利用番茄和大肠杆菌表达胸腺素α1的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胸腺素α1(Thymosinα1,Tα1)是人体中枢免疫器官胸腺所分泌的一种免疫活性极强的28肽激素,具有促进T细胞分化和成熟,提高免疫的作用,还可以治疗自身免疫疾病,在临床上具有很好的效果。
     临床用Tα1主要靠从动物的胸腺组织中提取或进口国外的化学合成品,存在着组织来源有限、价格昂贵和安全性隐患等问题,使临床应用受限。因此本研究拟利用番茄作为表达系统表达Tα1,探索Tα1生产新途径。
     本研究根据植物偏爱密码子原则设计合成了Tα1,同时考虑到Tα1基因较小,在植物系统中表达易被降解的问题,利用基因工程和同尾酶技术将其串联成四联体,即4×Tα1。利用PG启动子构建了在番茄果实中特异表达融合蛋白4×Tα1的植物双元表达载体PG-pRD12-4×Tα1,利用冻融法转入农杆菌EHA105,通过农杆菌介导法转化番茄,经卡那霉素筛选,最终获得了再生植株54株。经PCR、Southern blot分析确认了其中4株独立的转基因植株。RT-PCR分析结果表明,在番茄的成熟果实和未成熟果实中均有目的基因4×Tα1的表达,而在叶片中没有表达。对转基因番茄果实蛋白进行了Western Blot分析,证明在转基因植株中成功表达了4×Tα1。番茄果实的ELISA定量分析显示,成熟果实中4×Tα1表达量介于2.725μg/g.FW至6.094μg/g.FW之间,而未成熟绿果中4×Tα1表达量介于2.373μg/g.FW至2.434μg/g.FW之间。
     小鼠淋巴细胞增殖试验证明转基因番茄中表达的4×Tα1蛋白具有生物活性,这是首次成功利用番茄果实特异表达系统表达具有生物活性4×Tα1的报道。
     虽然口服给药可以降低成本,使用方便,但口服给药剂量较难控制,临床仍以静脉注射给药为主。为了纯化番茄中表达的4×Tα1,本研究也对目的蛋白4×Tα1的纯化进行了相应的探索,以期为后续规模化纯化4×Tα1提供依据。
     根据原核表达载体生产重组蛋白具有操作简便、周期短,并且原核表达载体本身含有his-tag结构,便于利用Ni-NTA介质对目的蛋白进行分离纯化的特点,本研究还构建了含4×Tα1基因的原核表达载体pQE30-4×Tα1,随后转化大肠杆菌菌株M15,在IPTG的诱导下成功表达了目的蛋白。结果表明,根据植物偏爱密码子设计合成的4×Tα1基因,可以在大肠杆菌中高效表达。通过纯化得到了纯度较高的4×Tα1蛋白,所表达蛋白表现出了良好的生物活性。这是首次利用原核系统表达按植物偏爱密码子设计合成的Tα1基因的报道。该研究不仅为利用番茄系统表达4×Tα1基因提供了阳性蛋白的参照,同时也为今后利用植物系统表达目的蛋白的纯化提供了参考和借鉴。
Thymosin alpha-1(Tα1) is an acetylated 28-amino-acid peptide hormone from the thymus glands of mammals. Thymosin plays important roles in modulating immune response and has significant clinical applications used as therapeutic agents. Tα1 has been evaluated for its immuno-modulatory activities and therapeutic potential in several diseases including chronic hepatitis B and C, acquired immunodeficiency syndrome, and depressed response to vaccination and cancer. Nowadays, the main methods to get thymosin are via extraction from animal tissues or via chemical synthesis. However, the high price confine the application of the thymosin. In recent years there has been a growing interest of producing therapeutic proteins and vaccines in transgenic plants. Plants offer the prospect of inexpensive biopharmaceutical production without sacrificing product quality or safety. It will be interesting to see if plants can be used to produce Tα1, by which the cost and complication to produce Tα1 may be lowed down.
     In this study, Tα1 gene was designed and synthesized according to plant codon usage preference. The tandem Tα1 gene of 4 repeats was concatenated and identified by sequencing. A plant expression vector PG-pRD12-4×Tα1 harboring the 4×Tα1 gene was constructed and introduced into tomato via Agrobacterium tumefaciens-mediated transformation. After kanamycin selection, 54 putative transgenic tomato plants were regenerated. PCR, Southern blot analyses confirmed the transgenic status of some plants. RT-PCR analysis demonstrated that the 4×Tα1 gene was expressed specifically in tomato fruits. Western blot analysis confirmed the expression of the 4×Tα1 concatemer protein in tomato fruits. ELISA analysis showed that the concentration of the 4×Tα1 concatemer protein ranged from 2.725~6.094μg/g fresh weight in mature fruit. However in the immature fruits, the concentration of the 4×Tα1 concatemer protein ranged from 2.373~2.434μg/g fresh weight. This study confirmed that the 4×Tα1 concatemer protein was successfully expressed in tomato. Biological activity of expressed 4×Tα1 concatemer protein was carried out by lymphocyte proliferation assay, and the result demonstrated that the protein had effects of immuno-modulation. This is the first report on successful expression of biologically active thymosin alpha 1 (Tα1) in plants and this research provides a basis for further development of plants as bioreactor to produce Tα1, one of the important therapeutic proteins.
