ZNF23抑制肿瘤细胞的生长及其分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
KRAB锌指蛋白(KRAB-ZFP)构成转录因子的最大家族之一。该家族成员参与细胞增殖,存活和个体发育等过程。虽然目前克隆了许多KRAB-ZFP基因,但是其中的大部分成员功能很不清楚。有些KRAB-ZFP基因所定位的染色体区域在人类肿瘤中经常发生变异,被认为和某些恶性肿瘤的发生有关。本文着眼于研究一个定位于染色体16q22的一个KRAB-ZFP(ZNF23)。ZNF23蛋白定位于细胞核,在人体的各种组织中广泛分布。然而,在许多肿瘤细胞系和人类肿瘤样品包括卵巢癌、子宫内膜癌、胶质瘤和肝癌中,ZNF23蛋白明显下调或缺少。将ZNF23导入卵巢癌细胞系SKOV-3中,引起细胞周期阻滞在G1期和细胞死亡。进一步我们发现ZNF23诱导细胞周期阻滞和其增加p27表达有关,但与p53无关。而ZNF23引起细胞死亡的机制可能是抑制Bcl-xL表达,激活线粒体调亡途径。和公认的KRAB蛋白作用模式不同的是, ZNF23的生长抑制作用不依赖于KRAB结构域,而和锌指结构域有关。通过BSS技术,我们鉴定了ZNF23的DNA结合序列。因此我们发现了一个新的肿瘤相关基因ZNF23,能够调节细胞生长和调亡,我们的工作为进一步研究ZNF23功能奠定基础。
The Krupple-associated box-containing zinc-finger proteins (KRAB-ZFPs) make up one of the largest family of transcription factors. Several members of the KRAB-ZFPs modulate cell growth, survival and are implicated in malignant disorders. However, most members are not well characterized and their functions are largely unknown. Here we report that ZNF23, a member of KRAB-ZFPs, inhibits cell growth. ZNF23 protein localized to the nucleus and was ubiquitously expressed in all tested normal tissues. However, the expression levels of ZNF23 protein were lost or greatly reduced in human cancer. Ectopic expression of ZNF23 led to growth inhibition by inducing G1 arrest and cell death. ZNF23 induced cell arrest in G1 phase through up-regulation of p27kip-1, but this process was p53-independent. ZNF23 promoted mitochrondrial cell death through down-regulation of Bcl-xL. Deletion analysis revealed that the effect of ZNF23 did not rely on its KRAB domain, but on the C-terminal zinc fingers. Furthermore, DNA binding sequence of ZNF23 was identified by BSS. Thus, ZNF23 is a new tumor-associated gene with growth-inhibitory ability and our work provides the basic foundation for future studies on the function of OKL38
引文
1. Albertson, DG, Collins, C, McCormick, F and Gray, JW, (2003) Chromosome aberrations in solid tumors. Nat Genet 34: 369-76.
    2. Sieber, OM, Heinimann, K, Gorman, P, Lamlum, H, Crabtree, M, Simpson, CA et al., (2002) Analysis of chromosomal instability in human colorectal adenomas with two mutational hits at APC. Proc Natl Acad Sci U S A 99: 16910-5.
    3. Pinkel, D, Segraves, R, Sudar, D, Clark, S, Poole, I, Kowbel, D et al., (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207-11.
    4. Solinas-Toldo, S, Lampel, S, Stilgenbauer, S, Nickolenko, J, Benner, A, Dohner, H et al., (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20: 399-407.
    5. Pollack, JR, Sorlie, T, Perou, CM, Rees, CA, Jeffrey, SS, Lonning, PE et al., (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci U S A 99: 12963-8.
    6. Coleman, AE, Schrock, E, Weaver, Z, du Manoir, S, Yang, F, Ferguson-Smith, MA et al., (1997) Previously hidden chromosome aberrations in T(12;15)-positive BALB/c plasmacytomas uncovered by multicolor spectral karyotyping. Cancer Res 57: 4585-92.
    7. Fauth, C and Speicher, MR, (2001) Classifying by colors: FISH-based genome analysis. Cytogenet Cell Genet 93: 1-10.
    8. Speicher, MR and Ward, DC, (1996) The coloring of cytogenetics. Nat Med 2:1046-8.
    9. Haigis, KM and Dove, WF, (2003) A Robertsonian translocation suppresses a somatic recombination pathway to loss of heterozygosity. Nat Genet 33: 33-9.
