基因优化的表达人轮状病毒重组腺病毒免疫效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
A组轮状病毒(Group A Rotavirus,ARV)是引起全世界婴幼儿严重腹泻的最重要病原,在发展中国家,每年至少约600,000儿童死于轮状病毒感染。鉴于轮状病毒危害严重且缺乏有效治疗手段,世界卫生组织一直将发展轮状病毒疫苗列为最优先发展的疫苗项目之一。
     由于腺病毒能感染呼吸道和肠道,在诱导全身免疫的同时产生局部粘膜免疫,安全可靠,可以通过口服或滴鼻给药,适于婴幼儿使用,因此,腺病毒载体轮状病毒基因工程疫苗具有良好的前景。我们实验室前期利用腺病毒载体表达轮状病毒保护性抗原,对轮状病毒基因工程疫苗进行了系统研究。我们课题组前期研究表明:用Ad5表达的轮状病毒的VP6和VP7基因,采用滴鼻或灌胃的给药方式,可以在小鼠实验模型上取得良好的细胞免疫和体液免疫效果,并对轮状病毒攻击鼠有一定的保护作用。但是,由于腺病毒对轮状病毒的野生型基因表达量比较低,因此,增强轮状病毒抗原的表达,优化免疫效果,降低重组腺病毒的用量,提高疫苗的安全性等诸多问题就成了发展该疫苗的重要课题。
     本文通过密码子优化,人工合成了轮状病毒的VP6,VP7基因,通过对蛋白表达量及免疫效果的比较,鉴定了密码优化确实提高了VP6,VP7蛋白的表达量,从而减少了病毒的用量。本研究还检测了口服腺病毒免疫后,不同时间点病毒在小鼠体内的分布,为该疫苗的进一步研究提供了实验资料。
     1.利用密码子优化提高重组腺病毒中人轮状病毒基因的表达量
     ARV基因的密码子使用与人类密码子相差很远,其AT含量很高。大量研究证明,通过基因密码改造可以有效提高基因的表达量。我们对RV VP6、G1VP7、G2VP7和G3VP7 4个基因依据人的偏爱密码子进行了密码优化,人工合成了优化基因,利用腺病毒Ad5载体(AdEasy系统)在人胚肾细胞293中进行了表达。结果显示,经过密码子优化后,与野生型病毒基因相比,4个基因的蛋白表达量均有显著提高。同时,我们对这4种重组腺病毒进行了连续20代的传代培养,在连续传代过程中,插入的轮状病毒基因一直稳定存在和表达。重组腺病毒rvAdG2VP7(o)在连续传代15代后,重组腺病毒rvAdG1VP7(o)和rvAdG2VP7(o)在连续传代20代后检测到复制型腺病毒(Replication-Competent AdenovirusRCA)的存在。说明重组腺病毒在293细胞中连续传代具有良好的遗传稳定性,传代10代以内一般检测不到RCA,可望满足腺病毒载体疫苗的研发需要。
     2.密码子优化增强了轮状病毒VP6基因重组腺病毒的免疫效果
     在证实了通过密码子优化可以提高蛋白表达量后,我们以VP6基因为例,以表达野生型RVVP6基因的重组病毒rvAdVP6为对照,在小鼠模型上通过等量病毒(10~8TCID50/只/次)3次滴鼻免疫,观察了基因优化重组腺病毒rvAdVP6(o)的免疫效果。结果显示:(1)三次免疫rvAdVP6(o)产生的抗VP6血清IgG抗体水平均明显高于rvAdVP6,说明优化后的重组病毒产生了更强的体液免疫反应;(2)两种重组腺病毒均可诱导粘膜免疫,在肺灌洗液、肺匀浆液、肠匀浆液和粪便中均能检测出较高水平的特异性IgG和IgA,其中,rvAdVP6(o)肺灌洗液、肺匀浆液和粪便中的IgG和IgA水平均显著高于rvAdVP6;rvAdVP6(o)肠匀浆液IgG水平显著高于rvAdVP6,说明优化后的病毒产生了更强的粘膜免疫效果;(3)用ELISpot检测脾细胞培养上清中的γ干扰素(IFN-γ),结果显示,rvAdVP6(o)产生的斑点数多于rvAdVP6产生的斑点数,说明优化后的病毒产生了更强的细胞免疫效果;(4)RV攻击后检测小鼠的排毒量,发现rvAdVP6(o)免疫组的RV排毒减少率明显高于rvAdVP6,说明优化后的病毒对小鼠的保护性也增强了。综上所述,在等量重组腺病毒免疫的情况下,优化后的VP6重组病毒在体液免疫、粘膜免疫、细胞免疫和攻毒保护方面,均优于优化前,可望在以后的疫苗应用中,达到减少病毒用量的目的。
     3.重组腺病毒口服免疫后在小鼠体内的生物分布
     为了探讨重组腺病毒作为口服疫苗的可行性,研究了经灌胃免疫后重组腺病毒在各组织器官中的分布以及抗原表达情况。将小鼠分为两组:rvAdVP6(o)免疫组和PBS对照组,每组70只小鼠,免疫后在7个时间点(4h、12h、1d、4d、7d、14d和28d)分别取5只小鼠,采集14种组织标本,用免疫组织化学方法检测腺病毒载体和轮状病毒VP6抗原,用荧光定量PCR检测腺病毒载体和轮状病毒VP6基因的存在。结果显示:用重组腺病毒灌胃免疫小鼠后,在4h~28d内,在肝、肾、脾、心脏、肺、大肠、小肠、胃、食管、舌、脑、气管、派氏结和卵巢14种组织标本中,均无明显的病理变化;免疫组织化学检测结果显示,只在4h时在大肠和小肠中检测到腺病毒和轮状病毒VP6抗原;荧光定量PCR在4h时在大肠、小肠、胃、食管和派氏结中检测到腺病毒载体和轮状病毒VP6基因;12h时后在大肠、小肠、胃和食管中仍能检测到腺病毒载体和轮状病毒VP6基因,但其拷贝数明显降低;1d后只在大肠和食管中检测到少量的腺病毒载体和轮状病毒VP6基因;在4d、7d后,食管、胃和大肠仍能检测到腺病毒载体基因的存在,其他组织中均检测不到;至14d时,只有在食管中仍能检测到腺病毒载体基因的存在,在其他组织中均检测不到。说明灌胃免疫后,腺病毒载体和VP6基因在小鼠体内可以表达,并在多种组织器官中存在。
     综上所述,本研究构建了4株表达轮状病毒密码子优化基因的VP6和VP7的重组腺病毒,与野生型基因相比,其在蛋白表达水平和免疫效果上均明显得到提高,在此基础上检测了灌胃免疫后,其在小鼠体内的分布情况,这些研究均未见报道。这些结果的获得,为研制我国具有自主知识产权的新型轮状病毒基因工程疫苗进一步奠定了基础。
Group A rotaviruses (ARV) are the single most significant cause of severe dehydrating diarrhea in infants and young children in both developed and developing countries worldwide. In the developing countries, the problem seems even more serious and urgent, an estimated 18 million cases of moderately severe diarrhea and over 600,000 children died of this illness yearly. Because of the high morbidity and mortality associated with rotavirus diarrhea, it is apparently urgent need to develop some more effective and safe rotavirus vaccines to prevent rotavirus infections.
