编码叶绿体/质体RNA结合蛋白及Na~+/K~+/Cl~-共转运体基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物生长发育、分化、衰老和抗逆等生命过程是受严格的遗传调控的。这些过程实现的分子基础是基因的时空差异表达。在基因表达过程中,转录调控是基因表达调控的主要调控点。真核生物中,转录后调控更为复杂多样,转录后的调控能对基因表达最终产物的种类和数量(即蛋白质的复杂性)产生重要而直接的影响。基因在转录后,新合成的pre-mRNA或核不均一RNA( hnRNA)要经过pre-mRNA剪接(pre-mRNA splicing),5'端加帽(capping),3'端合成多聚腺苷酸(polyA)尾(polyadenylation)等加工环节才能成为成熟的mRNA。许多环境及体内因子可通过调控基因表达和转录后过程影响植物的生长发育过程。RNA结合蛋白(RBPs)是一类参与转录后调控的重要蛋白。这类蛋白质可通过直接结合RNA或间接调节其它参与转录后调控的成分,影响pre-mRNA的加工成熟,mRNA(由细胞核至细胞质)的转运、定位、翻译和代谢等多个转录后环节,进而影响受遗传调控的植物生长、发育、增殖、分化、胁迫应答等生命过程。因此对RBPs及其编码基因的研究对于阐明植物的生长、发育及胁迫应答的机理十分重要。已有的研究表明,cpRBP29是由核基因编码并定位到叶绿体中的蛋白,叶绿体中,该类蛋白主要包括cpRBP28/ cpRBP29(a、b)/ cpRBP31(a、b)/ cpRBP33(a、b)这几大类,它们与叶绿体基因组编码的基因表达调控密切相关,同时还起着细胞(核基因组)和叶绿体(基因组)之间的信息传递和协调功能,但关于该基因对生长发育相关的生理作用则缺少相关的研究。
     许多环境因子会对植物的生长产生胁迫影响,是植物生长的胁迫因子。植物生长发育过程中不可避免地会受到(环境)胁迫因子的影响。重度的胁迫会对植物的生长发育造成伤害;在农业生产中则会降低农作物的产量、质量和经济效益。研究植物对胁迫的应答及调控机理对降低胁迫的不利影响,指导农业生产具有积极的意义。高盐是常见的胁迫因子,土壤盐渍化会严重抑制植物的生长和发育,影响农作物的品质和产量。盐对植物造成的胁迫同植物的离子运输密切相关,因此,研究植物的离子运输对理解植物耐盐的机理及调节至关重要。动物中的研究表明,NKCC是一类与盐腺泌盐功能密切相关的离子转运结构,它同Cl---Channel (氯离子通道)以及该基因家族的其它成员的编码产物如KCC、NCC协同配合对动物盐腺
The growth and development of plant are restrictly controlled by its programmed genetic expression. Many environmental and internal factors can influence the process of development and growth of plant by interfering the genes' expression. Genes' expression is a process under strict regulation, which includes multiple regulating steps such as the activation of gene structure, the initiation of transcription, post-transcriptional processes, translation and post-translational processes. Proteins play a vital role in almost all of the regulation processes especially post-transcription process. RNA binding proteins (RBPs) are the key factors that involve in the post-transcriptional regulation. They affect all but every procedure of the mRNA post-transcription process by directly combining RNA or indirectly regulating the functions of other factors. So, RBPs have wide influence on various aspects of plants that include growth, development, propagation, differentiation and the stress responses, which are all regulated geneticly. From this aspect, it is clear that the study of RBPs and RBPs' encoding genes will help to illustrate the mechanisms that plants adopt in growth, development, stress tolerance, and response.
     Some documented papers have shown that cpRBP29 belongs to a sort of proteins encoded by nuclear genome and locates in chloroplast. This group of proteins are composed of cpRBP28, cpRBP29(a、b), cpRBP31(a、b) and cpRBP33(a、b). They are closely related to the regulation of gene expression of chloroplast genome. In addition, they also play a role in information exchanging and cooperating between nuclear genome and chloroplast genome. Unfortunately, although some work has been done to identify the RNAs that they process, little is known about the specific function of cpRBP29.
     Plants are inevitable to suffer from environmental stresses during their whole lives. Stresses might impede the normal growth and development of plants and lead to the decrease of products' quantity, quality and economic values. Researches about the mechanism plants respond to stresses are of great importance for people to avoid the adverse effect of stresses on plants and improve the
引文
[1] Tanji K K., 1990, Nature and extent of agricultural salinity. In: Tanji KK ,Agricultural Salinity Assessment and Management. New York: American Society of Civil Engineers pp 1-7
    [2] Tester M and Pavenport R. 2003, Na+ tolerence and Na+ transport in higher plants. Annals of Botany, 91:503-527
    [3] Niu X., Bressan Ram Hasegawa P. M., Pardo J. M., 1995, Ion homeostasis in NaCl stress environments. Plant Physilo l. 109: 735-42
    [4] Binzel M. L., Hess F. D., Bressan R. A., Hasegawa P. M.,1988, Intracellular compartmentation of ions in salt adapted tobacco cells. Plant physiol. 86: 607-14
    [5] Amtmann A., Sanders D.,1999, Mechanisms of Na+ uptake by plant cells. Advances in Botanical Research, 29:76-112.
    [6] Blumwald E , Aharon G S, Apse M P. 2000, Sodium transport in plant cells. Biochim Biophys Acia, 1465: 140-151.
    [7] Davenport, R. J. and Tester, M. 2000, A weakly voltage-dependent, non-selective cation channel mediates toxic sodium influx in wheat. Plant Physiology, 122, 823-834.
    [8] Tyerman, S D. and Skerrett, I.M.1999, Root ion channels and salinity. Science Horticulture, 78, 175-235.
