HSV-2感染ECV304细胞的生物学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单纯疱疹病毒(Herpes Simplex Virus,HSV)是世界范围内人类生殖器疱疹(Genital herpes,G H)的病毒病原。流行病学调查研究显示,过去20年中,世界大多数国家HSV的血清患病率显著增加。该病易反复发作,给患者造成巨大的身心痛苦。同时GH还消耗大量公共卫生资源,给个人和社会带来沉重经济负担。孕妇GH尚会影响优生优育,可引起胎儿、新生儿的严重感染,导致严重不良后果。在HIV/AIDS流行地区,GH还增加了感染HIV的危险性。目前尚无安全有效的疫苗和药物能预防、治愈HSV感染。HSV感染引发的疾病包括原发和继发的粘膜感染(如龈口炎、唇疱炎和生殖器疱疹)、角膜炎、新生儿HSV感染、内脏HSV感染、HSV脑炎、水痘样出疹和多形红斑,并与宫颈癌和动脉粥样硬化(AS)的发生有关。
     动脉粥样硬化(AS)严重威胁人类健康,虽然大量的流行病学资料显示传统的危险因子是动脉粥样硬化的主要危险因素,但动脉粥样硬化仍然有许多潜在的病因亟待探索。研究表明,病原微生物感染可能参与了动脉粥样硬化的发生发展,感染后的炎症反应在动脉粥样硬化的发生过程中发挥重要作用。有关病毒感染与AS的关系逐渐受到人们重视,血清流行病学和分子生物学的研究资料表明,HSV及其DNA序列存在于AS的病灶组织,主要见于血管平滑肌细胞(SMC)和内皮细胞(EC),且AS患者血清HSV的抗体阳性率明显增高,提示HSV的感染在AS的形成和发生发展过程中可能起重要作用。迄今为止,对于HSV如何参与AS的发病机制尚缺乏深入的了解,病毒对体外靶细胞的作用可以反映病毒对体内细胞的直接作用,研究体外情况下HSV感染血管内皮细胞的生物学效应,对阐明HSV的致病机制具有非常重要的意义。目前研究发现,HSV可通过内皮毒性作用、损害内皮依赖的舒张功能及影响内皮粘附功能等方式造成内皮结构和功能损伤,但其潜在的基因水平的机制尚不清楚。传统的RNA方法学如Northern斑点杂交分析一次只能研究一种基因,成本高,效率低,
Background and Objective Herpes simplex virus (HSV) is the viral agent of genital herpes (GH) in mankind worldwide. Researchs in epidemiology showed seropositive for HSV were increasing obviously in most countries in the past 20 years. GH recurrents easily, which harm the patients heavily. GH expends lots of publical health resource as well as aggravates economic burden. GH in pregnant women may cause deadly infection in newborn children and foetuses. GH also increases the fatalness of HIV-infection in AIDS era. Effective therapy and vaccines are not available at present. Following primary infection, neutralizing antibodies to HSV develop in the serum. Subsequently, some seropositive individuals develop clinically mild recurrent labial or genital lesions, typifying the unique biological property of HSV, namely an ability to recur in the presence of humoral immunity or reactivation of latent infection. The spectrum of disease caused by HSV includes primary and recurrent infections of mucous membranes (e.g., gingivostomatitis, herpes labialis, and genital HSV infections), keratoconjunctivitis, neonatal HSV infection, visceral HSV infections in immunocompromised hosts, HSV encephalitis, Kaposi's varicella-like eruption, and an association with erythema multiforme, and related with cervix carcinoma and Atherosclerosis (AS). An important advance in our knowledge of HSV infections has been the ability to distinguish between HSV-1 and HSV-2. HSV-1 is more frequently associated with nongenital infection, while HSV-2 is associated with genital disease. HSV has two unique biological properties that influence human disease. Although HSV-1 and HSV-2 are usually transmitted by different routes and involve different areas of the body, there is an overlap in the epidemiology and clinical manifestations. Virus is transmitted from infected to susceptible individuals during close personal contact. There is no seasonal variation in the incidence of infection. Because HSV infection is rarely fatal, and HSV
引文
1. Shanta V, Krishnamurthi S, Gajalakshmi CK, et al. Epidemiology of cancer of the cervix: global and national perspective[J]. J Indian Med Assoc, 2000, 98(2): 49-52.
    
    2. Kotronias D, Kapranos N. Herpes simplex virus as a determinant risk factor for coronary artery atherosclerosis and myocardial infarction [J]. In Vivo, 2005, 19(2): 351-357.
    
    3. Legoff J, Bouhlal H, Gresenguet G, et al. Real-time PCR quantification of genital shedding of herpes simplex virus (HSV) and human immunodeficiency virus (HIV) in women coinfected with HSV and HIV[J]. J Clin Microbiol, 2006, 44(2):423-432.
    
    4. Chen KT, Segu M, Lumey LH, et al. Genital herpes simplex virus infection and perinatal transmission of human immunodeficiency virus[J].Obstet Gynecol, 2005, 106(6): 1341-1348.
    
    5. Shi Y, Tokunaga O. Herpesvirus (HSV-1, EBV and CMV) infections in atherosclerotic compared with non-atherosclerotic aortic tissue[J]. Pathol Int, 2002, 52(1):31-39.
    
    6. Aryee EA, Bailey RL, Natividad SA, Detection, et al. quantification and genotyping of Herpes Simplex Virus in cervicovaginal secretions by real-time PCR: a cross sectional survey[J]. J Virol, 2005, 2:61-68.
    
    7. Dolan A, Jamieson FE, Cunningham C, et al. The genome sequence of herpes simplex virus type 2[J]. J Virol, 1998, 72(3):2010-2021.
    
    8. Burke RL. Development of herpes simplex virus subunit glycoprotein vaccine for prophylactic and therapeatic use[J]. J Rev Infect Dis, 1991,11: 906-911.
    
    9. Rajcani J, Vojvodova A. The role of herpes simplex virus glycoproteins in the virus replication cycle[J]. J Acta Virol, 1998, 42 (2):103-118.
    