     In the recent years, adenoviruses have been used to make recombinant genetic engineering vaccines, and the potential and perspective seem to be rather encouraging. In our previous work, we have found that mice immunized either intranasally or orally with the adeno-based rotavirus recombinants could expressing human ARV protein VP6 and VP7, initiating a high level of systemic immune response against rotavirus infection.
     For designing an acceptable vaccine, safety is always the paramount significance of any other criteria to be considered, it is particularly true when develop a vaccine for use in infants and young children. The present study was carried out based on our previous work, trying to optimize the codons of the recombinant virus aiming to appropriately elevate the expressing level of the encoded human rotavirus protein (VP6 and VP7), the designed titer of the expressed proteins should be the titer that could evoke a sufficient protective immunity, safe and acceptable to children.
     The optimized codons of the gene VP6 and VP7were artificially synthesized and inserted into the adenovirus backbone plasmid, the plasmid then transfected into 293 cells for generating mature viral particles. Four recombinants were successfully constructed and designated as: rvAdVP6(o), rvAdG1VP7(o), rvAdG2VP7(o) and rvAdG3VP7(o). The expression level of the optimized and wild type VP6 and VP7 gene, as well as the subsequently induced immune responses in mice were identified and evaluated. The main results of the experiments are summarized as follows:
     1. Improved expression of human rotavirus antigens in the recombinant adenoviruses by codon optimization
     It has been known that codon optimization can raise the expression level of genes of many viral proteins. In the present study, we have artificially synthesized four genes of group A human rotavirus that encode VP6, G1VP7, G2VP7 and G3VP7 according to the human biased codon. The modified genes were transfected into 293 cells using adenovirus vectors and the gene products, the respective proteins were produced. The expression level of each gene was detected by Western Blot. The results showed a remarkable increase of the expression level in comparison with the wild type control. For evaluating the genetic stability of the optimized genes, the four 293 cell lines with non-replicating adenoviruses bearing the genes of VP6, G1VP7, G2VP7 and G3VP7 were continuously propagated up to 20 passages. The results demonstrated a steady stability of the cells in the passage, namely, the recombinant adenoviruses remained genetically stable and kept a potent and high level of expression ability. What is more, the unwanted Replication-Competent Adenoviruses were not found at least within the first 10 passages for all the four recombinants. The above results indicate that our recombinant adenoviruses are potentially applicable for further development and improvement of the adenovirus-vectored vaccines.
