Venkatesan, A. M.; Dehnhardt, C. M.; Delos Santos, E.; Chen, Z.; Dos Santos, O.; Ayral-Kaloustian, S.; Khafizova, G.; Brooijmans, N.; Mallon, R.; Hollander,I.; Feldberg, L.; Lucas, J.; Yu, K.; Gibbons, J.; Abraham, R. T.; Chaudhary, I.; Mansour, T. S., Bis(morpholino-1,3,5-triazine) derivatives:potent adenosine 5'-triphosphate competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin inhibitors:discovery of compound 26 (PK1-587), a highly efficacious dual inhibitor. J. Med. Chem.2010,53, (6),2636-2645.
    118. Venkatesan, A. M.; Chen, Z.; Dehnhardt, C. M.; Dos Santos, O.; Delos Santos, E. G.; Zask, A.; Verheijen, J. C.; Kaplan, J. A.; Richard, D. J.; Ayral-Kaloustian, S.; Mansour, T.; Gopalsamy, A.; Curran, K. J.; Shi, M., Triazine compounds as P13 Kinase and mTOR inhibitors. WO 2009/143313 Al.
    119. Dehnhardt, C. M.; Venkatesan, A. M.; Delos Santos, E.; Chen, Z.; Santos, O.; Ayral-Kaloustian, S.; Brooijmans, N.; Mallon, R.; Hollander, I.; Feldberg, L.; Lucas, J.; Chaudhary, I.; Yu, K.; Gibbons, J.; Abraham, R.; Mansour, T. S., Lead optimization of N-3-substituted 7-morpholinotriazolopyrimidines as dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitors:discovery of PKI-402. J. Med. Chem.2009,53, (2),798-810.
    120. Garlich, J. R.; De, P.; Dey, N.; Su, J. D.; Peng, X.; Miller, A.; Murali, R.; Lu, Y.; Mills, G. B.; Kundra, V.; Shu, H. K.; Peng, Q.; Durden, D. L., A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res.2008,68, (1), 206-215.
    121. Ozbay, T.; Durden, D.; Liu, T.; O'Regan, R.; Nahta, R., In vitro evaluation of pan-P13-kinase inhibitor SF1126 in trastuzumab-sensitive and trastuzumab-resistant HER2-over-expressing breast cancer cells. Cancer Chemother. Pharmacol.2010,65, (4),697-706.
    122. Prana, I.; LoRusso, P.; Baselga, J.; Heath, E.; Patnaik, A.; Gendreau, S.; Douglas Laird, A.; Papadopoulos, K., A phase 1 dose-escalation study of the safety, pharmacokinetics and pharmacodynamics of XL765, a PI3K/TORC1/TORC2 inhibitor administered orally to patients with advanced solid tumors. Abstract of papers No.3030, ASCO Annual Meeting, Chicago, IL, United States, June 4-8,2010.
    123. D'Angelo, N. D.; Kim, T.-S.; Andrews, K.; Booker, S. K.; Caenepeel, S.; Chen, K.; D'Amico, D.; Freeman, D.; Jiang, J.; Liu, L.; McCarter, J. D.; San Miguel, T.; Mullady, E. L.; Schrag, M.; Subramanian, R.; Tang, J.; Wahl, R. C.; Wang, L.; Whittington, D. A.; Wu, T.; Xi, N.; Xu, Y.; Yakowec, P.; Yang, K.; Zalameda, L. P.; Zhang, N.; Hughes, P.; Norman, M. H., Discovery and optimization of a series of benzothiazole phosphoinositide 3-kinase (P13K)/mammalian target of rapamycin (mTOR) dual inhibitors. J. Med. Chem.2011,54, (6),1789-1811.
    124. Stec, M. M.; Andrews, K. L.; Booker, S. K.; Caenepeel, S.; Freeman, D. J.; Jiang, J.; Liao, H.; McCarter, J.; Mullady, E. L.; San Miguel, T.; Subramanian, R.; Tamayo, N.; Wang, L.; Yang, K.; Zalameda, L. P.; Zhang, N.; Hughes, P. E.; Norman, M. H., Structure-activity relationships of phosphoinositide 3-kinase (P13K)/mammalian target of rapamycin (mTOR) dual Inhibitors: investigations of various 6,5-heterocycles to improve metabolic stability. J. Med. Chem.2011,54, (14),5174-5184.