     Although the oral immunogenic protein antigens can low down the production cost, it is difficult to control the oral therapy dose. The mainline is also widely applied in clinic. Therefore the purification of target protein from the transgenic plants was very important. In this study, some researches about protein purification were carried out. Considered the advantage of Escherichia coli (E. coli) expression system in expression time, the E. coli expression vector pQE30-4×Tα1 containing 4×Tα1 gene was constructed which was subsequently transformed into E. coli M15. Vector pQE30 was used because the target protein could be expressed as a fusion protein with a 6×His-tag for the convenience of subsequent purification. The result showed that the 4×Tα1 gene was successfully expressed in E. coli. The expressed protein was purified and found to have the normal bioactivity. This is the first report on the expression of 4×Tα1 concatemer which is synthesized according to plant codon usage preference in E. coli expression system. This study not only provides the positive protein of 4×Tα1, but also provides the reference in purification of expressed protein in plants in the future.
引文
1. Goldstein AL, Slater FD, White A. Preparation, assay, and partial purification of a thymic lymphocytopoietic factor (thymosin). Proc Natl Acad Sci USA, 1966, 56: 1010.
    2. 薛晓畅. 胸腺素 α1 串联体基因的克隆表达_产物纯化及其生物学活性研究.[硕士学位论文].西安,解放军第四军医大学,2001.
    3. 秦桂香. 抗肺癌单链抗体融合人胸腺素 α1 的构建及表达.[硕士学位论文].杭州,浙江大学,2005.
    4. Garaci E,Pica F, Sinibaldi-Vallebona P, et al. Thymosin alpha1 in combination with cytokines and chemotherapy for the treatment of cancer. Int Immunopharmacol, 2003, 3: 1145-1150.
    5. Baumann CA, Badamchian M, Goldstein AL. Thymosin alpha 1 antagonizes dexamethasone and CD3-induced apoptosis of CD4+ CD8+ thymocytes through the activation of cAMP and protein kinase C dependent second messenger pathways. Mech Aging Dev, 1997, 94: 85-101.
    6. Yang S, Liu ZW, Zhou WX, et al. Thymosin alpha-1 modulates excitatory synaptic transmission in cultured hippocampal neurons in rats. Neurosci Lett, 2003, 350: 81-84.
    7. 熊仁平, 周元国, 刘苹等.小牛胸腺素的动物实验及临床应用.中国生物制品学杂志, 2000, 13(4):241-244.
    8. Billich A. Thymosin alpha 1 SciClone Pharmaceuticals. Curr Opin Investig Drugs, 2002, 3: 698-707.
    9. 钱林法, 王伟祖, 刘桦等. 口服胸腺肽结肠溶制剂的药效学研究. I.对环孢素A 免疫抑制 BALA/c 小鼠的免疫功能的影响. 中国生化药物杂志, 1999, 20(2):79-82.
    10. Lau GK, Nanji A, Hou J, et al. Thymosin-alpha1 and famciclovir combination therapy activates T-cell response in patients with chronic hepatitis B virus infection in immune-tolerant phase. J Viral Hepat, 2002, 9 : 280-287.
    11. 宫照龙. 胸腺素 alpha-1 的治疗应用研究进展.滨州医学院学报, 2003, 6 : 444.
    12. 靳 亚 平 , 杨 前 富 , 武 浩 . 牛 胸 腺 肽 的 提 取 及 活 性 检 测 动 物 医 学 进展,2002,23(5):66-69.
    13. 薛晓畅,颜真,韩苇,等. 胸腺素 α1 基因串联体的构建. 第四军医大学学报,2001, 22(16) : 1532-1533.
    14. 石继红, 韩苇, 颜真等. 天然胸腺素 α1 基因的克隆及其在大肠杆菌中的表达.中国生化药物杂志, 2003, 24: 55
    15. 修朝阳, 周穗菁, 俞璎等.人胸腺素 α1 在大肠杆菌中的融合表达. 生物工程学报, 2002, 18(5): 541-545.
    16. 王景林, 侯世勇, 康琳. 胸腺素α1/干扰素α-2b融合基因表达载体的构建与表达生命科学研究, 2004, 3 : 242
    17. 曹俊霞,金礼吉, 段延龙等.人胸腺素 α1 基因在毕赤酵母中的分泌表达.生物技术, 2003, 13 : 4.
    18. 徐峰, 陈智, 姚航平等.人胸腺素 α1 真核表达重组体的构建及其转染人外周血淋巴细胞对后者免疫活性的影响.浙江大学学报(医学版), 2002, 31: 121
    19. 徐虹, 章军, 柯珍恋等。胸腺素 α_1 基因在钝顶螺旋藻中的表达.高技术通讯, 2002, 12 : 83.
    20. 年洪娟, 刘玲, 杨淑慎等. 胸腺肽基因转化生菜及其表达的研究. 中国农业科学, 2004, 37(7):1085-1088.
    21. 汪琨, 马荣水, 徐惠娟等. 转人源胸腺肽α1基因聚球藻7942及其野生藻的培养. 工业微生物, 2002, 32 (4): 15-19.
    22. 井鑫,张兴国.植物生物反应器研究进展.西南农业大学学报,2004,2(4):
    109-112.
    23. Walsh G. Pharmaceuticals, biologics and biopharmaceuticals. In: Biopharmaceuticals: Biochemistry and Biotechnology, Wiley, Chichester, UK, 1998:1–35.