     2. Optimization of the codon strengthened the immune responses in mice model
     6~8-week female BALB/c mice were randomly grouped and immunized intranasally with 10~8 TCID50 rvAdVP6(o) and rvAdVP6, respectively. After the first immunization, the mice were boosted twice with a 14-day interval. The immunization results were recorded as follows:
     (a) Both adenoviruses with optimized and wild type genes of RV could generate high-level of serum IgG against rotavirus. However, the serum antibody level induced by rvAdVP6(o) was much higher than that of rvAdVP6.
     (b) Murine mucosal immunity was induced after intranasal administration of the both optimized and wild type recombinant adenoviruses. whereas the higher-level of sIgG and sIgA was only detected from the lung lavage, lung and intestinal homogenates and feces in rvAdVP6(o) immunized mice.
     (c) Cell mediated immunity was observed in rvAdVP6(o) administered mice and in rvAdVP6 administered mice. But the rvAdVP6(o) could induce a stronger cell mediated immune response in comparison with the rvAdVP6 as seen in the ELISpot results in which much more spots appeared signifying the higher level of cell mediated immune response.
     (d) The immunized mice shed significantly lower amount of viral antigens in feces as compared with the control group inoculated with an empty vector rvAdpSC. Also, the viral antigen shed from mice immunized with rvAdVP6(o) was lower than that immunized with rvAdVP6.
     In summary, the recombinant adenoviruses which encode optimized human rotavirus VP6 proteins (rvAdVP6(o)) could induce stronger immune and protective responses against the challenge of the rotavirus than the wild type(rvAdVP6) at the same immunizing dosage.
     3. Bio-distribution and persistence of VP6 gene expressed recombinant adenovirus in mice model
     For safe application as the oral vaccine, it is necessary to investigate the bio-distribution of the recombinant adenovirus after oral administration. Seven groups of mice (ten adult female mice per time point) were orally inoculated with 109 TCID50 rvAdVP6(o). Control group was given phosphate buffered saline (PBS) instead. Fourteen kinds of tissues were harvested at each time point (4h, 12h, 1d, 4d, 7d, 14d, 28d), including brain, tongue, trachea, esophagus, lung, liver, spleen, stomach, kidney, large intestine, small intestine, heart, ovary and Peyer's patchs. Immunohistochemistry was used to determine the histological localization of the recombinant adenoviruses and the expression of VP6 protein in the immunized mice. The results showed that the endothelial cells in large intestine were positively stained at 4 hours post-infection. Meanwhile, Real-time PCR was used to quantify recombinant adenoviruses and VP6 gene copies in the different organs of the immunized mice. The result showed that 4 hours after oral vaccination, the recombinant adenoviruses and VP6 gene could be detected in large intestine, stomach, small intestine, esophagus and Peyer's patchs in most of the mice. After12 hours, copy numbers of the recombinant adenoviruses and VP6 gene were reduced significantly. while they could still be detected in large intestine, stomach, small intestine, esophagus, but could not be detected in Peyer's patchs. By day 1, the recombinant adenoviruses and VP6 sequence could only be detected in large intestine and esophagus. And by day 4 and 7, the recombinant adenoviruses could still be detected in large intestine, esophagus and stomach. At day 14, the recombinant adenoviruses could only be detected in esophagus. This result indicated that the recombinant adenoviruses and VP6 gene had widely distributed and durably expressed in vivo.
     In conclusion, four recombinant adenoviruses encoding the optimized human rotavirus antigens were successfully constructed, the expression of optimized genes significantly increased in comparison with the wild type RV genes. Immune responses in mice induced by optimized recombinant adenovirus also showed a higher level than the wide type ones. The Bio-distribution and persistence were detected upon oral application in mice. The result, therefore, provide an important clue and experimental support for the development of rotavirus genetic engineering vaccine against rotavirus infection.
引文
1.Parashar UD,Bresee JS,Gentsch JRand Glass RI.Rotavirus.Emerg Infect Dis.1998(4):561-570.