    [9] Hasegawa, P.M., Bressan, R.A., and Pardo, J.M. 2000,The dawn of plant salt tolerance genetics. Trends in Plant Science, 5, 317-319.
    [10] Maathuis, F J M and Sanders, D., 2001, Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiology127, 1617-1625.
    [11] Demidchik V. and Tester, M. 2002, Sodium fluxes through non-selective cation channels in the plasma membrane of protoplasts from Arabidopsis thaliana roots. Plant Physiology, 128, 379-387.
    [12] Roberts, D.M. and Tyerman, S.D., 2002, Voltage-dependent cation channels Permeable to NH4+, K+, and Ca2+ in the symbiosome membrane of the model legumeLotus japonicus. Plant Physiology, 128, 370-378.
    [13] Demidchik V., Davenport, R J. and Tester, M. 2002, Nonselective cation channels in plants. Annual Review of Plant Biology, 53, 67-107.
    [14] Rubio F., Gassmann W., Schroeder J. I., 1995, Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660-1663.
    [15] Daniel P., Schachtman, Raman Kumar, Julian I. Schroeder, and Ellen L. Marsh, 1997, Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proc. Natl. Acad. Sci. USA. 94: 11079-11084
    [16] White P J. 1999, The molecular mechanism of sodium influx to root cells. Trend Plant Sci, 4: 245-246.
    [17] Quintero F.J., Blatt M. R., 1997, A new famility of K+ transporters from Arabidopsis that are conserved across phyla. FEBS Lett 415:206-211.
    [18] Kim E. J., Kwak J. M., Uozumi N., Schroeder J. L., 1998, AtKUP1: An Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51-62.
    [19] Fu H., Luan S., 1998, A dual affinity K+ transporter from arabidopsis. Plant Cell 10:63-73.
    [20] Shi H., et al., 2000, The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Natl. Acad. Sci. USA 97:6896-6901
    [21] Schachtman D., Liu W.,1999, Molcular pieces to the puzzle of a large gene the interaction between potassium and sodium uptake in plants. Trends Plant Sci. 4: 281-87
    [22] Wang T. B., Gassmann W., Rubio F., Schroeder J. I., Glass A. M. D., 1998, Rapid up-regulation of HKT1, a high –affinity potassium gene, in root of barley and wheat following withdrawal of potassium. Plant Physiol B.118:651-659.
    [23] Gassmann W., Rubio F., Schroeder J I. 1996, Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1, Plant J. 10:869-882.
    [24] Maathuis F. J. M., Amtmann A., 1999, K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratios, Ann Bot 84:123-133
    [25] de Boer A. H., Wegner L. H., 1997, Regulatory mechanisms of ion channels in xylem parenchyma cells. J. Exp. Bot. 48:441-449.
    [26] Yeo A R., Yeo M.E. and Flowers, T.J. 1987, The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. Journal of Experimental Botany, 38, 1141-1153.
    [27] Peterson, C.A., 1988, Exodermal Casparian bands: their significance for ion uptake by roots. Physiologia Plantarum, 72, 204-208.
    [28] Zhu JK, Liu J, Xiong L. 1998, Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell, 10: 1181-1191.
    [29] Ko.CH, Gaber RF. 1991, TRK1 and TRK2 encodes structurally related potassium ion transporters in Saccharomyces cerevisiae. Mol. Cell. Biol, 11: 4266-4273
    [30] Barkla B J, Pantoja O.1996, Physiology of ion transport across the tonoplast of higher plant. Annu . Rev. Plant Physiol. Plant Mol. Biol. 47:127-57
    [31] Blumwald E.,2000, Sodium transport and salt tolerance in plants. Curr Opin Cell Biol, 12: 431-434.
    [32] Amtmann A, Sanders D. 1998, Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29: 76-112.
    [33] Schachtman,D P. and Schroeder,JI.1994,Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 370: 655-658.
    [34] Gassmann, W. and Schroeder, J.I.1994, Inward-rectifying K+ channels in root hairs of wheat. A mechanism for aluminium-sensitive low-affinity K+ uptake and membrane potential control. Plant Physiology 105:1399-1408.
    [35] Mulet M. P., Leube S. J. Kron, G. Rios, G. R. Fink and R. Serrano, 1999, A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol. Cell. Biol. 19:3328-3337,
    [36] Mendoza I., Rubio F., Rodriguez-Navarro A., Pardo J. M., 1994, The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 269:8792-96
    [37] Abe H., Yamaguchi-Shinozaki, Urao T., Iwasaki T., Hosokawa D., Shinozaki K.,1997, Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9: 1859-58
    [38] Czempinski K., Gaedeke N., Zimmermann S., Muller-Ruber B.,1999, Molecular mechanisms and regulation of plant ion channels. J. Exp. Bot. 50: 955-66
    [39] Hedrich R., 1994, Voltage-dependent chloride channels in plant cells: identification, characterization, and regulation of guard cell anion channel. Curr. Topics Member. 42: 1-33
    [40] Skerrett M., Tyerman S. D., 1994, A channel that allows inwardly directed fluxes of anions and protoplasts derived from wheat roots. Planta 192: 295-305
    [41] Poole R. J.,1988, Plasma membrane and tonoplast. In Solute Transport in Plant Cells and Tissues, ed. D. A. Baker, J. H. Hall, pp. 83-105. New York: Wiley and Sons.
    [42] 张志良. 上海生理学会编.植物生理学实验手册. 上海: 上海科学技术出版社, 1985
    [43] Hechenberger M., Schwappach B., Fischer W. N., Frommer W. B., Jentsch T., Steinmeyer K.,1996, A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J. Biol. Chem. 271: 336:32-38
    [44] Demarty, M., Morvan, C. and Thellier, M.1984, Calcium and the cell wall. Plant, Cell and Environment, 7, 441-448.