    24. 周洁民.IX 因子重组质粒的构建及其转化细胞移植物在小鼠体内的表达.科学通报, 1992b,37(16): 1513-1516.
    25. 邱信芳,张克忠,卢大儒等.Study on Mammary Gland Bioreactor for Human Clotting Factor Ⅸ. 复旦学报(自然科学版),1998,37(4):365-371.
    26. Fischer R,Emans N. Molecular farming of pharmaceutical proteins. Transgenic Research, 2000, 9: 279–299.
    27. Echelard Y. Recombinant protein production in transgenic animals. Curr Opin Biotech, 1996, 7: 536–540.
    28. Poinar H, Kuch M, P??bo S, et al. Molecular Analyses of Oral Polio Vaccine Samples. Science, 2001,(292): 743-744.
    29. 王关林, 方宏筠.植物基因工程(第二版),北京,科学出版社,2002.
    30. Twyman RM, Schillberg S, Fischer R, et al. Transgenic plants in thebiopharmaceutical market. Expert. Opin. Emerging Drugs, 2005, 10:185-218.
    31. Hiatt A, Cafferkey R and Bowdish K. Production of antibodies in transgenic plants. Nature, 1989, 342: 76–78.
    32. Düring K, Hippe S, Kreuzaler F et al. Synthesis and self assembly of a functional monoclonal antibody in transgenic Nicotiana tabacum. Plant Mol Biol, 1990, 15: 281-293.
    33. Larrick JW, Yu L, Chen J, et al. Production of antibodies in transgenic plants. Res Immunol, 1998, 149: 603–608.
    34. Ma J K, Hikmat BY, Wycoff K, et al. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med, 1998, 4: 601–606.
    35. Ma J and Hein M. Immunotherpeuic potential of antibodies produced in plants. Trends Biotechnol, 1995a, 13: 522–527.
    36. Ma J and Hein M. Plant antibodies for Immunotherapy. Plant Physiol, 1995b, 109: 341–346.
    37. Hogue RS, Lee JM and An G. Production of a foreign protein product with genetically modified plant cells. Enzyme Microb Technol, 1990, 12: 533–538.
    38. Verwoerd TC, van Paridon PA, van Ooyen AJJ, et al. Stable accumulation of spergillus niger phytase in transgenic tobacco leaves. Plant Physiol, 1995, 109: 1199–1205.
    39. Magnuson NS, Linzmaier PM, Reeves R, et al. Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr Purif, 1998, 13: 45–52.
    40. Sijmons PC, Dekker BMM, Schrammeijer B, et al. Production of correctly processed human serum albumin in transgenic plants. Bio/Technol, 1990, 8: 217–221.
    41. Walmsley A and Arntzen C. Plants for delivery of edible vaccines. Curr Opin Biotech, 2000, 11: 126–129.
    42. Mason HS, Lam DM and Arntzen CJ. Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA, 1992, 89: 11745–11749.
    43. Ponstein AS, Bade JB, Verwoerd TC, et al. Stable expression of phytase (phyA)in canola(Brassica napus) seeds: towards a commercial product. Molecular Breeding, 2002, 10: 31-44.
    44. Brisson N. Expression of a bacterial gene in plants by using a viral vector. Nature,1984, 310:511.
    45. Sijmons PC, Dekker BMM, Schranmeijer B et al. Production of correctly processed human serum albumin in transgenic plants. Bio/technology, 1990, 8: 217-220.
    46. Ingelbrecht L W , Herman LM, Dekeyser RA, et al. Different 3' end regions strongly influence the level of gene expression in plant cells. Plant Cell, 1989, 1:671-682.
    47. Usha R, Rohll JB, Spall VE et al. Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology. 1993, 197(1):366-74.
    48. Anatoli Giritch, Sylvestre Marillonnet, Carola Engler, et al. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. PNAS, 2006, 103(40):14701-06.
    49. 刘昱辉,贾士荣.植物油体表达体系的研究进展.农业生物技术学报,2003, 11(5):531-537.
    50. Huang A H C. Oil bodies and oleosins in seeds. Ann Rev Plant Physiol Plant Mol Biol, 1992, 43:177-200.
    51. Siloto RM, Findlay K, Lopez-Villalobos A, et al. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell, 2006, 18(8):1961-74.
    52. Abell BM, Holbrook LA, Abenes M et al. Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell, 1997, 9(8):1481-93.
    53. Abell BM, Hahn M, Holbrook LA, et al. Membrane topology and sequence requirements for oil body targeting of oleosin. Plant J, 2004, 37(4):461-70.
    54. Lee W S, Tzen J T C, Kridl J C, et al. Maize oleosin is correctly targeted to seed oil bodies in Brassica napus transformed with the maize oleosin gene. Proc Natl Acad Sci U S A, 1991, 88(14):6181-5.
    55. Holbrook LA, van Rooijen GJ, Wilen RW, et al. Oilbody Proteins in Microspore-Derived Embryos of Brassica napus: Hormonal, Osmotic, and Developmental Regulation of Synthesis. Plant Physiol, 1991, 97(3):1051-1058.
    56. Parmenter DL, Boothe JG, van Rooijen GJ, et al. Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Mol Biol, 1995, 29(6):1167-80.
