人脐静脉内皮细胞基因表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Analysis of Genes Expression of the Human Umbilical Vein Endothelia Cells
  • 作者:梁欣伟
  • 论文级别:博士
  • 学科专业名称:内科学
  • 学位年度:2006
  • 导师:吴平生
  • 学科代码:100201
  • 学位授予单位:第一军医大学
  • 论文提交日期:2006-05-20
  • 答辩委员会主席:马虹
摘要
研究背景:
     内皮细胞在人类许多重大疾病发生过程中处于重要的地位,例如冠心病、肿瘤等。冠心病是由于冠脉血管病变导致心肌细胞缺血、缺氧,使该支冠脉血管(包括微循环)及所支配区域的心肌细胞凋亡、坏死,其中内皮细胞的的应激、炎症反应、脂质沉积等病理生理过程是冠心病发生的重要机制。在肿瘤尤其是实体瘤的发生过程中,血管新生是肿瘤得以存活的重要因素,而血管新生的最主要过程即为内皮细胞的生长,另外肿瘤的侵袭、转移等过程,也有赖于内皮细胞的参与。因此可以看出,内皮细胞在这些关乎人民健康的重大疾病的发生过程中占有重要的地位。
     基因在疾病的发生发展过程中处于重要的地位已成为科学界的共识。基因表达的改变在内皮细胞病变的过程中处于什么地位?发挥什么作用?——长期以来就是医学领域中研究的重点和热点。当前,对于内皮细胞基因表达方面的研究较多,但是尚未见将内皮细胞全部基因表达谱进行全部分析的报道。若能将内皮细胞的所有表达基因进行分析,汇总和分类,分析这些表达基因所参与的病理生理功能及在内皮细胞中所发挥的作用,那将对基因治疗运用于内皮细胞具有重要的意义。
     目的:
     利用当前基因芯片高通量技术,全面分析人脐静脉内皮细胞的基因表达谱,对所有表达的基因进行生物信息学分析,汇总整理出与内皮细胞相关的重要的基因、分子功能和信号通路。
     方法:
     (1) 应用人类HG-U133A plus 2.0芯片对人脐静脉内皮细胞的基因表达谱进行全面分析,进而就用荧光定量PCR方法对结果进行验证。
     (2) 应用Microsoft Excel、Milano、Go、PANTHER以及Genomatix等软件和网站对基因表达谱进行分析、汇总及数据挖掘。
Introduction
    Endothelial cells (ECs) are very important for many diseases, for example, coronary artery disease, and tumor. Coronary artery disease is result of ischemia and hypoxia of myocardial cells and endothelial cells of coronary artery. Stress, inflammatory reaction and lipidoese of ECs are the major mechanism of coronary artery disease. Another, angiogenesis take part in tumorigenesis, invasion and metabasis. In short, ECs is very important for many diseases. As we known, genes is same important in the process of diseases. What will induce the difference expression of genes of ECs in the process of diseases? What is its effect? To date, there is not overall analysis about gene expression of ECs. In the same time, this is significant for gene therapy.
    Object:
    To analysis all the gene expression profile of ECs through GeneChip of Affymetrix and get the important signals pathway, key genes and molecular function.
    Methods:
    (1)Gene expression profile of human umbilical vascular endothelial cells (HUVEC) is analyzed by the Affymetrix GeneChip HG-U133A plus2.0 and confirms the results of GeneChip with Real-time PCR.
    (2)To mine the data by the bioinformatics software of internet. For example, Microsoft Excel, Milano, Go, PANTHER, Genomatix etal.
    Results:
引文
[1] Shyu K G, Wang M T, Wang B W, et al. Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat Cardiovasc Res, 2002. 54(3): 576-83.
    [2] Duan L J, Zhang-Benoit Y and Fong G H. Endothelium-intrinsic requirement for Hif-2alpha during vascular development. Circulation, 2005. 111(17): 2227-32.
    [3] Paris S, Denis H, Delaive E, et al. Up-regulation of 94-kDa glucose-regulated protein by hypoxia-inducible factor-1 in human endothelial cells in response to hypoxia. FEBS Lett, 2005.579(1): 105-14.
    [4] Shi Y H, Wang Y X, Bingle L, et al. In vitro study of HIF-1 activation and VEGF release by bFGF in the T47D breast cancer cell line under normoxic conditions: involvement of PI-3K/Akt and MEK1/ERK pathways. J Pathol, 2005. 205(4): 530-6.