    [45] Bush D R, 1995, Calcium regulation in plant cell and its role in signaling. Annu. Rev Plant Physiol Plant Mol Biol, 46: 95-122.
    [46] Rea PA,Poole RJ. 1993,Vacuolar H+-translocating pyrophosphatase. Annual Review of Plant Physiology and Plant Molecular Biology, 44: 157-180.
    [47] Epstein, E.,1998, How calcium enhances plant salt tolerance. Science, 208, 1906-1907
    [48] Cramer G.R.S 2002, odium-calcium interactions under salinity stress. In: Salinity: Environment - Plants - Molecules, (L?uchli, A. and Lüttge, U., eds.). Kluwer Academic Publishers, The Netherlands, pp 205-227.
    [49] Nelson N, Taiz L. 1989, The evolution of H+-ATPases. Trends in Biochemical Sciences, 14: 113-116.
    [50] Barkla BJ, Zingarelli L, Blumwald E, Smith J. 1995, Tonoplast Na+/H+ Antiport Activity and Its Energization by the Vacuolar H+-ATPase in the Halophytic Plant Mesembryanthemum crystallinum L. Plant Physiol. 109(2):549-556.
    [51] Zhen RG, Kim EJ, Rea PA ,1997,The molecular and biochemical basis of pyrophosphate-energized proton translocation at the vacuolar membrane. Adv Bot Res, 25:297–337
    [52] Bressan, R. A., Hasegawa, P. M. and Pardo, J. M. 1998, Plants use calcium to resolve salt stress. Trends in Plant Science, 3: 411-412.
    [53] Liu J and Zhu J K. 1998, A calcium sensor homolog required for plant salt tolerance. Science, 280:1943-1945.
    [54] Gorham, J., Wyn Jones, R.G. and McDonnel, E. 1985, Some mechanisms of salt tolerance in crop plants. Plant Soil, 89:15-40.
    [55] Xiong L and Zhu J-K. 2002, Salt Tolerance. In: The Arabidopsis Book (Somerville, C.R. and Meyerowitz, E.M., eds.). The American Society of Plant Biologists, Rockville, MD
    [56] Gaxiola, R., Li, J., Undurraga, S., Dang, L.M., Allen, G.J., Alper, S.L. and Fink, G.R. 2001, Drought- and salt-tolerant plants result from overexpression of the AVP1 H+ pump. Proc Natl Acad Sci USA, 98:11444-11449.
    [57] Nass R, Cunningham KW, Rao R. 1997, Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase: insights into mechanisms of sodium tolerance. J Biol Chem, 272: 26145-26152.
    [58] Apse M. P., Aharon G. S., Snedden W. A., Blumwald E., 1999, Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-58.
    [59] Zhang, H.X. And Blumwald, E. 2001, Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnol . 19:765-768.
    [60] Zhang HX, Hodson JN, Williams JP, Blumwald E. 2001, Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl Acad. Sci.USA, 98:6896-6901.
    [61] Romola Davenport, Richard A. James, Anna Zakrisson-Plogander, Mark Tester, and Rana Munns.,2005, Control of Sodium Transport in Durum Wheat. Plant Physiol, 137:807–818.
    [62] Quintero FJ, Blatt MR, Parda JM. 2000, Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Lett, 471: 224-228.
    [63] Shi H, Ishitani M, Kim C, Zhu JK. 2000, The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. PNAS, 97: 6896-6901.
    [64] Shi H, Quintero F.J., Pardo J M. and Zhu J. K. The putative plasma membrane Na+/H+ antiporter SOS1 controls long distance Na+ transport in plants. Plant Cell, 2002, 14: 465-477.
    [65] Qiu QS, Guo Y, Dietrich MA et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad SCi USA, 2002, 99:8436-8441.
    [66] Zhu J K.,2000, Genetic analysis of plant salt tolerance using Arabidopsis. Plant physiol, 124: 941-948.
    [67] Shi H, Xiong L, Stevenson B et al. The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for Vitamin B6 in plant salt tolerance. Plant cell, 2002, 14:575-588.
    [68] Shi H, Zhu JK. 2002, SOS4, a pyridoxal kinase gene, is required for root hair development in Arabidopsis. Plant Physiol, 129:585-593.
    [69] Shi H, Kin YS, Guo Y et al. 2003, The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant cell, 15:19-32.
    [70] 刘春卿,杨劲松,陈德明,刘广明,2005,不同耐盐性作物对盐胁迫的响应研究 Nov. 42(6):993-997]
    [71] 黄艺,季海波,姜学艳,李婷,2004,盐渍地刺槐体内Na+的积累和分布, Rural Eco & Environment 20(4) :1-5
    [72] Zhong-Hai Ren, Ji-Ping Gao, Le-Gong Li, Xiu-Ling Cai, Wei Huang, Dai-Yin Chao, Mei-Zhen Zhu, Zong-Yang Wang, Sheng Luan & Hong-Xuan Lin 2005 A rice quantitative trait locus for salt tolerance encodes a sodium transporter Nature Genetics 37: 1141 – 1146
    [73] 高永生,王锁民,张承烈. 2003,植物盐适应性调节机制的研究进展[J].草业学报, 12(2):1-6.
    [74] Zhu JK , 2002, Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 53:247-73.
    [75] Liu J, Ishitani M, Halfter U et al. 2000, The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA, 97(7):3730~3734.
    [76] Guo Y, Halfter U, Ishitani M et al. 2001, Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant cell, 13:256-264.
    [77] Ishitani M, Liu J P, Halfter U et al. 2000, SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant cell, 12:1667~1677.
    [78] Xiong L, Schumaker K S, Zhu J K. 2002, Cell signaling during cold, drought, and salt stress. Plant cell, (supp):S165-S183.
    [79] Gong Z, Koiwa H, Cushman MA et al. 2001, Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant physiol. 126:363-375.