    57. Liu Jin-Hao, Selinger L Brent, Cheng Kuo-Joan, et al. Plant seed oil-bodies as animmobilization matrix for a recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Molecular Breeding, 1997, 3(6): 463-470.
    58. Seon J-H, Szarka JS, Moloney MM.A unique strategy for recovering recombinant proteins from molecular farming: affinity capture on engineered oilbodies.) Journal of plant biotechnology, 2002, 4:95-101.
    59. Nykiforuk CL, Boothe JG, Murray EW et al. Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol J, 2006, 4(1):77-85.
    60. Staub JM, Garcia B, Graves J, et al. High-yield production of a human therapeutic protein in tobacco chloroplast. Nat. Biotechnol, 2000, 18: 333-338.
    61. Hibberd MJ, Linley JP, Khan MS, et al. Transient expression of green fluorescent protein in various plastid types following micro projectile bombardment. Plant J, 1998, 16, 627-632.
    62. Daniell H, Khan MS, and Allison L. Milestones in chloroplast genetic engineering: An environmentally friendly era in biotechnology. Trends Plant Sci, 2002, 7, 84-91.
    63. 李宏韬,赵淑青,赵彦休等.叶绿体基因工程简介,遗传,2003, 25(4): 495-498.
    64. Lee SB, Kwon HB, Kwon SJ, et al. Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol. Breed, 2003, 11: 1-13.
    65. de Cosa B, Moar W, Lee SB, et al. Over expression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol, 2001, 19: 71-74.
    66. Daniell H, Lee SB, Panchal T, et al. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol, 2001, 311:1001-1009.
    67. Daniell H, and Dhingra A. Multigene engineering: Dawn of an exciting new era in biotechnology. Curr. Opin. Biotechnol, 2002, 13: 136-141.
    68. 范国昌, 苏宁, 张中林等. 衣藻叶绿体表达体系的建立. 科学通报,1999, 44:1301-1306.
    69. 张中林, 山松, 陈曦等.丙肝病毒融合抗原基因 NS3-C 定点整合入衣藻叶绿体基因组的研究. 遗传,1999,21:1-6.
    70. 山松, 张中林, 吴祥甫等. 丙肝病毒融合抗原基因导入烟草叶绿体及转化株同质化的研究.作物学报,2000,2 6 :143-147.
    71. Tregoning J.S., Nixon, P., Kuroda, H.,et al. Expression of tetanus toxin fragmentC in tobacco chloroplasts. Nucleic Acids Res, 2003, 31:1174-1179.
    72. Sun, M., Qian, K.X., Su, N., et al. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol. Lett., 2003, 2 5: 1087-1092.
    73. Molina, A., Hervas-Stubbs, S., Daniell, H., et al. Highyield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol, 2004, 2: 141-153.
    74. Molina, A., Veramendi, J., and Hervas-Stubbs, S. Induction of neutralizing antibodies by a tobacco chloroplast-derived vaccine based on a B cell epitope from canine parvovirus. Virology, 2005, 342: 266-275.
    75. Leelavathi, S., and Reddy, V.S. Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol. Breed, 2003, 11: 49-58.
    76. Feernandeea-san millan A, Mingo-castel A, Miller M, et al. A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to photolytic degradation. Plant Biotechnol. J, 2003, 1(2):77-79.
    77. Guo, C.H., Ohsako, T., Ozaki, A., et al. Production of transplastomic tobacco plants having a gene encoding hirudine. Breed. Res., 2004, 6: 268-268.
    78. Ruf, S., Hermann, M., Berger, I.J., et al. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat. Biotechnol, 2001, 19: 870-875.
    79. Hou, B.K., Zhou, Y.H., Wan, L.H., et al. Chloroplast transformation in oilseed rape. Transgenic Res., 2003, 12: 111-114.
    80. Kumar S, Dhingra A, and Daniell H. Plastid-expressed beta inealdehydede hydrogenase gene in carrot cultured cells, roots, and leaves confer enhanced salt tolerance. Plant Physiol., 2004, 136: 2843-2854.
    81. Dufourmantel, N., Pelissier, B., Garc xon, F., et al. Generation of fertile transplastomic soybean. Plant Mol. Biol., 2004, 55: 479-489.
    82. Lelivelt CL, McCabe MS, Newell CA., et al. Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol. Biol., 2005, 58: 763-774.
    83. Iamtham S., Day A. Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol, 2000, 18: 1172-1176.
    84. Corneille, S., Lutz, K., Svab, Z., et al. Efficient elimination of selectable markergenes from the plastid genome by the CRE-lox site specific recombination system. Plant J., 2001, 27:171-178.
    85. Hajdukiewicz, P.T., Gilbertson, L., and Staub, J. M. Multiple pathways for Cre/lox mediated recombination in plastids. Plant J., 2001, 27:161-170.
    86. Lutz, K.A., Bosacchi, M.H., and Maliga, P. Plastid marker-gene excision by transiently expressed CRE recombinase. Plant J., 2006, 45: 447-456.
    87. Kathuria S, Sriraman R, Nath R, et al. Efficacy of plant-produced recombinant antibodies against HCG. Hum Reprod, 2002, 17(8):2054-61.
    88. Veronique Gomord, Christophe Sourrouille, Anne-Catherine,et al. Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant biotechnology Journal, 2004, 2:83-100.