    [5] Friedmann T. Human gene therapy--an immature genie, but certainly out of the bottle. Nat Med, 1996. 2(2): 144-7.
    [6] Coutelle C, Themis M, Waddington S N, et al. Gene therapy progress and prospects: fetal gene therapy—first proofs of concept—some adverse effects. Gene Ther, 2005. 12(22): 1601-7.
    [7] Seth P. Vector-mediated cancer gene therapy: an overview. Cancer Biol Ther, 2005. 4(5): 512-7.
    [8] Verma I M and Weitzman M D. Gene therapy: twenty-first century medicine. Annu Rev Biochem, 2005. 74: 711-38.
    [9] May D, Itin A, Gal O, et al. Erol-L alpha plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: implication for cancer. Oncogene, 2005. 24(6): 1011-20.
    [10] Suda K, Rothen-Rutishauser B, Gunthert M, et al. Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: endothelial versus epithelial features. In Vitro Cell Dev Biol Anim, 2001. 37(8): 505-14.
    
    [11] Naji A, Deschaseaux F, Racadot E, et al. Induction of tissue factor expression on human umbilical vein endothelial cells by cell-specific HLA class I antibody: preliminary data. Transplant Proc, 2005. 37(6): 2892-3.
    
    [12] Deo D D, Axelrad T W, Robert E G, et al. Phosphorylation of STAT-3 in response to basic fibroblast growth factor occurs through a mechanism involving platelet-activatingfactor, JAK-2, and Src in human umbilical vein endothelial cells. Evidence for a dual kinase mechanism. J Biol Chem, 2002. 277(24): 21237-45.
    [13] Reimers M, Heilig M and Sommer W H. Gene discovery in neuropharmacological and behavioral studies using Affymetrix microarray data. Methods, 2005. 37(3): 219-28.
    [14] Rensink W A and Buell C R. Microarray expression profiling resources for plant genomics. Trends Plant Sci, 2005. 10(12): 603-9.
    [15] Hackl H, Sanchez Cabo F, Sturn A, et al. Analysis of DNA microarray data Curr Top Med Chem, 2004. 4(13): 1357-70.
    [16] Takayanagi H. [GeneChip analysis for osteoimmunology]. Nihon Rinsho Meneki Gakkai Kaishi, 2005. 28(2): 79-85.
    [17] Zhu T. Global analysis of gene expression using GeneChip microarrays. Cure Opin Plant Biol, 2003. 6(5): 418-25.
    [18] McGall G H and Christians F C. High-density genechip oligonucleotide probe arrays. Adv Biochem Eng Biotechnol, 2002. 77: 21-42.
    [19] Allison D B, Cui X, Page G P, et al. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet, 2006. 7(1): 55-65.
    [20] West R B and van de Rijn M. The role of microarray technologies in the study of soft tissue tumours. Histopathology, 2006. 48(1): 22-31.
    [21] Li X and Quigg R J. An integrated strategy for the optimization of microarray data interpretation. Gene Expr, 2005. 12(4-6): 223-30.
    [22] Peng W, Jin L, Henderson G, et al. Mapping herpes simplex virus type 1 latency-associated transcript sequences that protect from apoptosis mediated by a plasmid expressing caspase-8. J Neurovirol, 2004. 10(4): 260-5.
    [23] Knight G W and McLellan D. Use and limitations of imatinib mesylate (Glivec), a selective inhibitor of the tyrosine kinase Abl transcript in the treatment of chronic myeloid leukaemia. Br J Biomed Sci, 2004. 61(2): 103-11.
    [24] Hoheisel J D. Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet, 2006. 7(3): 200-10.
    [25] Aubert J, Belmonte N and Dani C. Role of pathways for signal transducers and activators of transcription, and mitogen-activated protein kinase in adipocyte differentiation. Cell Mol Life Sci, 1999. 56(5-6): 538-42.
    [26] Chuderland D and Seger R. Protein-protein interactions in the regulation of the extracellular signal-regulated kinase. Mol Biotechnol, 2005. 29(1): 57-74.
    [27] Hindley A and Kolch W. Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J Cell Sci, 2002. 115(Pt 8): 1575-81.