    [80] Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee Bh, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA., and Hasegawa PM. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA, 2001, 98 (24): 14150-14155
    [81] Mimura T, Kura-Hotta M, Tsujimura T, Ohnishi M, Miura M, Okazaki Y, Mimura M, Maeshima M , Washitani-Nemoto S. 2003, Rapid increase of vacuolar volume in response to salt stress. Planta, 216: 397–402
    [82] Johansson I., Larsson C., Ek B., Kjellbom P., 1996, The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell 8:1181-91
    [83] Johansson I., Karlsson M., Shukla V. K., Chrispeels M. J., Larsson C., Kjellbom P., 1998, Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451-59
    [84] Maurel C., Kado R. T., Guern J., Chripeels M. J., 1995, Phosphorylation regulates the water channel activity of the seed specific aquaporin TIP. EMBO J.14: 3028-35
    [85] Vera-Estrella R., Barkla B. J., Bohnert H. J., Pantoja O., 1999, Salt stress in Mesembryanthemum crystallinum suspension cells activates adaptive mechanisms similar to those observed in the whole plant. Plant 207: 426-35
    [8]6 Drew MC, Lauchli A.,1985,Oxygen Dependent Exclusion of Sodium Ions from Shoots by Roots of Zea mays in Relation to Salinity Demage. Plant Physiol , (79) :171~176
    [87] Flowers TJ, Yeo AR. 1992, Solute Transportin Plants[M]. Glasgow, Scotland: Blackie, 176.
    [88] Dreyfuss G., Matunis M.J., Pi~oI-Roma, S. and Burd, C.G. 1993, hnRNP proteins and the biogenesis of mRNA. Annu. Rev, Biochem. 62, 269-321.
    [89] Higgins C F. 1991 Stability and degradation of mRNA. Curr Opin Cell Biol. Dec; 3 (6):1013–1018
    [90] Simpson and Filipowicz, 1996, Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol Biol.
    [91] MH Lim, J Kim, YS Kim, KS Chung, YH Seo, I Lee, Ilha Lee, Jungmook Kim, Choo Bong Hong, Hie-Joon Kim, and Chung-Mo Parka,2004, A New Arabidopsis Gene, FLK, Encodes an RNA Binding Protein with K Homology Motifs and Regulates Flowering Time via FLOWERING LOCUS C Plant Cell. March; 16(3): 731–740.
    [92] John E. Mullet and Robert R. Klein,1987,Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels EMBO J. June; 6(6): 1571–1579.
    [93] Mullet J E,1988,Chloroplast Development and Gene Expression Annual Review of Plant Physiology and Plant Molecular Biology, June Vol. 39, Pages 475-502
    [94] Kwak KJ, Kim YO, Kang H. 2005 Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J Exp Bot. Nov; 56(421):3007-16.
    [95] Zdravko J. Lorkovi?a and Andrea Barta, 2002, Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana Nucleic Acids Res. February 1; 30(3): 623–635.
    [96] Burd C.G. and Dreyfuss G.,1994, Conserved structures and diversity of functions of RNA-binding proteins. Science, 265, 615–621
    [97] Swanson M.S.,1995, Function of nuclear pre-mRNA/mRNA binding proteins. In Lamond A. (ed.), Pre-mRNA processing. R.G. Landes Publishers, Gerge town, TX, pp. 18–33.
    [98] Graveley BR: Sorting out the complexity of SR protein functions. RNA 2000, 6:1197-1211.
    [99] Black DL 2000, Protein diversity from alternative splicing: A challenge for bioinformatics and post-genome biology. Cell 103:367-370.
    [100] Manley JL, Tacke R. 1996, SR proteins and splicing control. Genes Dev. Jul 1;10(13):1569-79.
    [101] Cáceres J F and Krainer A R,1993 Functional analysis of pre-mRNA splicing factor SF2/ASF structural domains. EMBO J. December; 12(12): 4715–4726.
    [102] Jeffrey M. Werneke, J. Mark Chatfield,’ and William L. 1989,Ogren Alternative mRNA Splicing Generates the Two Ribulosebisphosphate Carboxylase/Oxygenase Activase Polypeptides in Spinach and Arabídopsis The Plant Cell, 1:815-825, August
    [103] Ishikawa T Sakai K, Yoshimura K, Takeda T, Shigeoka S., 1996, cDNAs encoding spinach stromal and thylakoid-bound ascorbate peroxidase, differing in the presence or absence of their 3'-coding regions. FEBS Letters 384, 289–293
    [104] Mano S, Yamaguchi K, Hayashi M, Nishimura M, 1997, Stromal and thylakoid-bound ascorbate peroxidases are produced by alternative splicing in pumpkin. FEBS Letters 413, 21–26.
    [105] Kazuya Yoshimura, Yukinori Yabuta, Takahiro Ishikawa, and Shigeru Shigeoka, 2002, Identification of a cis Element for Tissue-specific Alternative Splicing of Chloroplast Ascorbate Peroxidase Pre-mRNA in Higher Plants Biol.Chem., Vol. 277, Issue 43, 40623-40632, October 25,
    [106] Lopato S., Waigmann E. and Barta,A.,1996,Characterisation of a novel arginine/serine-rich splicing factor in Arabidopsis. Plant Cell, 8, 2255–2264,
    [107] Golovkin M. and Reddy,A.S.N. 1999,An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70K protein. J. Biol. Chem., 274, 36428–36438.
    [108] Lazar G., Schaal T., Maniatis,T. and Goodman,H.M.,1995,Identification of a plant serine–arginine-richprotein similar to the mammalian splicing factor SF2/ASF. Proc. Natl Acad. Sci. USA, 92, 7672–7676.,
    [109] Golovkin M. and Reddy,A.S.N.,1998,The plant U1 small nuclear ribonucleoprotein particle 70K protein interacts with two novel serine/arginine-rich proteins. Plant Cell, 10, 1637–1647.