    89. Perrin,Yolande; Vaquero,Carmen; Gerrard,Ian; et al. Transgenic pea seeds as bioreactors for the production of a single-chain Fv fragment (scFv) antibody used in cancer diagnosis and therapy. Molecular Breeding, 2000, 6(4): 345-352.
    90. Yuan, Q., Hu, W., Pestka, J.J., et al. Expression of a functional antizearalenone single-chain Fv antibody in transgenic Arabidopsis plants. Appl. Env. Microb, 2000, 66: 3499–3505.
    91. St?ger, E., Vaquero, C., Torres, E., et al. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol. Biol, 2000, 42: 583–590.
    92. Vine ND, Drake P, Hiatt A, et al. Assembly and plasma membrane targeting of recombinant immunoglobulin chains in plants with a murine immunoglobulin transmembrane sequence. Plant Mol Biol, 2001, 45(2):159-67.
    93. Peeters, K., De Wilde, C. and Depicker, A. Highly efficient targeting and accumulation of a Fab fragment within the secretory pathway and apoplast of A. thaliana. Eur. J. Biochem, 2001, 268: 4251-4260.
    94. Ramirez, N., Ayala, M., Orenzo, D., et al. Expression of a single-chain Fv antibody fragment specific for the hepatitis B surface antigen in transgenic tobacco plants. Transgenic Res, 2002, 11: 61-64.
    95. Bouquin T, Thomsen M, Nielsen LK, et al. Human anti-rhesus D IgG1 antibody produced in transgenic plants. Transgenic Res, 2002, 11(2):115-22.
    96. Kathuria S, Sriraman R, Nath R, et al. Efficacy of plant-produced recombinant antibodies against HCG. Hum Reprod, 2002, 17(8):2054-61.
    97. Vaquero, C., Sack, M., Schuster, F., et al. A carcinoembryonic antigen-specificdiabody produced in tobacco. FASEB J, 2002, 16, 408-410.
    98. Schünmann, PH.; Coia,Greg; Waterhouse,Peter M, et al. Biopharming the SimpliRED? HIV diagnostic reagent in barley, potato and tobacco. Molecular Breeding, 2002, 9(2): 113-121.
    99. Ehsani P, Meunier A, Nato F, et al. Expression of anti human IL-4 and IL-6 scFvs in transgenic tobacco plants. Plant Mol Biol, 2003, 52(1):17-29.
     100.Drake PM, Chargelegue DM, Vine ND, et al. Rhizosecretion of a monoclonal antibody protein complex from transgenic tobacco roots. Plant Mol Biol, 2003, 52(1):233-41.
    101.Jobling, S.A., Jarman, C., The, M.M., et al. Immuno modulation of enzyme function implants by single-domain antibody fragments. Nature Biotechnol, 2003, 21: 77-80.
    102.KO, K., Tekoah, Y., Rudd, P.M., et al. Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc. Natl. Acad. Sci. USA, 2003, 100: 8013–8018.
    103.Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci U S A, 2003, 21; 100(2):438-42.
    104.Almquist KC, McLean MD, Niu Y et al. Expression of an anti-botulinum toxin A neutralizing single-chain Fv recombinant antibody in transgenic tobacco. Vaccine, 2006, 24(12):2079-86.
    105.Girard LS, Fabis MJ, Bastin M et al. Expression of a human anti-rabies virus monoclonal antibody in tobacco cell culture. Biochem Biophys Res Commun, 2006, 345(2):602-7.
    106.Han Mei, Su Tao, Zu Yuan-Gang et al. Research advances on transgenic plant vaccines. Acta Genetica Sinica, 2006, 33(4):285-293.
    107.Mcgarvey PB, Hammond J, Dienelt MM et al. Expression of the rabies virus glycoprotein in transgenic tomatoes. Bio/Technology, 1995, 13:1484-1487.
    108.Sala F, Rigano MM, Barbante A, et al. Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives. Vaccine, 2003, 21: 803-808.
    109.Kumar GB, Ganapathi TR, Revathi CJ, et al. Expression of hepatitis B surface antigen in transgenic banana plants. Planta, 2005, 222(3):484-93.
    110.Dus Santos MJ, Wigdorovitz A, Trono K et al. A novel methodology to develop a foot and mouth disease virus (FMDV) peptide-based vaccine in transgenic plants. Vaccine, 2002, 20(7-8):1141-7.
    111.Lamphear BJ, Streatfield SJ, Jilka JM, et al. Delivery of subunit vaccines in maize seed. J Control Release, 2002, 85(1-3):169-80.
    112.Larrick JW, Thomas DW. Producing proteins in transgenic plants and animals. Curr Opin Biotechnol, 2001, 12(4):411-8.
    113.Tuboly T, Yu W, Bailey A, et al. Immunogenicity of porcine transmissible gastroenteritis virus spike protein expressed in plants. Vaccine, 2000, 18(19):2023-8.
    114.Lee RW, Strommer J, Hodgins D et al. Towards development of an edible vaccine against bovine pneumonic pasteurellosis using transgenic white clover expressing a Mannheimia haemolytica A1 leukotoxin 50 fusion protein. Infect Immun, 2001, 69(9):5786-93.
    115.Gil F, Brun A, Wigdorovitz A, et al. High-yield expression of a viral peptide vaccine in transgenic plants. FEBS Lett, 2001, 488(1-2):13-7.