    125. Nishimura, N.; Siegmund, A.; Liu, L.; Yang, K.; Bryan, M. C.; Andrews, K. L.; Bo, Y; Booker, S. K.; Caenepeel, S.; Freeman, D.; Liao, H.; McCarter, J.; Mullady, E. L.; San Miguel, T.; Subramanian, R.; Tamayo, N.; Wang, L.; Whittington, D. A.; Zalameda, L.; Zhang, N.; Hughes, P. E.; Norman, M. H., Phospshoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors:discovery and structure-activity relationships of a series of quinoline and quinoxaline derivatives. J. Med. Chem.2011,54, (13),4735-4751.
    126. Kim, O.; Jeong, Y.; Lee, H.; Hong, S.-S.; Hong, S., Design and synthesis of imidazopyridine analogues as inhibitors of phosphoinositide 3-kinase signaling and angiogenesis. J. Med. Chem.2011, 54, (7),2455-2466.
    127. Heffron, T. P.; Berry, M.; Castanedo, G.; Chang, C.; Chuckowree, I.; Dotson, J.; Folkes, A.; Gunzner, J.; Lesnick, J. D.; Lewis, C; Mathieu, S.; Nonomiya, J.; Olivero, A.; Pang, J.; Peterson, D.; Salphati, L.; Sampath, D.; Sideris, S.; Sutherlin, D. P.; Tsui, V.; Wan, N. C.; Wang, S.; Wong, S.; Zhu, B.-y., Identification of GNE-477, a potent and efficacious dual P13K/mTOR inhibitor. Bioorg. Med. Chem. Lett.2010,20, (8),2408-2411.
    128. Liu, K. K. C.; Bagrodia, S.; Bailey, S.; Cheng, H.; Chen, H.; Gao, L.; Greasley, S.; Hoffman, J. E.; Hu, Q.; Johnson, T. O.; Knighton, D.; Liu, Z.; Marx, M. A.; Nambu, M. D.; Ninkovic, S.; Pascual, B.; Rafidi, K.; Rodgers, C. M. L.; Smith, G. L.; Sun, S.; Wang, H.; Yang, A.; Yuan, J.; Zou, A., 4-Methylpteridinones as orally active and selective P13K/mTOR dual inhibitors. Bioorg. Med. Chem. Lett.2010,20, (20),6096-6099.
    129. Apsel, B.; Blair, J. A.; Gonzalez, B.; Nazif, T. M.; Feldman, M. E.; Aizenstein, B.; Hoffman, R.; Williams, R. L.; Shokat, K. M.; Knight, Z. A., Targeted polypharmacology:discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol.2008,4, (11),691-699.
    13O.Fan, Q.-W.; Knight, Z. A.; Goldenberg, D. D.; Yu, W.; Mostov, K. E.; Stokoe, D.; Shokat, K. M.; Weiss, W. A., A dual P13 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006,9,(5),341-349.
    131. Liu, K. K. C.; Huang, X.; Bagrodia, S.; Chen, J. H.; Greasley, S.; Cheng, H.; Sun, S.; Knighton, D.; Rodgers, C.; Rafidi, K.; Zou, A.; Xiao, J.; Yan, S., Quinazolines with intra-molecular hydrogen bonding scaffold (iMHBS) as P13K/mTOR dual inhibitors. Bioorg. Med. Chem. Lett.2011,21, (4), 1270-1274.
    132.Barile, E.; De, S. K.; Carlson, C. B.; Chen, V.; Knutzen, C.; Riel-Mehan, M.; Yang, L.; Dahl, R.; Chiang, G.; Pellecchia, M., Design, synthesis, and structure-activity relationships of 3-ethynyl-1H-indazoles as inhibitors of the phosphatidylinositol 3-kinase signaling pathway. J. Med. Chem.2010,53, (23),8368-8375.
    133. Dehnhardt, C. M.; Venkatesan, A. M.; Chen, Z.; Delos-Santos, E.; Ayral-Kaloustian, S.; Brooijmans, N.; Yu, K.; Hollander, I.; Feldberg, L.; Lucas, J.; Mallon, R., Identification of 2-oxatriazines as highly potent pan-P13K/mTOR dual inhibitors. Bioorg. Med. Chem. Lett.2011,21, (16),4773-4778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700