    [110] Lopato S., Kalyna, M., Dorner,S., Kobayashi,R., Krainer,A.R. and Barta,A.,1999, atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes. Genes Dev., 13 , 987–1001.
    [111] Lopato S., Gattoni,R., Fabiani,G., Stevenin,J. and Barta,A.,1999, A novel family of plant splicing factors with a Zn knuckle motif: examination of RNA binding and splicing activities. Plant Mol. Biol., 39, 761–773.
    [112] Lorkovi Z.J.M,, Wieczorek Kirk,D.A., Lambermon,M.H.L. and Filipowicz,W.,2000, Pre-mRNA splicing in higher plants. Trends Plant Sci., 5, 160–167.
    [113] Chandler SD, Mayeda A, Yeakley JM, Krainer AR, Fu X-D.,1997,RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins+ Proc Natl Acad Sci USA 94:3596–3601
    [114] Baker BS.,1989, Sex in flies: The splice of life.Nature 340:521–524.
    [115] Burtis KC, Baker BS.,1989, Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell, 56:997–1010.;
    [116] Hertel KJ, Lynch KW, Maniatis T. 1997, Common themes in the function of transcription and splicing enhancers. Curr Opin Cell Biol 9:350–357.
    [117] Du C, McGuffin ME, Dauwalder B, Rabinow L, Mattox W.,1998, Protein phosphorylation plays an essential role in the regulation of alternative splicing and sex determination in Drosophila.Mol Cell 2:741–750
    [118] Misteli T, Caceres JF, Spector DL.,1997, The dynamics of a premRNA splicing factor in living cells.Nature 387:523–527
    [119] Misteli T , Spector DL. 1999. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol Cell 3:697–705
    [120] Wu JY, Maniatis T. 1993, Specific interactions between proteins implicated in splice site selection and regulated alternative splicing Cell 75:1061–1070
    [121] Kohtz JD, Jamison SF, Will CL, Zuo P, Lührmann R, Garcia-Blanco MA, Manley JL.,1994, Protein–protein interactions and 59 splice site recognition in mammalian mRNA precursors. Nature 368: 119–124
    [122] Roscigno RF, Garcia-Blanco MA,1995, SR proteins escort the U4/ U6?U5 tri-snRNP to the spliceosome. RNA 1:692–706
    [123] Zuo P, Maniatis T, 1996. The splicing factor U2AF35 mediates critical protein–protein interactions in constitutive and enhancer-dependent splicing,Genes & Dev 10:1356–1368 )
    [124] Blencowe 1999 BJ Blencowe, J AL Bowman, S McCracken, E Rosonina ,1999, SR-related proteins and the processing of messenger RNA precursors Biol. Cell. 77(4): 277-291
    [125] Fu, X.-D.,1995, The superfamily of arginine/serine-rich splicing factors. RNA 1, 663–680.
    [126] Zhang, M., P.D. Zamore, M. Carmo-Fonseca, A.I. Lamond, and M.R. Green.,1992, Cloning and intracellular localization of the U2 small nuclear ribonucleoprotein auxiliary factor small subunit. Proc. Natl. Acad. Sci. USA. 89: 8769-8773
    [127] Zamore PD, Patton JG, Green MR.,1992, Cloning and domain structure of the mammalian splicing factor U2AF. Nature 355:609–614
    [128] Query CC, Bentley RC, Keene JD. ,1989, A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell. Apr 7; 57(1):89–101.
    [129] Teigelkamp, S., Mundt, C., Achsel, T., Will, C.L. and Lührmann, R.,1997, The human U5 snRNP-specific100-kD protein is an RS domain-containing, putative RNA helicase with significant homology to the yeast splicing factor Prp28p. RNA, 3, 1313-1326.
    [130] Fetzer S, Lauber J, Will CL, Lührmann R.,1997,The [U4/U6+U5] tri-snRNP-specific 27K protein is a novel SR protein that can be phosphorylated by the snRNP-associated protein kinase+ RNA3:344–355
    [131] Fortes P, Bilbao-Cortes D, Fornerod M, Rigaut G, Raymond W, Séraphin B, Mattaj IW.,1999, Luc7p, a novel yeast U1 snRNP protein with a role in 59 splice site selection+ Genes & Dev13:2425–2438.
    [132] Nishii Y, Morishima M, Kakehi Y, Umehara K, Kioka N, Terano Y, Amachi T, Ueda K. 2000. CROP/Luc7A, a novel serine/argininerich protein, isolated from cisplatin-resistant cell line. FEBS Lett 465:153–165
    [133] Boggs RT, Gregor P, Idriss S, Belote JM, McKeown M.,1987,Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA from the transformer gene. Cell 50:739–747
    [134] Amrein H, Gorman M, Nothiger R., 1988, The sex-determining gene tra-2 of Drosophila encodes a putative RNA binding protein. Cell 55:1025–1035
    [135] Dauwalder B, Amaya-Manzanares F, Mattox W.,1996, A human homologue of the Drosophila sex determination factor transformer-2 has conserved splicing regulatory functions+ Proc Natl Acad Sci USA 93:9004–9009 Dauwalder B, Mattox W.
    [136] Beil B, Screaton G, Stamm S.,1997, Molecular cloning of htra2-beta-1 and htra2-beta-2, two human homologs of tra-2 generated by alternative splicing+ DNA Cell Biol 16:679–690
    [137] Denhez F, & Lafyatis R. 1994.Conservation of regulated alternative splicing and identification of functional domains in vertebrate homologs to the Drosophila splicing regulator, suppressor-of-whiteapricot J Biol Chem 269:16170–16179.