    [28] Versteeg H H, Peppelenbosch M P and Spek C A. Tissue factor signal transduction in angiogenesis. Carcinogenesis, 2003. 24(6): 1009-13.
    [29] Matsumoto T and Claesson-Welsh L. VEGF receptor signal transduction. Sci STKE, 2001. 2001(112): RE21.
    
    [30] Cross M J, Dixelius J, Matsumoto T, et al. VEGF-receptor signal transduction. Trends Biochem Sci, 2003. 28(9): 488-94.
    [31]Ferrara N, Gerber H P and LeCouter J. The biology of VEGF and its receptors. Nat Med, 2003. 9(6): 669-76.
    [32] Cross M J and Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci, 2001. 22(4): 201-7.
    [33]Shawber C J and Kitajewski J. Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays, 2004. 26(3): 225-34.
    [34] Jones N, Iljin K, Dumont D J, et al. Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol, 2001. 2(4): 257-67.
    [35] Semenza G Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol, 2002. 64(5-6): 993-8.
    
    [36] Giles R H, Lolkema M P, Snijckers C M, et al. Interplay between VHL/HIF1 alpha and Wnt/beta-catenin pathways during colorectal tumorigenesis. Oncogene, 2006.
    [37] Huelsken J and Behrens J. The Wnt signalling pathway. J Cell Sci, 2002. 115(Pt 21): 3977-8.
    [38] van Es J H, Barker N and Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev, 2003. 13(1): 28-33.
    [39] Xing D, Sun X, Li J, et al. Hypoxia preconditioning protects corneal stromal cells against induced apoptosis. Exp Eye Res, 2006. 82(5): 780-7.
    [40] Danial N N and Korsmeyer S J. Cell death: critical control points. Cell, 2004. 116(2): 205-19.
    [41] Strasser A, O'Connor L and Dixit V M. Apoptosis signaling. Annu Rev Biochem, 2000. 69: 217-45.
    [42] Debnath J, Mills K R, Collins N L, et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell, 2002. 111(1): 29-40.
    [43] Rathmell J C and Thompson C B. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell, 2002. 109 Suppl: S97-107.
    [44] Johnstone R W, Ruefli A A and Lowe S W. Apoptosis: a link between cancer genetics and chemotherapy. Cell, 2002. 108(2): 153-64.
    [45] Levine A J, Feng Z, Mak T W, et al. Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev, 2006. 20(3): 267-75.
    [46] Haupt Y. p53 Regulation: a family affair. Cell Cycle, 2004. 3(7): 884-5.
    [1] Carmeliet P. Mechanisms of Angiogenesis and Arteriogenesis. Nat Med. 2000; 6: 389-395.
    [2] Gregg L, Semenza. Angiogenesis in Ischemic and Neoplasmtic Disorders. Annu. Rev. Med. 2003, 54: 17-28
    [3] Masuda H, Asahara T. Postnatal endothelial progenitor cells for neovascularization in tissue regeneration. Cardiovasc Res, 2003, 58 (2): 390~398.
    [4] Folkman J. Angiogenesis. J Annu Rev Med. 2006; 57: 1-18.
    [5] Thurston G, Rudge JS, Ioffe E, et al. Angiopoietin 1 protects the adult vasculature against plasma leakage. Nat vMed, 2000, 6: 1-4.
    [6] Midori Yamakawa, Louis X. Liu, Taro Date, et al. Endothelial Cells by Inducing Multiple Angiogenic Factors Hypoxia-Inducible Factor-1 Mediates Activation of Cultured Vascular, Circulation Research 2003; 93; 664-673
    [7] Varner JA, Brooks PC, Cheresh DA. The integrin-α v β3: angiogenesis and apoptosis. Cell. Adhe. Commun, 1995; 3: 367-374.
    [8] Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesisl Science, 1997, 275: 964-9671
    [9] Murayama T, Tepper OM, Silver M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo[J]. Exp Hematol 2002, 30(8): 967-972.
    [10] Edelberg JM, Tang L, Hattonk, et al. Young adult bone marrow-derived endothelial progenitor cells restore aging-impaired angiogenesis function [J]. Circ Res, 2002, 90(10): e89—e93.
    [11] Hamano K, NishidaM, Hiratak K, et al. Local implantation of autologous bone marrow cell for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results [J]. Jpn Circ J, 2001, 65 (9): 835—837.