    10. Cai WZ,Gu BH, Person S, et al. Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion[J]. J Virol, 1988, 62:2596-2604.
    
    11. Roizman B. HSV gene functions:what have we learned that could be generally applicable to its near and distant cousins[J]. J Acta Virol, 1999, 43(2-3): 75-80.
    
    12. Handler CG, Eisenberg RJ, Cohen GH. Oligomeric structure of glycoproteins in herpes simplex virus type 1[J]. J Virol, 1996, 70(9):6067-6070.
    
    13. Wu CT, Levine M, Homa F, et al. Characterization of the antigenic structure of herpes simplex virus type 1 glycoprotein C through DNA sequence analysis of monoclonal antibody-resistant mutants[J]. J Virol, 1990, 64 (2):856-863.
    
    14. Minagawa H, Liu Y, Yoshida T, et al. Pathogenicity of glycoprotein C-deficient herpes simplex virus 1 strain TN-1 which encodes truncated glycoprotein C[J]. J Microbiol Immunol, 1997,41(7):545-551.
    
    15. Lubinski JM, Wang L, Soulika AM, et al. Herpes simplex virus type 1 glycoprotein gC mediates immune evasion in vivo[J]. J virol, 1998, 72(10): 8257-8263.
    
    16. Olofsson S, Bolmsted A, Biller M, et al. The role of a single N-linked glycoprotein site for a functional epitope of herpes simplex virus type I envelope glycoprotein gC[J]. J Glycobiology, 1999, 9(1):73-81.
    
    17. Basu S, Dubin G, Basu M, et al. Characterization of regions of herpes simplex virus type 1 glycoprotein E involved in binding the Fc domain of monomeric IgG and in forming a complex with glycoprotein I[J]. J Immunol, 1995,154(1):260-7.
    
    18. Krummenacher C, Nicola AV, Whitbeck JC, et al. Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, structurally unrelated mediators of virus entry[J]. J virol, 1998, 72(9):7064-7074.
    
    19. Rux AH, Willis SH, Nicola AV, et al. Functional region IV of glycoprotein D from herpes simplex virus modulates glycoprotein binding to the herpesvitus entry mediator[J]. J virol, 1998,72(9):7091-7098.
    
    20. Nagashunmugam T, Lubinski J, Wang L, et al. In vivoimmune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor [J]. J Virol, 1998,72 (7):5351-5359.
    
    21. Hanke T, Graham FL, Lulitanond V, et al. Herpes simplex virus IgG Fc receptor induced using recombinant adenvirus vector expressing-glycoproteins E and I[J]. J Virol, 1990,177 (2):437-444.
    
    22. Basu S, Dubin G, Nagashunmugan T, et al. Mapping regions of herpes simplex virus type 1 glycoprotein I required for formation of the viral Fc receptir for minimeric IgG[J]. J Immunol, 1997,158 (1):209-215.
    
    23. Ng TI, Ogle WO, Roizman B. UL13 protein kinase of herpes simplex virus 1 complexes with glycorotein E and mediates the phosphorylation of the viral Fc receptor: glycoproteins E and I[J]. J Virol, 1998, 241(1):37-48.
    
    24. Dingwell KS, Doering LC, Johnson DC. Glycoproteins E and I facilitate neuron-to-neuron spread of herpes simplex virus[J]. J Virol, 1995, 69(11): 7087-7098.
    
    25. Bergstrom T, Trybala E. Antigenic differences between HSV-1 and HSV-2 glycoproteins and their importance for type-specific serology [J]. Intervirology, 1996, 39(3): 176-184.
    26. Tunback P, Liljeqvist JA, Lowhagen GB, et al. Glycoprotein G of herpes simplex virus type 1:indentification of type-specific epitopes by human antibodies[J]. J Gen Virol, 2000, 81(4):1033-1040.
    
    27. Browne HM, Bruun BC, Minson AC. Characterization of herpes simplex virus type 1 recombinants with mutations in the cytoplasmic tail of glycoprotein H[J]. J Gen Virol, 1996, 77 (10):2569-2573.
    
    28. Novotny MJ, Parish ML, Spear PG Variablity of herpes simplex virus 1 gL and anti-gL antibodies that inhibit cell fusion but not viral infectivity[J]. J Virol, 1996,70(1):1-13.
    
    29. Westra DF, Glazenburg KL, Harmsen MC, et al. Glycoprotein H of herpes simplex virus type 1 requires glycopeotein L for transport to the surfaces of insect cells[J].J Virol, 1997, 71(3):2285-2291.
    
    30. Galdiero M, Whiteley A, Bruun B, et al. Site-directed and linker insertion mutagenesis of herpes simplex virus type 1 glycoprotein H[J]. J Virol, 1997, 71(3):2163-2170.
    
    31. Mo C, Holland TC. Determination of the transmembrane topology of herpes simplex virus type 1 glycoprotein K[J]. J Biol Chem, 1997, 272 (52):33305-11.
    
    32. Rajcani J, Kudelova M. Glycoprotein K of herpes simplex virus:A transmembrane protein encoded by the UL53 gene which regulates membrane fusion[J]. J Virus Genes, 1999,18(1):81-90.
    
    33. Foster TP, Kousoulas KG Genetic analysis of the role of herpes simplex virus type 1 glycoprotein K in infectious virus production and egress[J].J Virol, 1999,73(10):8457-8468.
    
    34. Jerome KR, Fox R, Chen Z, et al. Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3[J]. J Virol, 1999, 73(11):8950-8957.
    
    35. Osterrieder N. Sequence and initial characterization of the UL10 (glycoprotein M) and UL11 homologous genes of serotype 1 Marek' s Disease Virus[J].J Arch virol, 1999,144(9):1853-1863.
    
    36. Baines JD, Roizman B. The UL10 gene of herpes simplex virus 1 encodes a novel viral glycoprotein, gM, which is present in the virion and in the plasma membrane of infected cells[J]. J Virol, 1993, 67(3):1441-1452.
    