    [138] Spikes DA, Kramer J, Bingham PM, Van Doren K.,1994, SWAP pre-mRNA splicing regulators are a novel, ancient protein family sharing a highly conserved sequence motif with the prp21 family of constitutive splicing proteins. Nucleic Acids Res 22:4510–4519
    [139] Benjamin J. Blencowe, Robbyn Issner, Jeffrey A. Nickerson, and Phillip A. Sharp, 1998, A coactivator of pre-mRNA splicing Genes Dev. April 1; 12(7): 996–1009.
    [140] Blencowe J, 2000, Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases Trends Biochem Sci. Mar;25 (3):106-10
    [141] Z Zhou and R Reed, 1998, Human homologs of yeast prp16 and prp17 reveal conservation of the mechanism for catalytic step II of pre-mRNA splicing. EMBO J. April 1; 17(7): 2095–2106.
    [142] Ono Y, Ohno M, Shimura Y.,1994, Identification of a putative RNA helicase (HRH1), a human homolog of yeast Prp22 Mol Cell Biol 14:7611–7620
    [143] Jun Sukegawa , Günter Blobel ,1995, A Putative Mammalian RNA Helicase with an Arginine-Serine-rich Domain Colocalizes with a Splicing Factor J Biol Chem. Jun 30;270(26):15702-6
    [144] Kirk W. Johnson and Kendall A S. Mith,1991, Molecular Cloning of a Novel Human cdcZ/CDC28-like Protein Kinase THE JOURNAL OF BIOLOGICACHLEMISTRY Vol. 266, No. 6, Issue of February 25, pp. 3402-3407
    [145] Hanes, J., H. von der Kammer, J. Klaudiny, and K.H. Scheit ,1994,Characterization by cDNA cloning of two new human protein kinases. Evidence by sequence comparison of a new family of mammalian protein kinases. J. Mol. Biol. 244: 665-672
    [146] Ralph C. Nichols, Xiao Wei Wang, Jie Tang, B. JoNell Hamilton, Frances A. High, Harvey R. Herschman and William F. C. Rigby, 2000,The RGG Domain in hnRNP A2 Affects Subcellular Localization Exp Cell Res, 256:522-532
    [147] Mayeda A., Munroe, S.H., Xu, R.-M. and Krainer,A.R.,1998, Distinct functions of the closely relatedtandem RNA-recognition motifs of hnRNP A1. RNA, 4, 1111–1123
    [148] Krecic, A.M., and Swanson, M.S.,1999, hnRNP complexes: composition, structure, and function. Curr. Opin. Cell. Biol. 11, 363–371.
    [149] Parker, R., Siliciano, P.G., and Guthrie, C.,1987, Recognition of theTACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA. Cell 49, 229–239
    [150] Wu JY, Maniatis T, 1993,Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell. Dec 17;75(6):1061-70;
    [151] Zuo P and Manley JL,1994,The Human Splicing Factor ASF/SF2 can Specifically Recognize Pre-mRNA 5’ Splice Sites,PNAS,91:3363-3367,]
    [152] Mark H. L. Lambermon, Yu Fu, Dominika A. Wieczorek Kirk, Marcel Dupasquier, Witold Filipowicz, Zdravko J. Lorkovi ,2002, UBA1 and UBA2, Two Proteins That Interact with UBP1, a Multifunctional Effector of Pre-mRNA Maturation in Plants Molecular and Cellular Biology, June 22:(12)4346-4357
    [153] Belostotsky D.A. and Meagher, R.B., 1996, A pollen-, ovule- and early embryo-specific poly(A) binding protein from Arabidopsis complements essential functions in yeast. Plant Cell , 8, 1261–1275.
    [154] Palanivelu R., Belostotsky,D.A. and Meagher,R.B.,2000, Arabidopsis thaliana poly(A) binding protein 2 (PAB2) functions in yeast translational and mRNA decay processes. Plant J., 22, 187–198.
    [155] Chekanova J.A., Shaw, R.J. and Belostotsky,D.A.,2001, Analysis of an essential requirement for the poly(A) binding protein function using cross-species complementation. Curr. Biol., 11, 1207–1214.
    [156] Belostotsky D.A. and Meagher, R.B., 1993, Differential organ-specific expression of three poly(A)-binding-proteins from Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 90, 6686–6690
    [157] Palanivelu R., Belostotsky, D.A. and Meagher, R.B., 2000, Conserved expression of Arabidopsis thaliana poly(A) binding protein 2 (PAB2) in distinct vegetative and reproductive tissues. Plant J., 22, 199–210.)
    [158] Mayeda, A., and Krainer, A.R., 1992 , Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68: 365–375.;
    [159] Ca′ ceres, J.F., Stamm, S., Helfman, D.M., and Krainer, A.R.,1994, Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265:1706–1709.;
    [160] Yang, X., Bani, M.R., Lu, S.J., Rowan, S., Ben-David, Y., and Chabot, The A1 and A1B proteins of heterogeneous nuclear ribonucleoparticles modulate 59 splice site selection in vivo. Proc. Natl. Acad. Sci. USA 91, 6924–6928
    [161] Bai, Y., Lee, D., Yu, T., and Chasin, L.A., 1999, Control of 39 splice site choice in vivo by ASF/SF2 and hnRNP A1. Nucleic Acids Res. 27:1126–1134.,
    [162] Nakamura, T., Ohta, M., Sugiura, M., Sugita, M., Chloroplast ribonucleoproteins are associated with both mRNAs and intron-containing precursor tRNAs. FEBS Lett. 1999, 460, 437–441.
    [163] Nakamura T , Ohta M., Sugiura, M., Sugita, M., 2001, Chloroplast Ribonucleoproteins Function as a Stabilizing Factor of Ribosome-free mRNAs in the Stroma J. Biol.Chem. 276: 147–152.
    [164] Gruissem W, Barkan A, Deng XW, Stern D. 1988 Transcriptional and post-transcriptional control of plastid mRNA levels in higher plants. , Trends Genet. Sep ;4 (9):258–263.