    [12] Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia [J]. Circulation, 2001, 103 (5): 634—637.
    [13] Yeh ET, Zhang S, Wu HD, et all Transdifferentiation of humanperipheral blood CD34 +-enrichen cell population intocardiomyocytes, endothelial cells, and smooth muscle cells in vivol. Circulation, 2003, 108: 2070—2073
    [14] Badorff C, Brands RP, Poppr, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes [J]. Circulation, 2003, 107(7): 1024—1032.
    [15] Britten MB, Abolmaali ND, Assmus B, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanc-ed magnetic resonance imaging. Circulation. 2003 Nov4; 108(18): 2212-8..
    [16] Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med. 2005 Oct-Dec; 9(4): 777-94.
    [17] Rosenkranz S, Bohm M, Kazlauskas A. Pathophysiologic significance of growth factors and new therapeutic concepts in cardiovascular disease. Med Klin (Munich). 1999 Sep 15; 94(9): 496-504.
    [18] Gardiner TA, Gibson DS. et al. Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. Am J Pathol. 2005 Feb; 166(2): 637-44.
    [19] Post MJ, Laham R, Sellke F W, et al. Therapeutic angiogenesis in cardiology using protein formulations [J]. Cardiovasc Res, 2001, 49(3): 522-531.
    [20] Henry T D, Rocha-singh K, Inser J M, et al. Results of intracoronary recombinant human vascular endothelial growh factor administration trial [J]. Circulation, 1998, 97(2): 65A.
    [21] Schumacher B, Peter O, Specht B U, et al. Induction of neoangiogenesis in ischemic myocardium by human growth factors[J]. Circulation, 1998, 97(7): 645-650.
    [22] Sellke F W, Laham R J, Edelman E K, et al. Therapeutic angiogenesis with basic fibroblast growth factor: Technique and early results[J]. Ann Thorac Surg, 1998, 65(6): 1540-1544.
    [23] Schalch P, Rahman GF, et al Adenoviral-mediated transfer of vascular endothelial growth factor 121 cDNA enhances myocardial perfusion and exercise performance in the nonischemic state. J Thorac Cardiovasc Surg. 2004 Feb; 127(2): 535-40.
    [24] Kolsut P, Malecki M, Gene therapy of coronary artery disease with phVEGF165—early outcome. Kardiol Pol. 2003 Nov; 59(11): 373-84.
    [25] 蒋捷,高炜,王日胜,等.血管内皮生长因子基因治疗小型猪冠状动脉闭塞的实验研究.中国介入心脏病学杂志,2001,9:220—223.
    [26] Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis, initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia[J]. Circulation, 1998, 98(25): 2800-2804.
    [27] Ohtani K, Egashira K, Hiasa K, et al. Blockade of vascular endothelial growth factor suppresses experimental restenosis after intraluminal injury by inhibiting recruitment of monocytelineage cells. Circulation, 2004, 110 (16): 2444~52
    [28] Celletti FL, Waugh JM, Amabile PG, et al. Vascular endothelial growth factor enhances atherosclerotic plaque progressin. Nat Med, 2001, 7(4): 425~429
    [29] Bruick RK, McKnight SL. Building better vasculature. Genes Dev. 2001; 15(19): 2497-502
    [30] Harris AL. Hypoxia: A key regulatory factor in tumour grow. Nat Rev Cancer, 2002, 2(1): 38~47
    [31] Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol, 2001, 13(2): 167~171
    [32] Elson DA, Thurston G, Huang LE, Ginzinger DG, McDonald DM, Johnson RS , Arbeit JM. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1 alpha. Genes Dev.2001;15(19): 2520-32
    [33] Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor 1-alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: Implications for tumor angiogenesis and therapeutics. Cancer Res, 2000, 60(6): 1541 - 1545
    [34] Jeong JW, Bae MK, Ahn MY, et al .Regulation and destabilization of HIF-1 alpha by ARD1-mediated acetylation.Cell, 2002, 11(5): 709~720
    [35] Fukuda R, Hirota K, Fan F, et al .Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase-signaling in colon cancer cells. J Biol Chem, 2002, 277(41): 38205—38211
    [36] Shi YH, Fang WG. Hypoxia-inducible factor-1 in tumour angiogenesis. World J Gastroenterol. 2004 Apr 15; 10(8): 1082-7.