    37. Baines JD, Roizman B. The open reading frames UL3, UL4, UL10, and UL16 are dispensable for the replication of herpes simplex virus 1 in cell culture[J].J Virol, 1991, 65(2):938-944.
    
    38. Song B, Yeh KC, Liu J, et al. Herpes simplex virus gene products required for viral inhibition of expression of G1-phase functions[J]. J Virol, 2001, 290(2): 320-328.
    39. Zhu Z, Cai W, Schaffer PA. Cooperativity among herpes simplex virus type 1 immediate-early regulatory proteins: ICP4 and ICP27 affect the intracellular localization of ICP0[J]. J Virol, 1994, 68(5): 3027-3040.
    40. Lengyel J, Guy C, Leong V, et al. Mapping of functional regions in the amino-terminal portion of the herpes simplex virus ICP27 regulatory protein: importance of the leucine-rich nuclear export signal and RGG Box RNA-binding domain[J]. J Virol, 2002, 76(23): 11866-11879.
    41. Aubert M, Blaho JA. The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells[J]. J Virol, 1999, 73(4): 2803-2813.
    42. Cai W, Astor TL, Liptak LM, et al. The herpes simplex virus type 1 regulatory protein ICP0 enhances viral replication during acute infection and reactivation from latency[J]. J Virol, 1993, 67(12): 7501-7512.
    43. Misra V, Walker S, Hayes S, et al. The bovine herpes virus alpha gene transinducing factor activates transcription by mechanisms different from those of its HSV-1 counterpart VP16[J]. J Virol, 1995, 69(9): 5209-5216.
    44.金庆文,侯熙德.巢式PCR与ABC-ELISA检测单纯疱疹病毒的比较[J].中国神经免疫学和神经病学杂志,1997,4(3):135-139.
    45. Levi M, Ruden U, Carlberg H, et al. The use of peptides from glycoproteins G-2 and D-1 for detecting herpes simplex virus type 2 and type-common antibodies[J]. J Clin Virol, 1999, 12(3): 243-252.
    46. Van Doornum GJ, Slomka MJ, Buimer M, et al. Comparison of a monoclonal antibody-blocking enzyme-linked immunoassay and a strip immunoblot assay for idnetifying type-specific herpes simples virus type 2 serological responses[J]. Clin Diagn Lab Immunol, 2000, 7(4): 641-644.
    47. Hashido M, Lee FK, Inouye S, et al. Detection of herpes simplex virus type-specific antibodies by an enzyme-linked innumosorbent assay based on glycoprotein G[J]. J Med Virol, 1997, 53(4): 319-323.
    48. Prince HE, Ernst CE, Hogrefe WR. Evaluation of an enzyme immunoassay system for measuring herpes simplex virus(HSV) type 1-specific and type 2-specific IgG antibodes[J]. J Clin Lab Anal, 2000, 14(1): 13-16.
    49. Tunback P, Liljeqvist JA, Lowhagen GB, et al. Glycoprotein G of herpes simplex virus type 1: identification of type-specific epitopes by human antibodies[J]. J Gen Virol, 2000, 81(4): 1033-1040.
    50. Wittekindt C, Fleckenstein B, Wiesmuller K, et al. Detection of human serum antibodies against type-specifically reactive peptides from the N-terminus of glycoprotein B of herpes simplex virus type 1 and type 2 by surface plasmon resonance[J]. J Virol Methods, 2000, 87(1-2): 133-144.
    51. Pramod NP. Gopalakrishnan V, Mohan R, et al. Enhanced detection of herpes simplex virus from ocular specimens of herpetic keratitis patients[J]. Indian J Pathol Microbiol. 1998, 41(1): 49-53.
    52. Verano L, Michalski FJ. Comparison of a direct antigen enzyme immunoassay, Herpchek, with cell culture for detection of herpes simplex virus from clinical specimens[J]. J Clin Microbiol, 1995, 33(5): 1378-1379.
    53. Vesanen M, Piiparinen H, Kallio A, et al. Detection of herpes simplex virus DNA in cerebrospinal fluid samples using the polymerase chain reaction and microplate hybridization[J|. J Virol Methods, 1996, 59(1-2): 1-11.
    54.赖伟红,韩国柱,钟铭英,等.单纯疱疹病毒的聚合酶链反应-微孔板反向杂交检测和分型[J].中华皮肤科杂志,2000,33(3):191-192.
    55. Minjolle S, Michelet C, Jusselin I, et al. Amplification of the six major human herpes viruses from cerebrospinal fluid by a single PCR[J]. J Clin Microbiol, 1999, 37(4): 950-953.
    56. Suzutani T, Ishioka K, De Clercq E, et al. Diferential mutation paterns in tymidine kinase and DNA polymerase genes of herpes simplex virus type 1 clones passsed in the presence of a cyclovir or penciclovir[J]. Antimicrob Agents Chemother, 2003, 47(5): 1707-1713.
    57. Chibo D, Mijch A, Doherty R, et al. Novel mutations in the thymidine kinase and DNA polymerase genes of a cyclovir and foscametre sistant herpes simplex viruses infecting an immunocompromised patient[J]. J Clin Virol, 2002, 25(2): 165-170.
    58. Rozenberg F, Lebon P. Amplification and characterization of herpes virus DNA in cerebrospinal fluid from patients with acute encephalitis[J]. J Clin Microbiol, 1991, 29(11): 2412-2417.
    59. Schalasta G, Arents A, Schmid M, et al. Fast and type-specific analysis of herpes simplex virus types 1 and 2 by rapid PCR and fluorescence meltingcurve analysis[J]. Infection, 2000, 28(2): 85-91.
    60. Aurelius E, Johansson B, Skoldenberg B, et al. Rapid diagnosis of herpes simplex encephalitis by neated polymerise chain reaction assay of cerebrospinal fluid[J]. Lancet, 1991, 337(8735): 189-192.
    61. Coyle PV, Desai A, Wyatt D, et al. A comparison of virus isolation, indirect immunofluorescence and nested multiplex polymerase chain reaction for the diagnosis of primary and recurrent herpes simplex type 1 and type 2 infections[J]. J Virol Methods, 1999, 83(1-2):75-82.
    