    10. Shirasaki, F, Takata, M, Hatta, N and Takehara, K, (2001) Loss of expression of the metastasis suppressor gene KiSS1 during melanoma progression and its association with LOH of chromosome 6q16.3-q23. Cancer Res 61: 7422-5.
    11. Sukosd, F, Kuroda, N, Beothe, T, Kaur, AP and Kovacs, G, (2003) Deletion of chromosome 3p14.2-p25 involving the VHL and FHIT genes in conventional renal cell carcinoma. Cancer Res 63: 455-7.
    12. El-Hashemite, N, Walker, V, Zhang, H and Kwiatkowski, DJ, (2003) Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Cancer Res 63: 5173-7.
    13. Knuutila, S, Aalto, Y, Autio, K, Bjorkqvist, AM, El-Rifai, W, Hemmer, S et al., (1999) DNA copy number losses in human neoplasms. Am J Pathol 155: 683-94.
    14. Tommerup, N and Vissing, H, (1995) Isolation and fine mapping of 16 novel human zinc finger-encoding cDNAs identify putative candidate genes for developmental and malignant disorders. Genomics 27: 259-64.
    15. Braungart, E, Schumacher, C, Hartmann, E, Nekarda, H, Becker, KF, Hofler, H et al., (1999) Functional loss of E-cadherin and cadherin-11 alleles on chromosome 16q22 in colonic cancer. J Pathol 187: 530-4.
    16. Van Roy, N, Van Limbergen, H, Vandesompele, J, Van Gele, M, Poppe, B, Salwen, H et al., (2001) Combined M-FISH and CGH analysis allows comprehensive description of genetic alterations in neuroblastoma cell lines. Genes Chromosomes Cancer 32:126-35.
    17. Sun, X, Frierson, HF, Chen, C, Li, C, Ran, Q, Otto, KB et al., (2005) Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat Genet 37: 407-12.
    18. Bellefroid, EJ, Poncelet, DA, Lecocq, PJ, Revelant, O and Martial, JA, (1991) The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc Natl Acad Sci U S A 88: 3608-12.
    19. Urrutia, R, (2003) KRAB-containing zinc-finger repressor proteins. Genome Biol 4: 231.
    20. Witzgall, R, O'Leary, E, Leaf, A, Onaldi, D and Bonventre, JV, (1994) The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc Natl Acad Sci U S A 91: 4514-8.
    21. Margolin, JF, Friedman, JR, Meyer, WK, Vissing, H, Thiesen, HJ and Rauscher, FJ, 3rd, (1994) Kruppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci U S A 91: 4509-13.
    22. Friedman, JR, Fredericks, WJ, Jensen, DE, Speicher, DW, Huang, XP, Neilson, EG et al., (1996) KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10: 2067-78.
    23. Agata, Y, Matsuda, E and Shimizu, A, (1999) Two novel Kruppel-associated box-containing zinc-finger proteins, KRAZ1 and KRAZ2, repress transcription through functional interaction with the corepressor KAP-1 (TIF1beta/KRIP-1). J Biol Chem 274: 16412-22.
    24. Schultz, DC, Ayyanathan, K, Negorev, D, Maul, GG and Rauscher, FJ, 3rd, (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16: 919-32.
    25. Schultz, DC, Friedman, JR and Rauscher, FJ, 3rd, (2001) Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15: 428-43.
    26. Huang, Z, Philippin, B, O'Leary, E, Bonventre, JV, Kriz, W and Witzgall, R, (1999) Expression of the transcriptional repressor protein Kid-1 leads to the disintegration of the nucleolus. J Biol Chem 274: 7640-8.
    27. Grondin, B, Bazinet, M and Aubry, M, (1996) The KRAB zinc finger gene ZNF74 encodes an RNA-binding protein tightly associated with the nuclear matrix. J Biol Chem 271: 15458-67.
    28. Pavletich, NP and Pabo, CO, (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252: 809-17.
    29. Wei, Y, Mizzen, CA, Cook, RG, Gorovsky, MA and Allis, CD, (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci U S A 95: 7480-4.