    2.Hung T.et al.Rotavirus-like agent in adult non-bacterial diarrhoea in China.Lancet 1983(2):1078-1079.
    3.Tucker AW.et al.Cost-effectiveness analysis of a rotavirus immunization program for the United States.JAMA 1998(279):1371-1376.
    4.Bishop RF,Davidson GP,Holmes IH,Ruck BJ.Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis.Lancet.1973(2):1281-1283.
    5.Banyai K.et al.Outbreak of human rotavirus infection in an adult community.Orv Hetil.2002(143):1347-1352.
    6.金奇.医学分子病毒学.科学出版社.2001.
    7.Hoshino Y and Kapikian AZ.Rotavirus antigens.Curr.Top.Microbiol Immunol.1994(185):179-227.
    8.Hoshino Y and Kapikian AZ.Rotavirus vaccine development for the prevention of severe diarrhea in infants and young children.Trends Microbiol.1994(2):242-249.
    9.Kapikian AZ.Overview of viral gastroenteritis.Arch Virol.1996(Suppl 12):7-19.
    10.方肇寅.我国轮状病毒腹泻----流行病学和疾病负担估计.第二届轮状病毒疫苗研讨会.2005.
    11.Murphy TV,Smith PJ,Gargiullo PM and Schwartz B.The first rotavirus vaccine and intussusception:epidemiological studies and policy decisions.J Infect Dis.2003(187):1309-1313.
    12.Madore HP.et al.Field trial of rhesus rotavirus or human-rhesus rotavirus reassortant vaccine of VP7 serotype 3 or 1 specificity in infants.J Infect Dis.1992(166):235-243.
    13.He Z,Wlazlo AP,Kowalczyk DW,Cheng J,Xiang ZQ,Giles-Davis W,and Ertl HC J.2000.Viral recombinant vaccines to the E6 and E7 antigens of HPV-16.Virology.2000(270):146-161.
    14.Moraes MP,Mayr GA,MasonPW and Grubman MJ.Early protection against homologous challenge after a single dose of replicationdefective human adenovirus 5 expressing capsid protein of foot and mouth disease virus(FMDV) strain A24.Vaccine.2002(20):1631-1639.
    15.Shiver JW,Fu TM,Chen L,Casimiro DR,Davies ME,Evans RK,Zhang ZQ,Simon AJ,Trigona WL,Dubey SA,Huang L,Harris VA,Long RS,Liang X,Handt L,Schleif WA,Zhu L,Freed DC,Persaud NV,Guan L,Punt KS,Tang A,Chen M,Wilson KA,Collins KB,Heidecker GJ,Fernandez VR,Perry HC,Joyce JG,Grimm KM,Cook JC,Keller PM,Kresock DS,Mach H,Troutman RD,Isopi LA,Williams DM,Xu Z,Bohannon KE,Volkin DB,Montefiori DC,Miura A,Krivulka GR,Lifton MA,Kuroda MJ,Schmitz JE,Letvin NL,Caulfield MJ,Bett AJ,Youil R,Kaslow DC,Emini EA.Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity.Nature.2002(415):331-335.
    16.Sullivan NJ,Sanchez A,Rollin PE,Yang ZY and Nabel GJ.Development of a preventive vaccine for Ebola virus infection in primates.Nature.2000(408):605-609.
    17.Tims T,Briggs DJ,Davis RD,Moore SM,Xiang ZQ,Ertl HC J and Fu ZF.Adult dogs receiving a rabies booster dose with arecombinant adenovirus expressing rabies virus glycoprotein develop high titers of neutralizing antibodies.Vaccine.2000(18):2804-2807.
    18.Xiang ZQ,Yang Y,Wilson JM and Ertl HC J.1996.A replicationdefective human adenovirus recombinant serves as a highly efficacious vaccine cartier.Virology.1996(219):220-227.
    19.Mercier GT,Nehete PN,Passeri MF,Nehete BN,Weaver EA,Templeton NS,Schluns K,Buchl SS,Sastry KJ and Barry MA.Oral immunization of rhesus macaques with adenoviral HIV vaccines using enteric-coated capsules.Vaccine.2007(52):8687-701.
    20 Patel A,Zhang Y,Croyle M,Tran K,Gray M,Strong J,Feldmann H,Wilson JM,Kobinger GP.Mucosal delivery of adenovirus-based vaccine protects against Ebola virus infection in mice.J Infect Dis.2007(196):S413-20.
    21.何金生,王健伟,温乐英等.1株表达人轮状病毒VP7的重组腺病毒的生物学特性鉴定.安徽医科大学学报.2002(37):83-85.