    62. Druce J, Catton M, Chibo D, et al. Utility of a Multiplex PCR Assay for Detecting Herprs virus DNA in Clinical Samples[J].J clin Microbiol,2002,40(5):1728-32.
    
    63. Markoulatos P, Georgopoulou A, Siafakas N, et al. Laboratory diagnosis of common herpes virus infections of the central nervous system by a multiplex PCR assay[J]. J Clin Microbiol, 2001,39(12):4426-4432.
    
    64. Ryncarz AJ, Goddard J, Wald A, et al. Development of a high-throughput quantitative assay for detecting herpes simplex virus DNA in clinical samples [J]. J Clin Microbiol, 1999,37(6):1941-1947.
    
    65. Espy MJ, Uhl JR, Mitchell PS, et al. Diagnosis of herpes simplex virus infections in the clinical laboratory light Cycler PCR[J]. J Clin Microbiol, 2000, 38( 2): 795-799.
    
    66. Schmelter J, Knez J, Smiley JR, et al. Identification and characterization of a small modular domain in the herpes simplex virus host shutoff protein sufficient for interaction with VP16[J]. J Virol, 1996,70(4):2124-2131.
    
    67. Kubat NJ, Amelio AL, Giordani NV, et al. The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription[J]. J Virol, 2004, 78(22):12508-18.
    
    68. Newman TL, Tuzun E, Morrison VA, et al. A genome-wide survey of structural variation between human and chimpanzee[J]. J Genome Res, 2005, 15(10): 1344-1356.
    
    69. Lipshutz RJ, Fodor SP, Gingeras TR, et al. High density synthetic oligonucleotide arrays [J]. J Nat Genet, 1999,21(1) :20-24.
    
    70. Hacia JG, Woski SA, Fidanza J, et al. Enhanced high density oligonucleotide array-based sequence analysis using modified nucleoside triphosphates [J]. Nucleic Acids Res, 1998, 26( 21):4975- 4982.
    
    71. Eggers M, Hogan M, Reich RK, et al. A microchip for quantitative detection of molecules utilizing luminescent and radioisotope reporter groups [J]. Biotechniques, 1994,17(3):516-525.
    
    72. Tao H, Bausch C, Richmond C, et al. Functional genomics: expression analysis of escherichia coli growing on minimal and rich media[J] . J Bacteriol, 1999, 181(20):6425-6440.
    
    73. DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale [J]. Science, 1997, 278(5338):680-686.
    
    74. Zhu H, Cong JP, Mamtora G, et al . Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays [J] . Proc Natl Acad Sci USA, 1998, 95(24): 14470-14475.
    
    75. Geiss GK, Bumgarner RE, An Mc, et al. Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microarrays[J], J Virol, 2000, 266(1):8-16.
    
    76. Gunthard HF, Wong JK, Ignacio CC, et al. Comparative performance of high-density oligonucleotide sequencing and dideoxynucleotide sequencing of HIV type 1 pol from clinical samples [J]. AIDS Res Hum Retroviruses, 1998, 14(10):869-876.
    
    77. Anthony RM, Brown TJ, French GL. Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotidearray [J]. J Clin Microbiol, 2000,38(2):781-788.
    
    78. Behr MA, Wilson MA, Gill WP, et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray [J]. Science, 1999, 284(5419):1520-1523.
    
    79. Qvarnstrom Y, James C, Xayavong M, et al. Comparison of real-time PCR protocols for differential laboratory diagnosis of amebiasis[J]. J Clin Microbiol, 2005, 43(ll):5491-5497.
    
    80. Wall SJ, Edwards DR. Quantitative reverse transcription-polymerase chain reaction (TR-PCR): A comparison of prime-dropping, competitive, and real-time RT-PCRs[J]. J Anal Biochem, 2002, 300 (2): 269-273.
    
    81. Wittwer CT, Herrmann MG, Moss AA, et al. Continuous fluorescence monitoring of rapid cycle DNA amplification[J]. J Biotechniques, 1997, 22(1):130-138.
    
    82. Helps C, Lait P, Tasker S, et al. Melting curve analysis of feline calicivirus isolates detected by real-time reverse transcription PCR[J]. J Virol Methods, 2002,106(2):241-244.
    
    83. Whitcombe D, Theaker J, Guy SP, et al. Detection of PCR products using self-probing amplicon and fluorescence[J]. J Nat Biotechnol, 1999, 17(8): 804-807.
    
    84. Nazarenko IA, Bhatnagar SK, Hohman RJ. A closed tube format for amplification and detection of DNA based on energy transfer [J] .Nucleic Acids Res, 1997, 25(12): 2516-2521.
    
    85. Woo TH, Patel BK, Cinco M, et al. Identification of Leptospira biflexa by real-time homogeneous detection of rapid cycle PCR product[J]. J Microbiol Methods, 1999, 35(1):23-30.
    
    86. Higgins J A, Fayer R, Trout JM, et al. Real-time PCR for the detection of Cryptosporidium parvum[J]. J Microbio Methods, 2001, 47(3):323-337.
    87. Markowski G, Miller MM, Schat KA. Development of strain-specific real-time PCR and RT-PCF assays for quantitation of chicken anemia virus[J]. J Virol Methods, 2002,101(1-2):135-147.
    
    88. Cook RF, Cook SJ, Li FL, et al. Development of a multiplex real-time reverse transcriptasi polymerase chain reaction for equine infectious anemia virus (EIAV) [J]. J Virol Methods, 2002,105(1):171-179.
    
    89. Ellerbrok H, Nattermann H, Ozel M, et al. Rapid and sensitive identification of pathogenic and apathogenic Bacillus anthracis by real-time PCR[J]. FEMS Microbiol Lett, 2002,214(1):51-59.
    
    90. Hardegger D, Nadal D, Bossart W, et al. Rapid detection of Mycoplasma pneumoniae in clinical sample by real-time PCR[J]. J Micro Methods, 2000, 41(1):45-51.
    