    30. Hennemann, H, Vassen, L, Geisen, C, Eilers, M and Moroy, T, (2003) Identification of a novel Kruppel-associated box domain protein, Krim-1, that interacts with c-Myc and inhibits its oncogenic activity. J Biol Chem 278: 28799-811.
    31. Gebelein, B, Fernandez-Zapico, M, Imoto, M and Urrutia, R, (1998)KRAB-independent suppression of neoplastic cell growth by the novel zinc finger transcription factor KS1. J Clin Invest 102: 1911-9.
    32. Tan, W, Kim, S and Boyer, TG, (2004) Tetrameric oligomerization mediates transcriptional repression by the BRCA1-dependent Kruppel-associated box-zinc finger protein ZBRK1. J Biol Chem 279: 55153-60.
    33. Tan, W, Zheng, L, Lee, WH and Boyer, TG, (2004) Functional dissection of transcription factor ZBRK1 reveals zinc fingers with dual roles in DNA-binding and BRCA1-dependent transcriptional repression. J Biol Chem 279: 6576-87.
    34. Chalmers, IJ, Aubele, M, Hartmann, E, Braungart, E, Werner, M, Hofler, H et al., (2001) Mapping the chromosome 16 cadherin gene cluster to a minimal deleted region in ductal breast cancer. Cancer Genet Cytogenet 126: 39-44.
    35. Blackwell, TK, Kretzner, L, Blackwood, EM, Eisenman, RN and Weintraub, H, (1990) Sequence-specific DNA binding by the c-Myc protein. Science 250: 1149-51.
    36. Norby, PL, Pallisgaard, N, Pedersen, FS and Jorgensen, P, (1992) Determination of recognition-sequences for DNA-binding proteins by a polymerase chain reaction assisted binding site selection method (BSS) using nitrocellulose immobilized DNA binding protein. Nucleic Acids Res 20: 6317-21.
    37. Bossy-Wetzel, E, Newmeyer, DD and Green, DR, (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. Embo J 17: 37-49.
    38. Le, XF, Claret, FX, Lammayot, A, Tian, L, Deshpande, D, LaPushin, R et al., (2003) The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. J Biol Chem 278:23441-50.
    39. Thiesen, HJ, (1990) Multiple genes encoding zinc finger domains are expressed in human T cells. New Biol 2: 363-74.
    40. Abrink, M, Ortiz, JA, Mark, C, Sanchez, C, Looman, C, Hellman, L et al., (2001) Conserved interaction between distinct Kruppel-associated box domains and the transcriptional intermediary factor 1 beta. Proc Natl Acad Sci U S A 98: 1422-6.
    41. Hendzel, MJ, Wei, Y, Mancini, MA, Van Hooser, A, Ranalli, T, Brinkley, BR et al., (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106: 348-60.
    42. Bradbury, EM, (1992) Reversible histone modifications and the chromosome cell cycle. Bioessays 14: 9-16.
    43. Gurley, LR, D'Anna, JA, Barham, SS, Deaven, LL and Tobey, RA, (1978) Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur J Biochem 84: 1-15.
    44. Murray, AW, (2004) Recycling the cell cycle: cyclins revisited. Cell 116: 221-34.
    45. Sherr, CJ and Roberts, JM, (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501-12.
    46. el-Deiry, WS, Tokino, T, Velculescu, VE, Levy, DB, Parsons, R, Trent, JM et al., (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817-25.
    47. Morgan, DO, (1995) Principles of CDK regulation. Nature 374: 131-4.
    48. Toyoshima, H and Hunter, T, (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78: 67-74.
    49. Bai, L and Merchant, JL, (2001) ZBP-89 promotes growth arrest through stabilization of p53. Mol Cell Biol 21: 4670-83.
    50. Haupt, S and Haupt, Y, (2004) Improving cancer therapy through p53 management. Cell Cycle 3: 912-6.
    51. Ali, SH and DeCaprio, JA, (2001) Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 11: 15-23.
    52. Medema, JP, Scaffidi, C, Kischkel, FC, Shevchenko, A, Mann, M, Krammer, PH et al., (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). Embo J 16: 2794-804.