    [165] Rochaix J. D., 1996, Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii Plant Molecular Biology, Oct;32: 327-341
    [166] Deng, W. X., and Gruissem, W., 1987, Control of plastid gene expression during development: the limited role of transcriptional regulation.Cell 49:379-387
    [167] Rapp, J. C., Baumgartner, B. J., and Mullet, J. H. (1992) Quantitative analysis of transcription and RNA levels of 15 barley chloroplast genes. Transcription rates and mRNA levels vary over 300- fold; predicted mRNA stabilities vary 30-fold J. Biol. Chem. 267:21404-21411
    [168] Somanchi A. and Mayfield, S P , 2001, Regulaion of chloroplast translation. In Advances in Photosynthesis and Respiration. Vol. 11, Regulation of Photosynthesis (Aro, E-M.& Andersson, B., eds), pp. 137-151. Kluwer Academic Publishers, Netherlands
    [169] Kim M, Christopher DA , Mullet JE. ,1993, Direct evidence for selective modulation of psbA, rpoA, rbcL and 16S RNA stability during barley chloroplast development. Plant Mol Biol. Jun;22 (3):447-63.
    [170] P. Klaff and W. Gruissem Changes in Chloroplast mRNA Stability during Leaf Development THE PLANT CELL, Vol 3, Issue 5 517-529
    [171] Sze H, Padmanaban S, Cellier F, Honys D, Cheng NH, Bock KW, Conejero G, Li X, Twell D, Ward JM, Hirschi KD. Expression Patterns of a Novel AtCHX Gene Family Highlight Potential Roles in Osmotic Adjustment and K+ Homeostasis in Pollen Development. Plant Physiol, 2004,136 (1): 2532-47.
    [172] Takahiro Nakamura, Masaru Ohta, Masahiro Sugiura, and Mamoru Sugita, 2001,Chloroplast Ribonucleoproteins Function as a Stabilizing Factor of Ribosome-free mRNAs in the Stroma J. Biol. Chem., Vol. 276, Issue 1, 147-152, January 5,
    [173] Danon A, Mayfield SP.,1991, Light regulated translational activators: identification of chloroplast gene specific mRNA binding proteins. EMBO J. Dec;10 (13):3993-4001
    [174] Danon A, Mayfield SP, 1994a, ADP-dependent phosphorylation regulates RNA-binding in vitro: implications in light modulated translation. EMBO J 13: 2227-2235
    [175] Danon A, Mayfield SP,1994b , Light-regulated translation of chloroplast messenger RNAs through redox control. Science 226: 1717-1719
    [176] Christopher B. Yohn, Amybeth Cohen, Cristen Rosch, Michael R. Kuchka, and Stephen P. Mayfield,1998,Translation of the Chloroplast psbA mRNA Requires the Nuclear-encoded Poly(A)-binding Protein, RB47 J. Cell Biol., Volume 142, Number 2, July 27, 435-44
    [177] Nina V Fedoroff ,2002,RNA-binding proteins in plants : the tip of an iceberg ?Current Opinion in Plant Biology 5:452-459
    [178] Avihai Danon, 1997,Translational Regulation in the Chloroplast . Plant Physiol. 115 :1293 - 1298.
    [179] 潘瑞炽. 植物生理学(第四版) 2001 , [M] . 北京:高等教育出版社, 158 - 167.
    [180] 许智宏,刘春明. 植物发育的分子机理[J ] . 1998 , 北京:科学出版社, 172 - 192
    [181] Li, Y., Ye, L., Sugita,M., Sugiura, M., 1991,Tobacco nuclear gene for the 31 kd chloroplast ribonucleoprotein: genomic organization, sequence analysis and expression Nucleic Acids Res. 19, 2987–2991
    [182] Ye, L., Li, Y., Fukami-Kobayashi, K., Go, M. et al., 1992,Diversity of a ribonucleoprotein family in tobacco chloroplasts: two new chloroplast ribonucleoproteins and a phylogenetic tree of ten chloroplast RNA-binding domains Nucleic Acids Res. 19, 6485–6490.
    [183] Memon, A. R., Meng, B., Mullet, J. E., RNA-binding proteins of 37/38 kDa bind specifically to the barley chloroplast psbA 3'-end untranslated RNA.Plant Mol. Biol. 1996,30, 1195–1205.;
    [184] Alexander, C., Faber, N., Klaff, P., 1998, Characterization of protein-binding to the spinach chloroplast psbA mRNA 5’ untranslated region Nucleic Acids Res. 26,2265–2272.
    [185] Nickelsen, J., van Dillewijn, J., Rahire, M., Rochaix, J. D.,1994, Determinants for stability of the chloroplast psbD RNA are located within its short leader region in Chlamydomonas reinhardtii. EMBO J.13:3182–3191.
    [186] Li, Y., Sugiura, M., 1990,Three distinct ribonucleoproteins from tobacco chloroplasts: each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs.EMBO J. 9:3059–3066.
    [187] Lorkovic, Z. J., Barta, A., 2002,Genome analysis: RNA recognition motif (RRM) and K homology (KH)domain RNA-binding proteins from the flowering plant Arabidopsis thaliana Nucleic Acids Res. 30, 623–635.
    [188] Li, Y., Sugiura, M., 1990, Three distinct ribonucleoproteins from tobacco chloroplasts: each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs. EMBO J. 9:3059–3066.
    [189] Schuster, G., Gruissem, W., 1991, Chloroplast mRNA 3' end processing requires a nuclear-encoded RNA-binding protein. EMBO J. 10, 1493–1502.
    [190] Lisitsky, I., Schuster, G., 1995, Phosphorylation of a chloroplast RNA-binding protein changes its affinity to RNA. Nucleic Acids Res. 23, 2506–2511
    [191] Tetsuro Hirose,and Masahiro Sugiura ,2001,Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system EMBO J. March 1; 20(5): 1144–1152.