    116.Jani D, Meena LS, Rizwan-ul-Haq QM, et al. Expression of cholera toxin B subunit in transgenic tomato plants. Transgenic Res, 2002, 11(5):447-54.
    117.姜鹏,秦松,曾呈奎.乙肝表面抗原基因在海带中的表达. 科学通报,2002, 47(14):1095-1097.
    118.Chikwamba R, Cunnick J, Hathaway D, et al. A functional antigen in a practical crop: LT-B producing maize protects mice against Escherichia coli heat labile enterotoxin (LT) and cholera toxin (CT). Transgenic Res, 2002, 11(5):479-93.
    119.Zhang GG, Rodrigues L, Rovinski B, et al. Production of HIV-1 p24 protein in transgenic tobacco plants. Mol Biotechnol, 2002, 20(2):131-6.
    120.Yu J, Langridge W. Expression of rotavirus capsid protein VP6 in transgenic potato and its oral immunogenicity in mice. Transgenic Res, 2003, 12(2):163-9.
    121.Wu YZ, Li JT, Mou ZR, et al. Oral immunization with rotavirus VP7 expressed in transgenic potatoes induced high titers of mucosal neutralizing IgA. Virology, 2003, 313(2):337-42.
    122.Biemelt S, Sonnewald U, Galmbacher P, et al. Production of human papillomavirus type 16 virus-like particles in transgenic plants. J Virol, 2003, 77(17):9211-20.
    123.Valdes R, Reyes B, Alvarez T, et al. Hepatitis B surface antigen immuno purification using a plant-derived specific antibody produced in large scale. Biochem Biophys Res Commun, 2003, 310(3):742-7.
    124.Chikwamba R K, Scott M P, Mejia L B, et al. Localization of a bacterial proteinin starch granules of transgenic maize kernels. Proc Natl Acad Sci USA, 2003,
    100: 11127-11132.
    125.Walmsley AM, Alvarez ML, Jin Y, et al. Expression of the B subunit of Escherichia coli heat-labile enterotoxin as a fusion protein in transgenic tomato. Plant Cell Rep, 2003, 21(10):1020-6.
    126.Tregoning J, Maliga P, Dougan G, et al. New advances in the production of edible plant vaccines: chloroplast expression of a tetanus vaccine antigen, TetC. Phytochemistry, 2004, 65: 989-994.
    127.Lee J Y, Yu J, Henderson D, et al. Plant-synthesized E. coli CFA/I fimbrial protein protects Caco-2 cells from bacterial attachment. Vaccine, 2004, 23: 222-231.
    128.Kang Tae-Jin, Kang Kui-Hyeon, Kim Jin-Ah, et al. High-level expression of the neutralizing epitope of porcine epidemic diarrhea virus by a tobacco mosaic virus-based vector. Protein Expres Purif, 2004, 38: 129-135.
    129.KO K, Wei X, Crooks PA, et al. Elimination of alkaloids from plant-derived human monoclonal antibody. J Immunol Methods, 2004, 286: 79–85.
    130.Maloney B J, Takeda N, Suzaki Y, et al. Challenges in creating a vaccine to prevent hepatitis E. Vaccine, 2005, 23 : 1870-1874.
    131.Webster D E, Thomas M C, Huang Z, et al. The development of a plant-based vaccine for measles. Vaccine, 2005, 23: 1859-1865.
    132.Karasev A V, Foulke S, Wellens C, et al. Plant based HIV-1 vaccine candidate: Tat protein produced in spinach. Vaccine, 2005, 23: 1875-1880.
    133.Dong Jiang-Li, LIANG Ben-Guo, JIN Yong-Sheng, et al. Oral immunization with pBsVP6-transgenic alfalfa protects mice against rotavirus infection. Virology, 2005, 339(2): 153-163.
    134.Galeffi P, Lombardi A, Donato M Di, et al. Expression of single-chain antibodies in transgenic plants. Vaccine, 2005, 23: 1823-1827.
    135.Yusibov V, Mett V, Mett V, et al. Peptide-based candidate vaccine against respiratory syncytial virus. Vaccine, 2005, 23: 2261-2265.
    136.Huang Zhong, Elkin Z, Maloney B J, et al. Virus-like particle expression and assembly in plants: hepatitis B and Norwalk viruses. Vaccine, 2005, 23: 1851-1858.
    137.Leite A, Kemper E, da Silva M, et al. Expression of correctly processed human growth hormone in seeds of transgenic tobacco plants. Mol Breeding, 2000, 6: 47–53.
    138.Chong DK, Langridge WH. Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res, 2000, 9(1):71-8.
    139.Shiota N, Kodama S, Inui H, et al. Expression of human cytochromes P450 1A1 and P450 1A2 as fused enzymes with yeast NADPH-cytochrome P450 oxidoreductase in transgenic tobacco plants. Biosci Biotechnol Biochem, 2000, 64(10):2025-33.
    140.Ruggiero F, EXPOSITO JY, BOURNAT P et al. Triple helix assembly and processing of human collagen produce in transgenic tobacco plants. FEBS Lett, 2000, 469(1):132-136.
    141.Ohya K, Matsumura T, Ohashi K, et al. Expression of two subtypes of human IFN-alpha in transgenic potato plants. J Interferon Cytokine Res, 2001, 21(8):595-602.