    53. Wallach, D, Varfolomeev, EE, Malinin, NL, Goltsev, YV, Kovalenko, AV and Boldin, MP, (1999) Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17: 331-67.
    54. Bodmer, JL, Holler, N, Reynard, S, Vinciguerra, P, Schneider, P, Juo, P et al., (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2: 241-3.
    55. Kischkel, FC, Lawrence, DA, Chuntharapai, A, Schow, P, Kim, KJ and Ashkenazi, A, (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12: 611-20.
    56. Sprick, MR, Weigand, MA, Rieser, E, Rauch, CT, Juo, P, Blenis, J et al., (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and areessential for apoptosis mediated by TRAIL receptor 2. Immunity 12: 599-609.
    57. Zou, H, Li, Y, Liu, X and Wang, X, (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274: 11549-56.
    58. Cain, K, Bratton, SB, Langlais, C, Walker, G, Brown, DG, Sun, XM et al., (2000) Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J Biol Chem 275: 6067-70.
    59. Cain, K, Brown, DG, Langlais, C and Cohen, GM, (1999) Caspase activation involves the formation of the aposome, a large (approximately 700 kDa) caspase-activating complex. J Biol Chem 274: 22686-92.
    60. Saleh, A, Srinivasula, SM, Acharya, S, Fishel, R and Alnemri, ES, (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 274: 17941-5.
    61. Bratton, SB and Cohen, GM, (2001) Apoptotic death sensor: an organelle's alter ego? Trends Pharmacol Sci 22: 306-15.
    62. Hershko, A and Ciechanover, A, (1998) The ubiquitin system. Annu Rev Biochem 67: 425-79.
    63. Ciechanover, A, Orian, A and Schwartz, AL, (2000) The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J Cell Biochem Suppl 34: 40-51.
    64. Shang, F, Gong, X and Taylor, A, (1997) Activity of ubiquitin-dependent pathway in response to oxidative stress. Ubiquitin-activating enzyme is transiently up-regulated. J Biol Chem 272: 23086-93.
    65. Shang, F, Nowell, TR, Jr. and Taylor, A, (2001) Removal of oxidatively damaged proteins from lens cells by the ubiquitin-proteasome pathway. Exp Eye Res 73: 229-38.
    66. Baylin, SB and Herman, JG, (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16: 168-74.
    67. Kotoshiba, S, Kamura, T, Hara, T, Ishida, N and Nakayama, KI, (2005) Molecular dissection of the interaction between p27 and Kip1 ubiquitylation-promoting complex, the ubiquitin ligase that regulates proteolysis of p27 in G1 phase. J Biol Chem 280: 17694-700.
    1. Yang, VW, (1998) Eukaryotic transcription factors: identification, characterization and functions. J Nutr 128: 2045-51.
    2. Lander, ES, Linton, LM, Birren, B, Nusbaum, C, Zody, MC, Baldwin, J et al., (2001) Initial sequencing and analysis of the human genome. Nature 409: 860-921.
    3. Bellefroid, EJ, Poncelet, DA, Lecocq, PJ, Revelant, O and Martial, JA, (1991) The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc Natl Acad Sci U S A 88: 3608-12.
    4. Bardwell, VJ and Treisman, R, (1994) The POZ domain: a conserved protein-protein interaction motif. Genes Dev 8: 1664-77.
    5. Albagli, O, Dhordain, P, Deweindt, C, Lecocq, G and Leprince, D, (1995) The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ 6: 1193-8.
    6. Chung, HR, Schafer, U, Jackle, H and Bohm, S, (2002) Genomic expansion and clustering of ZAD-containing C2H2 zinc-finger genes in Drosophila. EMBO Rep 3: 1158-62.
    7. Williams, AJ, Khachigian, LM, Shows, T and Collins, T, (1995) Isolation and characterization of a novel zinc-finger protein with transcription repressor activity. J Biol Chem 270: 22143-52.
    8. Pengue, G, Calabro, V, Bartoli, PC, Pagliuca, A and Lania, L, (1994) Repression of transcriptional activity at a distance by the evolutionarily conserved KRAB domain present in a subfamily of zinc finger proteins. Nucleic Acids Res 22: 2908-14.