    22.李勇,江勤芳,王健伟,陈瑜,王敏,李春花,张彩红,代成波,于修平,代解杰,李琦涵,洪涛.表达轮状病毒抗原的重组腺病毒在恒河猴中的免疫反应性及安全性的初步研究.中华医学杂志.2004(84):2002-2006.
    23.张彩红,姜秀丽,王敏,张彦明,王健伟,洪涛.表达轮状病毒G2和G3型vp7基因重组腺病毒的免疫效果.中国病毒学.2005(20):352-356.
    24.奥斯伯F,布伦特R,金斯顿RE等编.精编分子生物学实验指南.北京:科学出版社.1998.
    25.Roucou X,Guo Q,Zhang Y,Goodyer CG,LeBlanc AC.Cytosolic prion protein is not toxic and protects against Bax-mediated cell deatn in human primary neurons.J Biol Chem.2003(278):40877-40881.
    26.Ganne V,Eloit M,Laval A,Adam M,Trouve G.Enhancement of the efficacy of a replication-defective adenovirus-vectored vaccine by the addition of oil adjuvants.Vaccine.1994(12):1190-6.
    27.Hirt B.Selective extraction of polyoma DNA from infected mouse cell culture.J Mol Biol.1967(26):365-9.
    28.Gouy M and Gautier C.Codon usage in bacteria:correlation with gene expressivity.Nucleic Acids Res.1982(10):7055-7074.
    29.Knight RD.et al.A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes.Genome Biol.2001(2):RESEARCH0010.1- RESEARCH0010.13.
    30.Andersson G.E and Kurland CG.An extreme codon preference strategy:codon reassignment.Mol Biol Evol.1991(8):530-544.
    31.Kane JF.Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli.Curr Opin Biotechnol.1995(6):494-500.
    32.Claes Gustafsson.et al.Codon Bias and Heterologous Protein Expression.TRENDS in Biotechnology.2004(22):346-353.
    33.Graf M.et al.Concerted action of multiple cisacting sequences is required for Rev dependence of late human immunodeficiency virus type 1 gene expression.J Virol.2000(74):10822-10826.
    34.Hermening S.et al.Increased protein expression from adenoviral shuttle plasmids and vectors by insertion of a small chimeric intron sequence.Journal of Virological Methods 2004(122):73-77.
    35.姜秀丽.表达人轮状病毒VP7基因重组腺病毒的免疫效果研究.中国疾病预防控制中心病毒病预防控制所博士论文.2003.
    36.Kurland C and Gallant J.Errors of eterologous protein expression.Curr Opin Biotechnol.1996(7):489-493.
    37.Klasen M and Wabl M.Silent point mutation in DsRed resulting in enhanced relative fluorescence intensity.BioTechniques.2004(36):236-237.
    38.Duigou GJ,Young CS.Replication-competent adenovirus formation in 293 cells:the recombination-based rate is influenced by structure and location of the transgene cassette and not increased by overproduction of HsRad51,Rad51-interacting or E2F family proteins.J Virol.2005(79):5437-44.
    39.Ba(?)os DM,Lopez S,Arias CF,Esquivel FR.Identification of a T-helper cell epitope on the rotavirus VP6 protein.J Virol.1997(71):419-426.
    40.Sun M,Zan Y,Ma Y,Zhang G,Du Q and Dai C.Expression and glycosylation of rotavirus strain SA11 VP4 protein in a recombinant adenovirus.Chin Med Sci J.2001(16):129-134.
    41.Janmohamed A,Thaunsukon P,Shephard EA,Phillips R.Expression of recombinant flavin-containing monooxygenases in a baculovirus/insect cell system.Methods Mol Biol.2006(320):39-59.
    42.Zarate S,Romero P,Espinosa R,Arias CF and Lopez S.VP7 mediates the interaction of rotaviruses with integfin alphavbeta3 through a novel integrin-binding site.J Virol.2004(78):10839-10847.
    43.Payne AF,Binduga-Gajewska I,Kauffman EB,Kramer LD.Abstract Quantitation of flaviviruses by fluorescent focus assay.J Virol Methods.2006(134):183-189.
    44.Christine M O'Neal,Sue E Crawford,Mary K Estes and Margaret E Conner.Rotavirus Virus- Like Particles Administered Mucosally Induce Prptective Immunity.J Virol.1997(71):8707-8717.
    45.Offit PA and Dudzik KI.Rotavirus-specific cytotoxic T lymphocytes passively protect against gastroenteritis in suckling mice.JVirol.1990(64):6325-6328.