    [190] Ohta, M., Sugita, M., Sugiura, M., Three types of nuclear genes encoding chloroplast RNA-binding proteins (cp29, cp31 and cp33) are present in Arabidopsis thaliana: presence of cp31 in chloroplasts and its homologue in nuclei/cytoplasms Plant Mol. Biol. 1995, 27, 529–539.
    [191] Cook, W. B., Walker, J. C., 1992, Identification of a maize nucleic acid-binding protein (NBP) belonging to a family of nuclear-encoded chloroplast proteins Nucleic Acids Res. 20, 359– 364.
    [192] Churin Y., Hess,W.R. and Borner,T. ,1999,Cloning and characterization of three cDNAs encoding chloroplast RNA-binding proteins from barley (Hordeum vulgare L.): differential regulation of expression by light and plastid development. Curr. Genet., 36, 173–181.
    [193] Lu, C. & Fedoroff, N.,2000,A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12, 2351–-2365
    [194] Hugouvieux, V., Kwak, J. & Schroeder, J.,2001,A mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106, 477–-487
    [195] Xiong, L. et al.,2001, Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev. Cell 1, 771–-781
    [196] Fawzi A. Razem Ashraf El-Kereamy, Suzanne R. Abrams & Robert D. Hill, 2006,The RNA-binding protein FCA is an abscisic acid receptor. nature .439:19 Jan 290-294
    [197] Macknight, R. et al.,1997,FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737–-745.
    [198] VICTOR QUESADA, CAROLINE DEAN and GORDON G. SIMPSON ,2005, Regulated RNA processing in the control of Arabidopsis flowering Int. J. Dev. Biol. 49: 773-780
    [199] Henderson, I. R. & Dean, C.,2004, Control of Arabidopsis flowering: the chill before the bloom. Development 131, 3829–-3838
    [200] Simpson, G. G., 2004, The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr. Opin. Plant Biol. 7, 570–-574
    [201] Michaels, S. D. & Amasino, R. M. ,1999, FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956
    [202] Sheldon, C. C., Rouse, D. T., Finnegan, E. J., Peacock, W. J. & Dennis, E. S. ,2000,The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl Acad. Sci. USA 97:3753–-3758
    [203] Simpson, G. G., Dijkwel, P. P., Quesada, V., Henderson, I. & Dean, C. ,2003, FY is an RNA 30 end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113:777-787
    [204] Macknight, R. et al., 2002, Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell 14:877-888
    [205] Quesada V., Macknight, R., Dean, C. & Simpson, G. G. ,2003,Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J. 22, 3142-3152
    [206] Ca′ ceres, J.F., Screaton, G.R., and Krainer, A.R.,1998, A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev. 12, 55–66
    [207] Misteli T, Spector DL,1997, Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotechnol.Oct,15 (10):961-4
    [208] Misteli T, DL Spector, 1999, RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol Cell. Jun;3(6):697-705
    [209] Till B Schmitz-Linneweber C Williams-Carrier R Barkan A., 2001, CRS1 is a novel group II intron splicing factor that was derived from a domain of ancient origin. RNA. Sep;7(9):1227-38
    [210] Reddy MK, Nair S, Singh BN, Mudgil Y, Tewari KK, Sopory SK.,2001, Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene (33RNP) from pea that is light stimulated. Gene. Jan 24;263 (1-2):179-87
    [211] Ohta M, Sugita M, Sugiura M.,1995, Three types of nuclear genes encoding chloroplast RNA-binding proteins (cp29, cp31 and cp33) are present in Arabidopsis thaliana: presence of cp31 in chloroplasts and its homologue in nuclei/cytoplasms. Plant Mol Biol. Feb;27(3):529-39.
    [212] Zeng-lan Wang, Ping-hua Li, Mark Fredricksen, Zhi-zhong Gong, C.S. Kim, Changquing Zhang, Hans J. Bohnert, Jian-Kang Zhu, Ray A. Bressan, Paul M. Hasegawa, Yan-xiu Zhao, Hui Zhang,2004,Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance, Plant Science 166:609–616
    [213] Gerardo Gamba , Molecular Physiology and Pathophysiology of Electroneutral Cation-Chloride Cotransporters. Physiol Rev 2005 85: 423–493]
    [214] Qin YM., Pujol FM, Shi YH, Feng JX, Liu YM, Kastaniotis AJ, Hiltunen JK, Zhu YX, 2005 ,Cloning and functional chan racterizatioof two cDNAs encoding NADPH-dependent 3-ketoacyl-CoA reductased from developing cotton fibers. Cell Res. Jun;15(6):465-73.
    [215] 林植芳,李双顺,林桂珠,郭俊彦. 衰老叶片和叶绿体中的积累与膜脂过氧化的关系. 植物生理学报, 1988, 14 (1):16-22
    [216] Jo¨rg Nickelsen ,2003, Chloroplast RNA-binding proteins Curr Genet 43: 392–399
    [217] Chen X and Meyerowitz EM, 1999, HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway. Mol Cell, Mar; 3 (3):349-60.
    [218] Bai-ChenWang , Hong-XiaWang , Jian-Xun Feng , Da-Zhe Meng , Li-Jia Qu1 and Yu-Xian Zhu, 2006,Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling development ,Proteomics 6, 2555–2563
    [219] Zahler AM, Damgaard CK, Kjems J, Caputi M.,2004,SC35 and heterogeneous nuclear ribonucleoprotein A/B proteins bind to a juxtaposed exonic splicing enhancer/exonic splicing silencer element to regulate HIV-1 tat exon 2 splicing.J Biol Chem. Mar 12;279(11):10077-84
    [220] 张荃 2004 盐芥(Thellungiella halophila)作为耐盐模式植物的耐盐机理研究(博士毕业论文)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700