    9. Miller, J, McLachlan, AD and Klug, A, (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. Embo J 4: 1609-14.
    10. Brown, RS, Sander, C and Argos, P, (1985) The primary structure of transcription factor TFIIIA has 12 consecutive repeats. FEBS Lett 186: 271-4.
    11. Rubin, GM, Yandell, MD, Wortman, JR, Gabor Miklos, GL, Nelson, CR, Hariharan, IK et al., (2000) Comparative genomics of the eukaryotes. Science 287: 2204-15.
    12. Searles, MA, Lu, D and Klug, A, (2000) The role of the central zinc fingers of transcription factor IIIA in binding to 5 S RNA. J Mol Biol 301: 47-60.
    13. Wolfe, SA, Nekludova, L and Pabo, CO, (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29: 183-212.
    14. Fairall, L and Rhodes, D, (1992) A new approach to the analysis of DNase I footprinting data and its application to the TFIIIA/5S DNA complex. Nucleic Acids Res 20: 4727-31.
    15. Klug, A and Schwabe, JW, (1995) Protein motifs 5. Zinc fingers. Faseb J 9: 597-604.
    16. Fairall, L, Harrison, SD, Travers, AA and Rhodes, D, (1992) Sequence-specific DNA binding by a two zinc-finger peptide from the Drosophila melanogaster Tramtrack protein. J Mol Biol 226: 349-66.
    17. Fairall, L, Schwabe, JW, Chapman, L, Finch, JT and Rhodes, D, (1993) The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature 366: 483-7.
    18. Pavletich, NP and Pabo, CO, (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252: 809-17.
    19. Smith, GP, (1991) Surface presentation of protein epitopes using bacteriophage expression systems. Curr Opin Biotechnol 2: 668-73.
    20. Rebar, EJ, Greisman, HA and Pabo, CO, (1996) Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. Methods Enzymol 267: 129-49.
    21. Segal, DJ, Dreier, B, Beerli, RR and Barbas, CF, 3rd, (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5'-GNN-3' DNA target sequences. Proc Natl Acad Sci U S A 96: 2758-63.
    22. Bartsevich, VV and Juliano, RL, (2000) Regulation of the MDR1 gene by transcriptional repressors selected using peptide combinatorial libraries. Mol Pharmacol 58: 1-10.
    23. Joung, JK, Ramm, EI and Pabo, CO, (2000) A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci U S A97: 7382-7.
    24. Blancafort, P, Magnenat, L and Barbas, CF, 3rd, (2003) Scanning the human genome with combinatorial transcription factor libraries. Nat Biotechnol 21: 269-74.
    25. Bushman, FD and Miller, MD, (1997) Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J Virol 71: 458-64.
    26. Xu, GL and Bestor, TH, (1997) Cytosine methylation targetted to pre-determined sequences. Nat Genet 17: 376-8.
    27. Kim, YG, Cha, J and Chandrasegaran, S, (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93: 1156-60.
    28. Kalderon, D, Roberts, BL, Richardson, WD and Smith, AE, (1984) A short amino acid sequence able to specify nuclear location. Cell 39: 499-509.
    29. Sadowski, I, Ma, J, Triezenberg, S and Ptashne, M, (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335: 563-4.
    30. Ruben, SM, Dillon, PJ, Schreck, R, Henkel, T, Chen, CH, Maher, M et al., (1991) Isolation of a rel-related human cDNA that potentially encodes the 65-kD subunit of NF-kappa B. Science 254: 11.
    31. Wakasugi, K, Slike, BM, Hood, J, Ewalt, KL, Cheresh, DA and Schimmel, P, (2002) Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J Biol Chem 277: 20124-6.
    32. Rousseau-Merck, MF, Koczan, D, Legrand, I, Moller, S, Autran, S and Thiesen, HJ, (2002) The KOX zinc finger genes: genome wide mapping of 368 ZNF PAC clones with zinc finger gene clusters predominantly in 23 chromosomal loci are confirmed by human sequences annotated in EnsEMBL. Cytogenet Genome Res 98: 147-53.
    33. Tekki-Kessaris, N, Bonventre, JV and Boulter, CA, (1999) Characterization of the mouse Kid1 gene and identification of a highly related gene, Kid2. Gene 240: 13-22.