    91. Bassler HA, Flood SJ, Livak KJ, et al. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes[J]. J Appl Environ Microbiol, 1995, 61(10): 3724-3728.
    1. Janier M, Scieux C, Meouchi R, et al. Virological, serological and epidemiological study of 255 consecutive cases of genital herpes in a sexually transmitted disease clinic of Paris (France): a prospective study[J]. Int J STD AIDS, 2006, 17(1): 44-9.
    2. Li H, Zhang J, Kumar A, et al. Herpes simplex virus 1 infection induces the expression of proinflammatory cytokines, interferons and TLR7 in human corneal epithelial cells[J]. J Immunology, 2006, 117(2): 167-176.
    3. Narita T, Ando A, Mikami Y, et al. Overexpression of CIN85 suppresses the growth of herpes simplex virus in HeLa cells[J]. J Exp Cell Res, 2005, 311(2): 265-271.
    4. Melchjorsen J, Siren J, Julkunen I, et al. Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-{kappa}B and IRF-3[J]. J Gen Virol, 2006, 87(Pt 5): 1099-1108.
    5. Reichling J, Koch C, Stahl-Biskup E, et al. Virucidal activity of a beta-triketone-rich essential oil of Leptospermum scoparium (manuka oil) against HSV-1 and HSV-2 in cell culture[J]. J Planta Med, 2005, 71(12): 1123-1127.
    6. Lafon M, Prehaud C, Megret F, et al. Modulation of HLA-G expression in human neural cells after neurotropic viral infections[J]. J Virol, 2005, 79(24): 15226-37.
    7. Schmelter J, Knez J, Smiley JR, et al. Identification and characterization of a small modular domain in the herpes simplex virus host shutoff protein sufficient for interaction with VP16[J]. J Virol, 1996, 70(4): 2147-2131.
    8. Jones FE, Smibert CA, Smiley JR. Mutational analysis of the HSV virion host shutoff protein: Evidence that vhs functions in the absence of other viral proteins[J]. J Wirol, 1995, 69(8): 4863-4871.
    9. Smiley JR. Regulation of cellular genes by HSV products in Herpes virus transcription and its tegulation[M]. WagnerEKed: Boca Raton CRC Press, 1992. 151-179.
    10. Jamieson DR, Robinson LH, Daksis JI, et al. Quiescent viral genomes in human fibroblasts after infection with HSV-1 Vmw65 mutants[J]. J Gen Virol, 1995, 76(6):1417-1431.
    
    11. Akgul B, Cooke JC, Storey A. HPV-associated skin disease[J]. J Pathol, 2006, 208(2):165-175.
    
    12. Linke A, Erbs S, Hambrecht R. Exercise and the coronary circulation-alterations and adaptations in coronary artery disease[J]. J Prog Cardiovasc Dis, 2006, 48(4):270-284.
    
    13. Andersson P, Aim S, Edman K, et al. A novel and rapid method to quantify cytolytic replication of picornaviruses in cell culture[J]. J Virol Methods, 2005, 130(1-2): 117-123.
    
    14. Liu XP, Li BJ, Zhang C. Construction and identification of recombinant vectors carrying herpes simplex virus thymidine kinase genes expressed in vascular endothelial cells[J]. J Ai Zheng, 2006, 25(2):179-184.
    
    15. Schweighardt B, Atwood WJ. Virus receptors in the hunum central nervous system[J]. J Neurovirol, 2001, 7(3): 187-195.
    
    16. Wanas E, Efler S, Ghosh K, et al. Mutations in the conserved carboxy-terminal hydrophobic region of glycoprotein gB affect infectivity of herpes simplex virus[J]. J Gen Virol, 1999, 80(12):3189-3198.
    
    17. Tang YW, Mitchell PS, Espy MJ, et al. Molecular diagnosis of herpes simplex virus infections in the central nervous system[J]. J Clin Microbiol, 1999, 37(7): 2127-2136.
    
    18. Malkin JE. Epidemiology of genital herpes simplex virus infection in developed countries[J]. Herpes, 2004, Suppl 1:2A-23A.
    
    19. Visalli RJ, Brandt CR. Mutation of the herpes simpiex virus 1 KOS UL45 gene reveals dose dependent effects on central nervous system growth[J]. Arch Virol, 2002,147 (3):519-532.
    
    20. Suzutani T, Magamine M, Shibaki T, et al. The role of the UL41 gene of herpes simplex virus type 1 in evasion of non-specific host defence mechanisms during primary infection[J]. J Gen Virol, 2000, 81(7): 1763-1771.
    
    21. Goldsmith BK, Chen W, Johson DC, et al. Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8 + T cell respones[J]. J Exp Med, 1998,187(3):341-348.
    
    22. Lewendowski GA, Lo D, Bloom FE. Interference with major histocompatibility complex class-restricted antigen presentation in the brain by herpes simplex virus type 1:a possible mechanism of evasion of the immune response[J]. Proc Nad Acad Sci USA, 1993, 90(5):2005-2009.
    
    23. Yuaea T, Isono T, Tooyama I, et al. Overproduction of Gamma interferon in B/Jas inbred rabbits with herpes simplex virus encephalitis[J]. Microbiol Immunol, 1999,43(4): 365-371.
    
    24. Manickan E, Rouse RJ, Yu Z, et al. Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes [J]. J Immunol, 1995, 155(1):259-265.
    
    25. Ikemoto K, Pollard RB, Fukumoto T, et al. Small amounts of exogenous IL- 4 increase the severity of encephalitis induced in mice by the intxanasal infection of herpes simplex virus type 1[J]. J Immunol, 1995,155(3): 1326-1333:
    
    26. Fujii S, Akaike T, Maeda H. Role of nitric oxide in pathogenesis of herpes simplex virus encephalitis in rats[J]. Viral, 1999, 256(2): 203- 212.
    
    27. Ghiasi H, Osorio Y, Hedvat Y, et al. Infection of BALB/c mice with a herpes simplex virus type 1 recombinant virus expressing IFN-gamma driven by the LAT promoter[J]. Virology, 2002, 302(1):144-154.
    