    46.Dharakul T,Rott L and Greenberg HB.Recovery from chronic rotavirus infection in mice with severe combined immunodeficiency:virus clearance mediated by adoptive transfer of immune CD8+ T lymphocytes.J Virol.1990(64):4375-4382.
    47.McNeal MM,VanCott JL,Choi AH.et al.CD4 T cells are the only lymphocytes needed to protect mice against rotavirus shedding after intranasal immunization with a chimeric VP6protein and the adjuvant LT(R192G).J Virol.2002(76):560-568.
    48.于龙,李劲松.重组腺病毒载体疫苗黏膜免疫机制与途径研究.微生物学免疫学进展.2007(35):69-73
    49.李焱,岳盈盈,张凤丽等.腺病毒载体疫苗免疫途径的研究.中华医学研究杂志.2004(4):392-393.
    50.Natuk RJ,DavisAR,Chanda PK et al.Adenovirus vectored vaccines.Dev Biol Stand.1994(82):71-77.
    51.刘馨,张光明,孙茂盛.滴鼻、口服及肌肉注射途径对轮状病毒VP4重组腺病毒免疫小鼠的体液免疫效果比较.中国免疫学杂志.2007(23):594-596
    52.Lemiale F,KongWP,Akyurek LM.et al.Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system.J Virol.2003(77):10078-10087.
    53.Smith JG,Raper SE,Wheeldon EB.et al.Intracranial administration of adenovirus exp ressing HSV-TK in combination with gan-ciclovir produces a dose-dependent,self-limiting inflammatory Response.Hum Gene Ther.1997(8):943-954.
    54.Velazquez FR.et al.Serum antibody as a marker of protection against natural rotavirus infection and disease.J Infect Dis.2000(182):1602-1609.
    55.Clemens JD.et al.Seroepidemiologic evaluation of antibodies to rotavirus as correlates of the risk of clinically significant rotavirus diarrhea in rural Bangladesh.J Infect Dis.1992(165):161-165.
    56.Ward RL.et al.Effects of antibody to rotavirus on protection of adults challenged with a human rotavirus.J Infect Dis.1989(159):79-88.
    57.O'Ryan ML.et al.Anti-rotavirus G type specific and isotype-specific antibodies in childrenwith natural rotavirus infections.J Infect Dis.1994(169):504-511.
    58.Hung PP:人类腺病毒载体疫苗及轮状病毒疫苗研究.病毒基因工程国家重点实验室学术会议.1992年6月20日.
    59.Johnson DC.Adenovirus vectors as potential vaccines against herpes simplex virus.Rev Infect Dis.1991(13):S912-S916
    60.Heim A,Ebnet C,Harste G.kerblom Rapid and Quantitative Detection of Human Adenovirus DNA by Real-Time PCR.Journal of Medical Virology.2003(70):228-239
    61.Damjanovic D,Zhang X,Mu J,Fe Medina M,Xing Z.Organ distribution of transgene expression following intranasal mucosal delivery of recombinant replication-defective adenovirus gene transfer vector.Genet Vaccines Ther.2008(8)5.
    62.Ni S,Bernt K,Gaggar A,Li ZY,Kiem HP,Lieber A.Evaluation of biodistribution and safety of adenovirus vectors containing group B fibers after intravenous injection into baboons.Hum Gene Ther.2005(16):664-77.
    63.苗玉发,王欣,沈连忠,李波.治疗性HIV腺病毒载体疫苗的生物分布.毒理学杂志.2007(21):313-314.
    64.Zhou D,Cun A,Li Y,Xiang Z,Ertl HC.A chimpanzee-origin adenovirus vector expressing the rabies virus glycoprotein as an oral vaccine against inhalation infection with rabies virus.Mol Ther.2006(14):662-672.
    1.Baltzer Aw,Lattermann C,Whalen JD.el al.Genetic enhancement of fracture repair:healing of an experimental sepmental defect by adenoviral transfer of the BMP-2 gene.Gene Ther.2000(7):734-739.
    2.Tatsis N,Ertl HC.Adenoviruses as vaccine vectors.Mol Ther.2004(10):616-29.
    3.金奇.医学分子病毒学.科学出版社.2001.
    4.Mathews MB and Shenk T.Adenovirus virus-associated RNA and translation control.J.Virol.1991(65):5657-5662.
    5.Sargent KL,Meulenbroek RA,and Parks RJ.Activation of adenoviral gene expression by protein Ⅸ is not required for efficient virus replication.J Virol.2004(78):5032-5037.
    6.Zhang W and Imperiale MJ.Requirement of the adenovirus Ⅳa2 protein for virus assembly.J Virol.2003(77):3586-3594.