    [37] Lee SH, Wolf PL, Escudero R, et al . Early expression of angiogenesis factors in acute myocardial ischemia and infarction [J ] . N Engl J Med, 2000, 342 (9): 626-633..
    [38] Semenza GL. HIF-1: using two hands to flip the angiogenic swith [J ] .Cancer Metastasis Rev, 2000, 19(1-2): 59-65.
    [39] Damert A, Ikeda E, Risau W. Activator-protein-1 binding potentiates the hypoxia-inducible factor 1 mediated hypoxia-induced transcriptional activation of vascular endothelial growth factor expression in C6 glioma cells [J ] . J Biochem,1997, 327(pt2): 419-423.
    [40] Liu Y, Christou H, Morita T, et al . Carbon monoxide and nitric oxide suppress the hypoxia induction of vascular endothelial growth factor gene via the 5'enhancer[J ]. J Biol Chem, 1998, 273 (24): 15257 - 15262.
    [41]Gerber HP, condorelli F, Park J, et al. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/ KDR, is upregulated by hypoxia[J]. J Biol Chem, 1997, 272(38): 23659-23667.
    [42] Vincent KA, Shyu KG, Luo Y, et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HDF-1alpha/VP16 hybrid transcription factor [J]. Circulation, 2000, 102 (18): 2255- 2261.
    [43] Su H, Arakawa-Hoyt J, Kan YW. Adeno-associated viral vector mediated hypoxia response element-regulate gene expression in mouse ischemic heart model[J].Proc Natl Acad Sci USA, 2002, 99(14): 9480-9585
    [44] Arbeit JM. Quiescent hypervascularity mediated by gain of HIF-1 alpha function [J]. Cold Spring Harb Symp Quant Biol, 2002, 67: 133 —142
    [45] Kallio PJ, Okamoto K, O'Brien S, et al. Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1 alpha[J ]. EMBO J, 1998, 1722: 6573-6586.
    [46] Jiang C, Lu H, Vincent KA, et al. Gene expression profiles in human cardiac cells subjected to hypoxia or expressing a hybrid form of HEF-1 alpha[J ] . Physiol Genomics, 2002, 8(1): 23-32
    [47] Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hpoxia-inducible factor 1[J]. Mol Cell Biol, 1999, 274(10): 6519-6525.
    [48] Inoue M, Itoh H, Ueda M, et al .Vascular endothelial growth factor(VEGF) expression in human coronary atherosclerotic esions: Possible pathophysiological significance of VEGF in ession of therosclerosis. Circulation, 1998, ( 20 ): 2108- 2116
    [49] Gorlach A, Diebold I, Schini-Kerth VB, et al . Thrombion activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: Role of the p22(phox)-containing NADPH oxidase. Circ Res, 2001, 89(1): 47—54.
    [50] Kakinuma Y, Miyauchi, Yuki K, et al. Novel molecular mechanism of increased myocardial Endothelin-1 expression in the failing heart involving the transcriptional factor hypoxia-inducible factor-1 a induced for impaired myocardial energy metabolism[J]. Circulation, 2001, 103(19): 2387-2394
    [51] Semenza GL. HJP-1 and human disease. Genes Dev, 2000, 14: 1983- 1991
    [52] Kalka C, Masuda H, Tahahashi, T, et al. Vascular endothelial growth factor(165) gene transferr augments circulating endothelial progenitor cells in human subjects. Circ-Res. 2000;86(12): 1198-1202
    [53] Pages G, Milanini J, Richard DE, et al . Signaling angiogenesis via p42/p44 MAP kinase cascade[J ] . Ann N YAcad Sci, 2000, 902: 187 - 200
    [54] Kakinuma Y, Miyauchi T, et al. Novel molecular mechanism of increased myocardial endothelin-1 expression in the failing heart involving the transcriptional factor hypoxia-inducible factor-1 alpha induced for impaired myocardial energy metabolism. Circulation. 2001 May 15;103(19):2387-94.
    [55] Hu R, Dai A, Tan S. Hypoxia-inducible factor 1 alpha upregulates the expression of inducible nitric oxide synthase gene in pulmonary arteries of hyposic rat. Chin Med J (Engl). 2002 Dec;115(12): 1833-1837.
    [56]Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002;295(5556):858-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700