    142.Mor TS, Sternfeld M, Soreq H, et al. Expression of recombinant human acetyl cholinesterase in transgenic tomato plants. Biotechnol Bioeng, 2001, 75(3):259-66.
    143.Lepri O, Bassie L, Safwat G, et al. Over-expression of a cDNA for human ornithine decarboxylase in transgenic rice plants alters the polyamine pool in a tissue-specific manner. Mol Genet Genomics, 2001, 266(2):303-12.
    144.Huang J, WU L, YALDA D et al. Expression of functional recombinant human lysozyme in transgenic rice cell culture. Transgenic Res, 2002, 11(3):229-239.
    145.Merle C, PERRET S, LACOUR T et al. Hydroxylated human homotrimeric collagen I in Agrobacterium tumefaciens-mediated transient expression and in transgenic tobacco plant. FEBS Lett, 2002, 515(1-3):114-118.
    146.Sawahel WA. The production of transgenic potato plants expressing human alpha-interferon using lipofectin-mediated transformation. Cell Mol Biol Lett, 2002, 7(1):19-29.
    147.Perera IY, Love J, Heilmann I, et al. Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase. Plant Physiol, 2002, 129(4):1795-806.
    148.Park Y, Cheong H: Expression and production of recombinant human interleukin-2 in potato plants. Protein Express Purif, 2002, 25(1):160-165.
    149.Humphrey BD, Huang N, and Klasing KC: Rice expressing lactoferrin and lysozyme has antibiotic-like properties when fed to chicks. J. Nutr, 2002, 132(6):1214-1218.
    150.Kwon SY, Choi SM, Ahn YO, et al. Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol, 2003, 160(4):347-53.
    151.Yang D, Guo F, Liu B, et al. Expression and localization of human lysozyme in the endosperm of transgenic rice. Planta, 2003, 216(4):597-603.
    152.Suzuki YA, Kelleher SL, Yalda D, et al. Expression, characterization, and biologic activity of recombinant human lactoferrin in rice. J Pediatr Gastroenterol Nutr, 2003, 36(2):190-9.
    153.Avesani L, Falorni A, Tornielli GB et al.: Improved in planta expression of the human islet auto antigen glutamic acid decarboxylase (GAD65). Transgenic Res, 2003, 12(2):203-212.
    154.Fedosov SN, Laursen NB, Nexo E, et al. Human intrinsic factor expressed in the plant Arabidopsis thaliana. Eur. J. Biochem, 2003, 270(16):3362-3367.
    155.Wirth S, Calamante G, Mentaberry A et al.: Expression of active human epidermal growth factor (hEGF) in tobacco plants by integrative and non-integrative systems. Mol. Breeding, 2004, 13(12):23-35.
    156.Gao J, Hooker BS, Anderson DB et al. Expression of functional human coagulation Factor XIII A-domain in plant cell suspensions and whole plants. Protein Expr. Purif, 2004, 37(1):89-96.
    157.Panahi M, Alli Z, Cheng X et al. Recombinant protein expression plasmids optimized for industrial E. coli fermentation and plant systems produce biologically active human insulin-like growth factor-1 in transgenic rice and tobacco plants. Transgenic Res, 2004, 13(3):245-259.
    158.Ma S, HuangG Y, Yin Z, et al. Induction of oral tolerance to prevent diabetes with transgenic plants requires glutamic acid decarboxylase (GAD) and IL-4. Proc. NatlAcad. Sci. USA, 2004, 101(15):5680-5685.
    159.Li Y, Geng Y, Song H, et al. Expression of a human lactoferrin N-lobe in Nicotiana benthmiana with potato virus X-based agroinfection. Biotechnol. Lett, 2004, 26(12):953-957.
    160.Cory L. Nykiforuk, Joseph G. Boothe, Elizabeth W. Murray, et al. Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant biotechnology Journal, 2006, 4: 77-85.
    161.Verwoerd TC, van Paridon PA, van Ooyen AJ et al. Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol, 1995,109(4):1199-205.
    162.Witcher DR, Hood EE, Peterson D et al. Commercial production of GUS: a model system for the production of proteins in plants. Molecular Breeding, 1998, 4:301.
    163.Hood E Witcher D, Maddock S et al. Commercial production of Avidin from transgenic maize: characterization of transformant, production, processing, extraction, and purification. Mol Breeding, 1997, 3:291~306.
    164.Clendennen SK, Lopez-Gomez R, and Gomez-Lim M. et al. The abundant
    31-kilodalton banana pulp protein is homologous to class-III acidic chitinases. Phytochemistry, 1998, 47(4):613-9.
    165.柴玉荣,王天云,薛乐勋.新型生物反应器-杜氏盐藻研究进展.中国生物工程杂志,2004, 24(2):30-33.
    166.王玉华, 张秀海, 吴忠义, 等. 通过叶绿体基因工程在烟草中合成中长链羟基脂肪酸聚酯. 科学通报, 2005, 50 , 979-986.
    167.Song DG(宋东光) , Wang GQ(王光清) , Wang XM(汪训明) et al . Expression of the HBsAg Gene Under the Control of a Patatin Promoter in Potato (Solanum tuberosum). High Technology Letters(高技术通讯),2000 , 10(2) :18-20.