    28. Miller CS, Danaher RJ, Jacob RJ. Molecular aspects of herpes simplex virus I latency, reactivation, and recurrence[J]. Crit Rev Oral Biol Med, 1998, 9(4):541-562.
    1. Ragoussis J, Elvidge G. Affymetrix GeneChip system: moving from research to the clinic[J]. Expert Rev Mol Diagn, 2006, 6(2): 145-152.
    2. Strachan T, Abitbol M, Davidson D, et al. A new dimension for the human genome project: towards comprehensive expression maps[J]. J Nat Genet, 1997, 16(2): 126-132.
    3. Rabert D, Xiao Y, Yiangou Y, et al. Plasticity of gene expression in injured human dorsal root ganglia revealed by GeneChip oligonucleotide microarrays[J]. J Clin Neurosci, 2004, 11(3): 289-299.
    4. Fedrigo O, Naylor G. A gene-specific DNA sequencing chip for exploring molecular evolutionary change[J]. J Nucleic Acids Res, 2004, 32(3): 1208-1213.
    5. Chee M, Yang R, Hubbell E, et al. Accessing genetic information with high-density DNA arrays[J]. J Science, 1996, 274 (5287): 610-614.
    6. Wykoff CC, Sotiriou C, Cockman ME, et al. Gene array of VHL mutation and hypoxia shows novel hypoxia-induced genes and that cyclin D1 is a VHL target gene[J]. Br J Cancer, 2004,90(6):1235-1243.
    
    7. Jeffrey SS, Fero MJ, Borresen-Dale AL, et al. Expression array technology in the diagnosis and treatment of breast cancer[J]. Mol Interv, 2002, 2(2):101-109.
    
    8. Haupl T, Burmester GR, Stuhlmuller B. New aspects of molecular biology diagnosis: Array technology and expression profile for characterization of rheumatic diseases[J]. Z Rheumatol, 2002, 61(4):396-404.
    
    9. Whitesell L, Dai C. HSP90: a rising star on the horizon of anticancer targets[J]. Future Oncol, 2005, 1(4):529-540.
    
    10. Torronteguy C, Frasson A, Zerwes F, et al. Inducible heat shock protein 70 expression as a potential predictive marker of metastasis in breast tumors[J]. Cell Stress Chaperones, 2006, 11(1):34-43.
    
    11. Takashima S, Sato N, Kishi A, et al. Involvement of peptide antigens in the cytotoxicity between 70-kDa heat shock cognate protein-like molecule and CD3+, CD4-, CD8-, TCR-alpha beta- killer T cells[J]. J Immunol, 1996,157(8):3391-5.
    
    12. Frostegard J, Kjellman B, Gidlund M, et al. Induction of heat shock protein in monocytic cells by oxidized low density lipoprotein[J]. Atherosclerosis, 1996, 121(1):93-103.
    
    13. Phillips B, Abravaya K, Morimoto RI. Analysis of the specificity and mechanism of transcriptional activation of the human hsp70 gene during infection by DNA viruses[J]. J Virol, 1991, 65(11):5680-5692.
    
    14. Blachere NE, Li Z, Chandawarkar RY, et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity[J]. J Exp Med, 1997,186(8):1315-1322.
    
    15. Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway[J]. Int Immunol, 2000,12(11):1539-1546.
    
    16. Berwin B, Reed RC, Nicchitta CV. Virally induced lytic cell death elicits the release of immunogenic GRP94/gp96[J]. J Biol Chem, 2001, 276(24): 21083-8.
    
    17. Srivastava PK. Immunotherapy for human cancer using heat shock protein-peptide complexes[J]. Curr Oncol Rep, 2005, 7(2): 104-108.
    
    18. Binder RJ, Vatner R, Srivastava P. The heat-shock protein receptors: some answers and more questions[J]. Tissue Antigens, 2004, 64(4):442-451.
    
    19. Chandawarkar RY, Wagh MS, Kovalchin JT, et al. Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis[J]. Int Immunol, 2004,16(4):615-624.
    
    20. Brenner BG, Wainberg Z. Heat shock proteins: novel therapeutic tools for HIV-infection? [J]. Expert Opin Biol Ther, 2001, 1(1):67-77.
    
    21. Udono H, Saito T, Ogawa M, et al. Hsp-antigen fusion and their use for immunization[J]. Methods, 2004,32(1):21-24.
    
    22. Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway[J]. Int Immunol, 2000,12(11):1539-1546.
    
    23. Mandal K, Foteinos G, Jahangiri M, et al. Role of antiheat shock protein 60 autoantibodies in atherosclerosis[J]. Lupus, 2005,14(9):742-746.
    
    24. Prohaszka Z, Fust G Immunological aspects of heat-shock proteins-the optimum stress of life[J]. Mol Immunol, 2004,41(1):29-44.
    
    25. Bobryshev YV, Farnsworth AE, Lord RS. Expression of vascular endothelial growth factor in aortocoronary saphenous vein bypass grafts[J]. Cardiovasc Surg, 2001, 9(5):492-498.
    
    26. Rocnik E, Chow LH, Pickering JG Heat shock protein 47 is expressed in fibrous regions of human atheroma and Is regulated by growth factors and oxidized low-density lipoprotein[J]. Circulation, 2000,101(11):1229-1233.
    
    27. Edfeldt K, Swedenborg J, Hansson GK, et al. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation[J]. Circulation, 2002,105(10):1158-1161.
    
    28. Kol A, Sukhova GK, Lichtman AH, et al. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression[J]. Circulation, 1998, 98(4):300-307.
    
    29. Veres A, Fust G, Smieja M, et al. Relationship of anti-60 kDa heat shock protein and anti-cholesterol antibodies to cardiovascular events[J]. Circulation, 2002, 106(22):2775-2780.
    
    30. Kirchhoff SR, Gupta S, Knowlton AA. Cytosolic heat shock protein 60, apoptosis, and myocardial injury[J]. Circulation, 2002,105(24):2899-2904.
    