    7.Kojaoghlanian T,Flomenberg P and Horwitz MS.The impact of adenovirus infection on the immunocompromised host.Rev Med Virol.2003(13):155-171.
    8.Pham TT,Burchette JLJr and Hale LP.Fatal disseminated adenovirus infections in immunocompromised patients.Am J Clin Pathol.2003(120):575-583.
    9.Kim YJ.et al.Genome type analysis of adenovirus types 3 and 7 isolated during successive outbreaks of lower respiratory tract infections in children.J.Clin.Microbiol.2003(41):4594-4599.
    10.Farina SF.et al.Replication-defective vector based on a chimpanzee adenovirus.J Virol.2001(75):11603-11613.
    11.Vogels R.et al.Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination:efficient human cell infection and bypass of preexisting adenovirus immunity.J Virol.2003(77):8263-8271.
    12.Cohen CJ.et al.Chimpanzee adenovirus CV-68 adapted as a gene delivery vector interacts with the coxsackievirus and adenovirus receptor.J Gen Virol.2002(83):151-155.
    13.Gaggar A,Shayakhmetov DM and Lieber A.CD46 is a cellular receptor for group B adenoviruses.Nat Med.2003(9):1408-1412.
    14.Short JJ.et al.Adenovirus serotype 3 utilizes CD80(B7.1) and CD86(B7.2)as cellular attachment receptors.Virology.2004(322):349-359.
    15.陈琳,薛绪潮.第三代腺病毒载体的改良与应用.第二军医大学学报.2007(28):722-725.
    16.He TC.et al.A simplified system for generating recombinant adenoviruses.Proc Natl Acad Sci.USA 1998(95):2509-2514.
    17.汪进良,焦顺昌.重组人p53腺病毒治疗肿瘤临床研究进展.中国实用医药.2008(3):139-141
    18.Ng P,Parks RJ,Cummings DT.et al.An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method.Hum Gene Ther.2000(11):693-699.
    19.Hehir KM,Armentano D,Cardoza LM.et al.Molecular characterization of Replication-competent variants of adenovirus vectors and genome modifications to prevent their occurrence.J Virol.1996(70):8459-8467.
    20.Engelhardt JF,Ye X,Doranz B.et al.Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver.Proc Natl Acad Sci.USA 1994(91):6196-6200.
    21.Engelhardt JF,Litzky L,Wilson JM.Prolonged transgene expression in cotton rat lung with recombinant adenoviruses defective in E2a.Hum Gene Ther.1994(5):1217-1229.
    22.Scaria A,Curiel DT,Kay MA.Complementation of a human adenovirus early region 4 deletion mutant in 293 cells using adenovirus-polylysine-DNA complexes.Gene Ther.1995(2):295-298.
    23.Brough DE,Lizonova A,Hsu C,Kulesa VA,Kovesdi I.A gene transfer vector-cell line system for complete functional complementation of adenovirus early regions E1 and E4.J Virol.1996(70):649-6501.
    24.Yeh P,Dedieu J F,Orsini C.et al.Efficient double trans-complementation of adenovirus E1 and E4 regions from 293-derived cell line expressing a minimal E4 functional unit.Journal of Virology.1996(70):559-565.
    25.Mitani K,Graham FL,Caskey CT.et al.Rescue,propagation,and partial purification of a helper virus-dependent adenovirus vector.Proc Natl Acad Sci.USA 1995(9):3854-3858.
    26.Parks RJ,Graham FL.A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging.J Virol.1997(71):3293-3298.
    27.Sato M,Suzuki S,Kubo S.et al.Replication and packaging of helper dependent-adenoviral vector.Gene Ther.2002(9):472-476.
    28.Majhen D,Ambriov'c-Ristov A.Adenoviral vectors-How to use them in cancer gene therapy.Virus Research.2006(119):122-133.
    29.POLLACK A.China Approves a Selective Cancer Drug.The New York Times.2005-11-17(Health).
    30.Lu Yongkui,Hu Xiaohua,Li Fuxiang.et al.Clinical Observation of Intratumoral Injection of E1B Gene-deleted Adenovirus(H101) Combined with Chemotherapy in Treatment of Nasopharyngeal Carcinoma.Chinese Journal of Clinical Oncology.2005(32):1096-1099.
    31.李永强,胡晓桦,谢伟敏.基因工程改造腺病毒联合化疗治疗鼻咽鳞癌.现代肿瘤医学.2007(08):1084-1085.
    32.Yu W,Fang H.Clinical trials with oncolytic adenovirus in China.Curr Cancer Drug Targets.2007(7):141-148.