    34. Grondin, B, Bazinet, M and Aubry, M, (1996) The KRAB zinc finger gene ZNF74 encodes an RNA-binding protein tightly associated with the nuclear matrix. J Biol Chem 271: 15458-67.
    35. Gebelein, B, Fernandez-Zapico, M, Imoto, M and Urrutia, R, (1998) KRAB-independent suppression of neoplastic cell growth by the novel zinc finger transcription factor KS1. J Clin Invest 102: 1911-9.
    36. Hennemann, H, Vassen, L, Geisen, C, Eilers, M and Moroy, T, (2003) Identification of a novel Kruppel-associated box domain protein, Krim-1, that interacts with c-Myc and inhibits its oncogenic activity. J Biol Chem 278: 28799-811.
    37. Tan, W, Kim, S and Boyer, TG, (2004) Tetrameric oligomerization mediates transcriptional repression by the BRCA1-dependent Kruppel-associated box-zinc finger protein ZBRK1. J Biol Chem 279: 55153-60.
    38. Tan, W, Zheng, L, Lee, WH and Boyer, TG, (2004) Functional dissection of transcription factor ZBRK1 reveals zinc fingers with dual roles in DNA-binding and BRCA1-dependent transcriptional repression. J Biol Chem 279: 6576-87.
    39. Garcia, V, Dominguez, G, Garcia, JM, Silva, J, Pena, C, Silva, JM et al., (2004) Altered expression of the ZBRK1 gene in human breast carcinomas. J Pathol 202: 224-32.
    40. Jheon, A, Chen, J, Teo, W, Ganss, B, Sodek, J and Cheifetz, S, (2002) Temporal and spatial expression of a novel zinc finger transcription factor, AJ18, in developing murine skeletal tissues. J Histochem Cytochem 50: 973-82.
    41. Venter, JC, Adams, MD, Myers, EW, Li, PW, Mural, RJ, Sutton, GG et al., (2001) The sequence of the human genome. Science 291: 1304-51.
    42. Williams, AJ, Blacklow, SC and Collins, T, (1999) The zinc finger-associated SCAN box is a conserved oligomerization domain. Mol Cell Biol 19: 8526-35.
    43. Sander, TL, Haas, AL, Peterson, MJ and Morris, JF, (2000) Identification of a novel SCAN box-related protein that interacts with MZF1B. The leucine-rich SCAN box mediates hetero- and homoprotein associations. J Biol Chem 275: 12857-67.
    44. Schumacher, C, Wang, H, Honer, C, Ding, W, Koehn, J, Lawrence, Q et al., (2000) The SCAN domain mediates selective oligomerization. J Biol Chem 275: 17173-9.
    45. Langmann, T, Schumacher, C, Morham, SG, Honer, C, Heimerl, S, Moehle, C et al., (2003) ZNF202 is inversely regulated with its target genes ABCA1 and apoE duringmacrophage differentiation and foam cell formation. J Lipid Res 44: 968-77.
    46. Li, Z, Wang, D, Na, X, Schoen, SR, Messing, EM and Wu, G, (2003) The VHL protein recruits a novel KRAB-A domain protein to repress HIF-1alpha transcriptional activity. Embo J 22: 1857-67.
    47. Adachi, H and Tsujimoto, M, (2002) Characterization of the human gene encoding the scavenger receptor expressed by endothelial cell and its regulation by a novel transcription factor, endothelial zinc finger protein-2. J Biol Chem 277: 24014-21.
    48. Casademunt, E, Carter, BD, Benzel, I, Frade, JM, Dechant, G and Barde, YA, (1999) The zinc finger protein NRIF interacts with the neurotrophin receptor p75(NTR) and participates in programmed cell death. Embo J 18: 6050-61.
    49. Gentry, JJ, Rutkoski, NJ, Burke, TL and Carter, BD, (2004) A functional interaction between the p75 neurotrophin receptor interacting factors, TRAF6 and NRIF. J Biol Chem 279: 16646-56.
    50. Rayasam, GV, Wendling, O, Angrand, PO, Mark, M, Niederreither, K, Song, L et al., (2003) NSD1 is essential for early post-implantation development and has a catalytically active SET domain. Embo J 22: 3153-63.