    31. Blasi C. The role of the infectious agents in the pathogenesis and evolution of atherosclerosis[J]. Ann Ital Med Int, 2004,19(4):249-261.
    
    32. Mehta TA, Greenman J, Ettelaie C, et al. Heat shock proteins in vascular disease --a review[J]. Eur J Vasc Endovasc Surg, 2005, 29(4):395-402.
    33. George J, Afek A, Abashidze A, et al. Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice[J]. Arterioscler Thromb Vasc Biol, 2005, 25(12): 2636-2641.
    34. Mukherjee M, De Benedictis C, Jewitt D, et al. Association of antibodies to heat-shock protein-65 with percutaneous transluminal coronary angioplasty and subsequent restenosis[J]. Thromb Haemost, 1996, 75(2): 258-260.
    35. Choi SH, Kim SY, An JJ, et al. Immunohistochemical studies of human ribosomal protein S3 (rpS3)[J]. J Biochem Mol Biol, 2006, 39(2): 208-215.
    36. Dresios J, Panopoulos P, Synetos D. Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function[J]. Mol Microbiol, 2006, 59(6): 1651-1663.
    37. Uechi T, Tanaka T, Kenmochi N. A complete map of the human ribosomal protein genes: assignment of 80 genes to the cytogenetic map and implication for human disorders[J]. J Gemomics, 2001, 72 (3): 223-230.
    38. Kongsuwan K, Yu Q, Vincent A, et al. A Drosophila minute gene encodes a ribosomal protein[J]. J Nature, 1985, 317(6037): 555-558.
    39.周晓,吴德昌,程书钧,等.α粒子诱导人支气管上皮细胞转化相关基因的分离与克隆[J].中华放射医学与防护杂志,1999,19(3):177-199.
    40.蒋义国,陈家堃,陈学敏,等.二羟环氧苯并芘诱导致癌相关差异表达cDNA序列的克隆[J].中华肿瘤杂志,2002,24(3):239-242.
    41.祁震宇,惠国桢,李瑶,等.脑胶质瘤患者全长新基因的获得及初步研究[J].中华医学杂志,2001,81(18):1124-1127.
    42.张云汉,殷智榕,温洪涛,等.食管癌相关基因片断的筛选与鉴定[J].河南医科大学学报,2001,36(5):519-521.
    43.葛世丽,李刚,陈伟,等.SAGE方法分析永生化BEP2D细胞及α粒子诱发恶性转化BEP2D细胞的基因表达[J].癌症,2001,20(1):12-17.
    44. Chester KA, Robson L, Begent RH, et al. Identification of a human ribosomal protein mRNA with increased expression in colorectal tumours[J]. Biochim Biophys Acta, 1989, 1009(3): 297-300.
    45. Pogue Geile K, Geiser JR, Shu M, et al. Ribosomal protein genes are overexpressed in colorectal cancer: isolation of a cDNA clone encoding the human S3 ribosomal protein[J]. J Mol Cell Biol, 1991, 11(8): 3842-3849.
    46. Denis MG, ChadeneauC, Lecabellec MT, et al. Over-expression of the S13 ribosomal protein in actively growing cells[J]. Int J Cancer, 1993, 55(2):275-280.
    
    47.陈汉春,孟 巧.K562细胞中氯化血红素诱导性表达基因的研究[J].中华血液学杂志,2003,24(4):185-189.
    
    48. Welsh JB, Zarrinkar PP, Sapinoso LM, et al. Analysis of gene expression profiles in normal and neoplasitc ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer[J]. Proc Natl Acad Sci USA, 2001, 98(3):1176-1181.
    
    49. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles[J]. Int J Biochem Cell Biol, 2001,33(7):637-668.
    
    50. Lesniak W, Jezierska A, Kuznicki J. Upstream stimulatory factor is involved in the regulation of the human calcyclin(S100A6) gene[J]. Biochim Biophys Acta, 2000,1517(1):73-81.
    
    51. Ilg EC, Schafer BW, Heizmann CW. Expression pattern of S100 calcium-binding proteins in human tumors[J]. Int J Cancer, 1996, 68(3):325-332.
    
    52. Maelandsmo GM, Florenes VA, Mellingsaeter T, et al. Differential expression patterns of S100A2, S100A4 and S100A6 during progression of human malignant melanoma[J]. Int J Cancer, 1997, 74(4):464-469.
    
    53. Komatsu K, Murata K, Kameyama M, et al. Expression of S100A6 and S100A4 in matched samples of human colorectal mucosa, primary colorectal adenocarcinomas and liver metastases[J]. Oncology, 2002, 63(2): 192-200.
    
    54. Nowotny M, Spiechowicz M, Jastrzebska B, et al. Calcium regulated interaction of Sgtl with S100A6(calcyclin) and other S100 proteins[J]. J Biol Chem, 2003, 278(29):26923-26928.
    
    55. Oldberg A, Franzen A, Heinegard D. Cloning and sequence analysis of rat bone sialoprotein(osteopontin) cDN A reveals an Arg-Gly-Asp cell-binding sequence [J]. Proc Natl Acad Sci USA, 1986, 83(23): 8819-8823.
    
    56. Gillespie MT, Thomas RJ, Pu ZY, et al. Calcitonin receptors, bone sialoprotein and osteopontin are expressed in primary breast cancers[J]. Int J Cancer, 1997, 73(6):812-815.
    
    57. Bellahcene A, Castronovo V. Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer[J]. Am J Pathol, 1995, 146(1):95-100.
    
    58. Tuck AB, O'Malley FP, Singhal H, et al. Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas[J]. Arch Pathol Lab Med, 1997,121(6):578-584.
    
    59. Ue T, Yokozaki H, Kitadai Y, et al. Co-expression of osteopontin and CD44v9 in gastric cancer[J]. Int J Cancer, 1998, 79(2): 127-132.
    
    60. Kim JH, Skates SJ, Uede T, et al. Osteopontin as a potential diagnostic biomarker for ovarian cancer[J]. JAMA, 2002, 287 (13):1671-1679.
    