    33.Li J,Faber M,Papaneri A,Faber ML,McGettigan JP,Schnell MJ,Dietzschold B.A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice. Virology.2006(356):147-154.
    34.Zhou D,Cun A,Li Y,Xiang Z,Ertl HC.A chimpanzee-origin adenovirus vector expressing the rabies virus glycoprotein as an oral vaccine against inhalation infection with rabies virus.Mol Ther.2006(14):662-672.
    35.Hu RL,Liu Y,Zhang SF,Zhang F,Fooks AR.Experimental immunization of cats with a recombinant rabies-canine adenovirus vaccine elicits a long-lasting neutralizing antibody response against rabies.Vaccine.2007(25):5301-5307.
    36.Putz M M,Bouche F B,de Swart R L,et al.Experimental vaccines against measles in a world of changing epidemiology.Inter J Parasitol.2003(33):525-545.
    37.Raviprakash K,Wang D,Ewing D,Holman DH,Block K,Woraratanadharm J,Chen L,Hayes C,Dong JY,Porter K.A Tetravalent Dengue Vaccine Based on a Complex Adenovirus Vector Provides Significant Protection in Rhesus Monkeys Against All Four Serotypes of Dengue Viruses.J Virol.2008 May 14.[Epub ahead of print]
    38.Shanley J D,Wu C A.Intranasal immunization with a replicationdeficient adenovirus vector expressing glycoprotein H of murine cytomegalovirus induces mucosal and systemic immunity.Vaccine.2005(23):996-1003.
    39.Hoelscher MA,Singh N,Garg S,Jayashankar L,Veguilla V,Pandey A,Matsuoka Y,Katz JM,Donis R,Mittal SK,Sambhara S.A broadly protective vaccine against globally dispersed clade 1 and clade 2 H5N1 influenza viruses.J Infect Dis.2008(197):1185-1188.
    40.何金生,王健伟,温乐英等.1株表达人轮状病毒VP7的重组腺病毒的生物学特性鉴定.安徽医科大学学报.2002(37):83-85.
    41.李勇,江勤芳,王健伟,陈瑜,王敏,李春花,张彩红,代成波,于修平,代解杰,李琦涵,洪涛.表达轮状病毒抗原的重组腺病毒在恒河猴中的免疫反应性及安全性的初步研究.中华医学杂志.2004(84):2002-2006.
    42.张彩红,姜秀丽,王敏,张彦明,王健伟,洪涛.表达轮状病毒G2和G3型vp7基因重组腺病毒的免疫效果.中国病毒学.2005(20):352-356.
    43.Robinson H L.New hope for an aids vaccine.Nature Revi Immunol.2002(2):239-250.
    44.Barouch DH.HIV-1 vaccine candidate ineffective.AIDS Clin Care.2007(19):93.
    45.Bruna-Romero O,Rocha C D,Tsuji M.et al.Enhanced protective immunity against malaria by vaccination with a recombinant adenovirus encoding the circumsporozoite protein of Plasmodiumlacking the GPI-archoring motif.Vaccine.2004(22):3575-3584.
    46.Shott JP,McGrath SM,Pau MG,Custers JH,Ophorst O,Demoitie MA,Dubois MC,Komisar J,Cobb M,Kester KE,Dubois P,Cohen J,Goudsmit J,Heppner DG,Stewart VA.Adenovirus 5 and 35 vectors expressing Plasmodium falciparum circumsporozoite surface protein elicit potent antigen-specific cellular IFN-gamma and antibody responses in mice.Vaccine.2008(26):2818-23.
    47.Moffatt S,Hays J,HogenEsch H,et al.Circumvention of vector-specific neutralizing antibody response by alternating use ofhuman and non-human adenovirus:implication in gene therapy.Virology.2000(272):159-167.
    48.Sailaja G,HogenEsch H,North A,et al.Encapsulation of recombinant adenovirus into alginate microspheres circumvents vectorspecific immune response.Gene Ther.2002(9):1722-1729.
    49.Mittal S K,Aggarwal N,Sailaja G,et al.Immunization with DNA,adenovirus or both in biodegradable alginate microspheres:effect of route of inoculation on immune response.Vaccine.2001(19):253-263.
    50.Purkayastha A,Su J,Carlisle S.et al.Genomic and bioinformatics analysis of HAdV-7,a human adenovirus of species B1 that causes acute respiratory disease:implications for vector development in human gene therapy.Virology.2005(332):114-129.
    51.周红莉.轮状病毒样颗粒2/6及其VP6重组腺病毒的联合免疫效果.中国疾病预防控制中心硕士学位论文.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700