    51. Nielsen, AL, Jorgensen, P, Lerouge, T, Cervino, M, Chambon, P and Losson, R, (2004) Nizp1, a novel multitype zinc finger protein that interacts with the NSD1 histone lysine methyltransferase through a unique C2HR motif. Mol Cell Biol 24: 5184-96.
    52. Tanaka, K, Tsumaki, N, Kozak, CA, Matsumoto, Y, Nakatani, F, Iwamoto, Y et al., (2002) A Kruppel-associated box-zinc finger protein, NT2, represses cell-type-specific promoter activity of the alpha 2(XI) collagen gene. Mol Cell Biol 22: 4256-67.
    53. Xiong, WC and Montell, C, (1993) tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye. Genes Dev 7: 1085-96.
    54. Sahut-Barnola, I, Godt, D, Laski, FA and Couderc, JL, (1995) Drosophila ovary morphogenesis: analysis of terminal filament formation and identification of a gene required for this process. Dev Biol 170: 127-35.
    55. Restifo, LL and White, K, (1991) Mutations in a steroid hormone-regulated genedisrupt the metamorphosis of the central nervous system in Drosophila. Dev Biol 148: 174-94.
    56. van Roy, FM and McCrea, PD, (2005) A role for Kaiso-p120ctn complexes in cancer? Nat Rev Cancer 5: 956-64.
    57. He, LZ, Guidez, F, Tribioli, C, Peruzzi, D, Ruthardt, M, Zelent, A et al., (1998) Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 18: 126-35.
    58. Hoatlin, ME, Zhi, Y, Ball, H, Silvey, K, Melnick, A, Stone, S et al., (1999) A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF. Blood 94: 3737-47.
    59. Hong, SH, David, G, Wong, CW, Dejean, A and Privalsky, ML, (1997) SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci U S A 94: 9028-33.
    60. Nagy, L, Kao, HY, Chakravarti, D, Lin, RJ, Hassig, CA, Ayer, DE et al., (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89: 373-80.
    61. Alcalay, M, Meani, N, Gelmetti, V, Fantozzi, A, Fagioli, M, Orleth, A et al., (2003) Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest 112: 1751-61.
    62. Muller, C, Yang, R, Park, DJ, Serve, H, Berdel, WE and Koeffler, HP, (2000) The aberrant fusion proteins PML-RAR alpha and PLZF-RAR alpha contribute to the overexpression of cyclin A1 in acute promyelocytic leukemia. Blood 96: 3894-9.
    63. Park, DJ, Vuong, PT, de Vos, S, Douer, D and Koeffler, HP, (2003) Comparative analysis of genes regulated by PML/RAR alpha and PLZF/RAR alpha in response to retinoic acid using oligonucleotide arrays. Blood 102: 3727-36.
    64. McConnell, MJ, Chevallier, N, Berkofsky-Fessler, W, Giltnane, JM, Malani, RB, Staudt, LM et al., (2003) Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression.Mol Cell Biol 23: 9375-88.
    65. Insinga, A, Monestiroli, S, Ronzoni, S, Carbone, R, Pearson, M, Pruneri, G et al., (2004) Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. Embo J 23: 1144-54.
    66. Pasqualucci, L, Bereschenko, O, Niu, H, Klein, U, Basso, K, Guglielmino, R et al., (2003) Molecular pathogenesis of non-Hodgkin's lymphoma: the role of Bcl-6. Leuk Lymphoma 44 Suppl 3: S5-12.
    67. Chang, CC, Ye, BH, Chaganti, RS and Dalla-Favera, R, (1996) BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc Natl Acad Sci U S A 93: 6947-52.
    68. Chen, W, Cooper, TK, Zahnow, CA, Overholtzer, M, Zhao, Z, Ladanyi, M et al., (2004) Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis. Cancer Cell 6: 387-98.
    69. Chen, WY, Wang, DH, Yen, RC, Luo, J, Gu, W and Baylin, SB, (2005) Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123: 437-48.
    70. Daniel, JM and Reynolds, AB, (1999) The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol 19: 3614-23.
    71. Nusse, R, (2005) Wnt signaling in disease and in development. Cell Res 15: 28-32.
    72. Maeda, T, Hobbs, RM, Merghoub, T, Guernah, I, Zelent, A, Cordon-Cardo, C et al., (2005) Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature 433: 278-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700