    61. Hoskins R, Hajnal AF, Harp SA, et al. The C.elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins [J]. Development, 1996,122(1):97-117.
    
    62. HataY, Butz S, Sudhof TC. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins[J]. J Neurosci, 1996,16 (8):2488-2494.
    
    63. Hsueh YP, Wang TF, Yang FC, et al. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2[J]. Nature, 2000, 404(6775):298-302.
    1. Parker RM, Barnes NM. mRNA detection by in situ and northern hybridization[J]. Methods Mol Biol, 1999, 106: 247-283.
    2. McCabe ER. Utility of PCR for DNA analysis from dried blood spots on filter paper blotters[J]. PCR Methods Appl, 1991, 1(2): 99-106.
    3. Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology[J]. Nucleic Acids Res, 2002, 30(6): 1292-1305.
    4. Doris PA, Hayward-Lester A, Hays JKSr. Q-RT-PCR: data analysis software for measurement of gene expression by competitive RT-PCR[J]. Comput Appl Biosci, 1997, 13(6): 587-591.
    5. Drosten C, Chiu LL, Panning M, et al. Evaluation of Advanced Reverse Transcription-PCR Assays and an Alternative PCR Target Region for Detection of Severe Acute Respiratory Syndrome-Associated Coronavirus[J]. J Clin Microbiol, 2004, 42(5): 2043-2047.
    6. Fukushima H, Tsunomori Y, Seki R. Duplex Real-Time SYBR Green PCR Assays for Detection of 17 Species of Food-or Waterborne Pathogens in Stools[J]. J Clin Microbiol, 2003, 41(11): 5134-5146.
    7. Gratwohl A, Hermans J, Niederwieser D, et al. Bone marrow transplantation for chronic myeloid leukemia: Long-term results[J]. Bone Marrow Transplant, 1993, 12(5): 509-516.
    8. Druker BJ. Inhibition of the bcr-abl tyrosine kinase as a therapeutic strategy for CML[J]. Oncogene, 2002, 21(56): 8541-8546.
    9. Lee MS, Chang KS, Freireich EJ, et al. Detection of minimal residual bcr/abl transcripts by a modified polymerase chain reaction[J]. Blood, 1988, 72(3): 893-897.
    10. Blennerhassett GT, Furth ME, Anderson A, et al. Clinical evaluation of a DNA probe assay for the Philadelphia (Ph 1) translocation in chronic myelogenous leukemia[J]. Leukemia, 1988, 2(10): 648-657.
    11. Bustin SA. Quantification of mRNA using real-time reverse transcription PCR(RT-PCR): trends and problems[J]. J Mol Endocrinol, 2002, 29(1): 23-39.
    12. Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfalls and potential[J]. Biotechniques, 1999, 26(1):112-125.
    
    13. Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. J Mol Endocrinol, 2000, 25(2): 169-193.
    
    14. Lupberger J, Kreuzer KA, Baskaynak G, et al. Quantitative analysis of beta-actin, beta-2-microglobplin and porphobilinogen deaminase mRNA and their comparison as control transcripts for RT-PCR[J]. Mol Cell Probes, 2002, 16(1):25-30.
    
    15. Bustin SA, Benes V, Nolan T, et al. Quantitative real-time RT-PCR - a perspective[J]. J Mol Endocrinol, 2005,34(3):597-601.
    
    16. Wagatsuma A, Sadamoto H, Kitahashi T, et al. Determination of the exact copy numbers of particular mRNAs in a single cell by quantitative real-time RT-PCR[J]. J Exp Biol, 2005, 208(Pt 12):2389-2398.
    
    17. Guo JQ, Wang JY, Arlinghaus RB. Detection of BCR-ABL proteins in blood cells of benign phase chronic myelogenous leukemia patients[J]. Cancer Res, 1991, 51(11):3048-3051.
    
    18. Casabianca A, Orlandi C, Fraternale A, et al. Development of a Real-Time PCR Assay Using SYBR Green I for Provirus Load Quantification in a Murine Model of AIDS[J]. J Clin Microbiol, 2004, 42(9):4361-4364.
    
    19. Fernandez F, Gutierrez J, Sorlozano A, et al. Comparison of the SYBR Green and the hybridization probe format for real-time PCR detection of HHV-6[J]. Microbiol Res, 2006,161(2):158-163.
    
    20. Ponchel F, Toomes C, Bransfield K, et al. Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions[J]. BMC Biotechnol, 2003, 3:18.
    
    21. Cross NC, Feng L, Chase A, et al. Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation[J]. Blood, 1993, 82(6):1929-1936.
    
    22. Hochhaus A, Lin F, Reiter A, et al. Quantification of residual disease in chronic myelogenous leukemia patients on interferon-alpha therapy by competitive polymerase chain reaction[J]. Blood, 1996, 87(4):1549-1555.
    
    23. Preudhomme C, Revillion F, Merlat A, et al. Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using a real time' quantitative RT-PCR assay[J]. Leukemia, 1999,13(6):957-964.
    
    24. Emig M, Saussele S, Wittor H, et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR[J]. Leukemia, 1999,13(11):1825-1832.
    
    25. Stevens SJ, Verkuijlen SA, Brule AJ, et al. Comparison of Quantitative Competitive PCR with LightCycler-Based PCR for Measuring Epstein-Barr Virus DNA Load in Clinical Specimens[J]. J Clin Microbiol, 2002, 40(11):3986-3992.
    
    26. Schroter M, Zollner B, Schafer P, et al. Quantitative Detection of Hepatitis C Virus RNA by Light Cycler PCR and Comparison with Two Different PCR Assays[J]. J Clin Microbiol, 2001,39(2):765-768.
    
    27. Espy MJ, Uhl JR, Sloan LM, et al. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing[J]. Clin Microbiol Rev, 2006, 19(1): 165-256.
    
    28. Aldea C, Alvarez CP, Folgueira L, et al. Rapid Detection of Herpes Simplex Virus DNA in Genital Ulcers by Real-Time PCR Using SYBR Green I Dye as the Detection Signal[J]. J Clin Microbiol, 2002, 40(3):1060-1062.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700