    168.Jiang XL(江晓玲) , He ZM(贺竹梅) , Chen Q (陈清) et al . Transgenic tomato plant expressing cholera toxin B protein specifically in fruit as edible vaccine. Agricultural Sciences in China(中国农业科学), 2004, 37(8) :1188-1192.
    169.Guo H, Chen X, Zhang H, et al. Characterization and activity enhancement of the phloem-specific pumpkin PP2 gene promoter. Transgenic Res, 2004, 13(6):559-66.
    170.Schouten A, Roosien J, de Boer JM, et al. Improving scFv antibody expression levels in the plant cytosol. FEBS Lett, 1997, 415(2):235-41.
    171.Mason HS, Haq TA, Clements JD, et al. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine, 1998, 16(13):1336-43.
    172.康杰芳,王喆之.转基因植物生产药用蛋白的研究进展.2006, 6(9):73-76.
    173.Haq TA, Mason HS, Clements JD, et al. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science, 1995, 268:714-5.
    174.Matthews P. R, Wang M.B., Waterhouse P. M., et al. Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Molecular Breeding, 2001, 7:195-202.
    175.Kunkel T., Niu Q., Chan Y. and Chua N. Inducible isopentenyl transferase as a high-efficiency marker of plant transformation. Nature Biotech, 1999, 17: 916-919.
    176.Joersbo M., Donaldson I., Kreiberg J., et al. Analysis of mannose selection used for transformation of sugar beet. Mol Breed, 1998, 4:111-117.
    177.Dale E.C. and Ow D.W. Gene transfer with subsequent removal of the selection gene from the plant genome. Proc Natl Acad Sci, USA, 1991, 88: 10558–10562.
    178.张利华. 药用多肽基因植物表达载体的构建及其对胡萝卜和番茄的遗传转化.[博士学位论文].陕西,西北农林科技大学,2004.
    179.De Block M. and Debrouwer D. Two T-DNAs co transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet, 1991, 82:257-263.
    180.Daley M., Knauf V.C., Summerfelt K.R. et al. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep, 1998, 17: 489-496.
    181.Komari T., Hiei Y., Saito Y., et al. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J, 1996, 10: 165–174.
    182.高志勇.番茄的应用价值及其转基因工程研究进展.安徽农业科学,2006, 34(9): 1864~1865.
    183.李峰,曹刚强,梁会娟.转基因技术在番茄遗传改良中的应用. 2007, 1: 33-37.
    184.Sandhu JS, Krasnyanski SF, Domier LL et al (2000) Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res 9:132-137
    185.李晓东, 曹宛虹, 刘玲等.抗癌基因 p53 导入番茄的初步研究. 园艺学报, 2001, 28(4):356-358.
    186.张中林, 苏宁, 孙萌等.丙型肝炎病毒融合抗原基因 NS3CE 对番茄的遗传转化.作物学报, 2003, 29(3):360-363.
    187.陈珍,陈文莉,朱诚. 转基因植物口服疫苗研究的新近展. 细胞与分子免疫学杂志, 2006, 22(6): 831-833.
    188.Walmsley AM, AlvarezML, J in Y, et al. Expression of the B subunit of Escherichia coli heat labile enterotoxin as a fusion protein in transgenic tomato.Plant Cell Rep, 2003, 21 (10): 1020 -1026.
    189.陈溪, 林忠平.利用转基因番茄生产人胰岛素的研究.分子植物育种, 2003, 1(4):581-582.
    190.李凤梅, 陈丽珊, 崔崇士等.丙型肝炎病毒 E2 基因在转基因番茄植株中的表达.复旦学报(自然科学版), 2005, 44(4):555-559.
    191.智庆文.人表皮生长因子的偏爱性表达及生化药理性质.[博士学位论文].成都,四川大学,2005.
    192.Krasnyanski SF .In Vitro Cellular & Developmental Biology-Plant, 2001, 37(4): 427-433.
    193.Yakoby N, Garvey A, Raskin I et al. Tobacco ribosomal DNA spacer element elevates Bowman-Birk inhibitor expression in tomato plants. Plant Cell Rep, 2006, 25: 573-581.
    194.Van Haaren MJ, Houck CM. A functional map of the fruit-specific promoter of the tomato 2A11 gene. Plant Mol Biol, 1993, 21: 625-640
    195.Amemiya T, Kanayama Y, Yamaki S, et al. Fruit-specific V-ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation. Planta, 2006, 223: 1272-1280
    196.林炳英,李梅,林德钦等. 番茄果实特异性启动子 2A11 的基因克隆及功能研究.中国农学通报, 2006, 22(10): 62-66.
    197.毛自朝,于秋菊, 甄伟等. 果实专一性启动子驱动 ipt 基因在番茄中的表达及其对番茄果实发育的影响科学通报, 2002, 47(6): 444-448
    198.Fraser PD, Romer S, Shipton CA, et al. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA, 2002, 99: 1092-1097
    199.文彬,王平,杨桂林.干扰素联合大剂量胸腺肽治疗慢性乙型病毒性肝炎.中原医刊, 2003, 30(4):1-2.
    200.Murray EE, Lotzerl J, Eberle M .Codon usage in plant genes. Nucleic Acids Res, 1989, 17: 477-498.
    201.Macreadie I G, Vaughan P R. Development of yeast expression systems. Recent Res Devel Biotech Bioeng, 1998, 18(1): 465-479.
    202.Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700