猪轮状病毒和传染性胃肠炎病毒核酸免疫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验在MA104细胞上培养增殖了猪轮状病毒(RV)地方分离株JL94,并提取了病毒的双股RNA。以该RNA为模板,Li-9、Li-11为一对上、下游引物,Li-12、Li-13为另一对上、下游引物,通过RT-PCR分别扩增出了大小为1000bp、1300bp的两个片段。
     将该片段插入T载体中构建了重组质粒pMD18-T-JL94/VP7和pMD18-T-JL94/VP6,经酶切初步鉴定和序列检测证明扩增的片段是JL94/VP7(1062bp),JL94/VP6(1356bp)全长基因,并与国外参考毒株OSU株、Gottfried株进行了核苷酸和氨基酸序列的比较。JL94/VP7与OSU株VP7核苷酸同源性为99.9%,氨基酸同源性为99.9%,与Gottfried株VP7核苷酸同源性为74.1%,氨基酸同源性为75.4%。JL94/VP6与OSU株VP6核苷酸同源性为86.85%,氨基酸同源性为97.48%,与Gotffried株VP6核苷酸序列同源性为82.41%,氨基酸序列同源性为93.20%。
     以pMD18-T-JL94/VP7为模板,Li-14、Li-11,为上、下游引物扩增带有Kozak序列的VP7基因并克隆到T载体上构建了重组质粒pMD18-T-VP7。将真核表达载体pcDNA3.1(+)与pMD18-T-VP7分别用HindⅢ、BamHⅠ双酶切,胶回收纯化后连接。经酶切鉴定和序列检测,证明VP7基因按设计要求已插入表达载体中,构建了重组真核表达载体pcDNA-VP7。
     以重组质粒PHD为模板,Li-15、Li-2为上、下游引物扩增出上游带有BamHⅠ酶切位点的传染性胃肠炎病毒(TGEV)TH-98/N基因。将N基因胶回收纯化后与真核表达载体pcDNA3.1(+)分别用BamHⅠ、XhoⅠ双酶切,胶回收纯化后连接。经酶切鉴定和序列检测,证明N基因按设计要求已插入表达载体中,构建了重组真核表达载体pcDNA-N。
     将昆明鼠随机分为A、B、C、D四组,分别肌肉注射pcDNA-VP7、pcDNA-N、pcDNA-VP7+pcDNA-N和pcDNA3.1(+),每只鼠100μg/100μ1,共免疫3次,每次间隔2周。首次免疫第0d、14d、21d、28d、35d、39d、47d、54d采血分离血清用ELISA法检测抗体动态变化,同时检测外周血CD4~+、CD8~+T细胞动态变化。
     A组小鼠血清在首免后第14d即可检出阳性抗体。以后在第28d、35d、39d、54d分别检出了阳性抗体(P/N≥2.0),第35d抗体水平最高。C组小鼠血清在首免后第14d也可检出阳性抗体。以后在第28d、39d、54d均检出阳性抗体(P/N≥2.0)。B组小鼠在首次免疫后第39d检测到针对TGEVN蛋白的阳性抗体(P/N≥2.0),其它时间均未检出阳性抗体。
     A组与D组小鼠外周血CD4~+T细胞数量在首免后第14d、47d、54d有显著差异(P<0.05),A组小鼠外周血CD4~+T细胞数量明显高于D组。B组与D组小鼠外周血CD4~+T细胞数量在首免后第28d、47d分别出现显著差异(P<0.05)。B组小鼠外周血CD4~+T细胞数量明显高于D组。C组与D组小员外周血CD4~+T细胞数量在首免后28d与对照组比较,差异显著(P<0.05),C组小员外周血CD4~+T细胞数量明显高于D组。
     A组与D组小鼠外周血CD8~+T细胞数量在首免后第14d出现显著差异(P<0.05),
    
    博士学位论文 猪轮状病毒和传染性胃肠炎病毒核酸免疫的研究 2002年 12月
    A组小鼠外周血CDS”T细胞数量明显高于D组。B组与D组小鼠外周血CDS”T细胞
    数量在首免后第14d出现显著差异(P<0.0引,B组小鼠外周血CD矿T细胞数量明显高
    于D组。C组与D组小鼠外周血CDS“T细胞数量在第35d出现显著差异(P<0.05),C
    组小鼠外周血CDS+ T细胞数量明显高于D组。
     本实验首次在国内克隆了猪轮状病毒地方分离株JL94的VP6、VP7全基因并与国
    外参考毒株进行了序列比较分析,丰富了猪RV感染的分子流行病学资料,也为研制猪
    轮状病毒基因工程疫苗提供了候选基因;首次在国内构建了猪轮状病毒地方分离株
    JL94/VP7基因和传染性胃肠炎地方分离株h-98/N基因的重组真核表达载体
    p。***-VP 7和WDN AN:首次在国内应用重组真核表达载体WDN*-W 7和WDN*N
    兔疫昆明鼠,结果证明上述重组真核表达载体能够诱导小鼠的体液免疫和细胞免疫应答。
     该研究为今后对猪 RV和 TGEV进一步的分于生物学研究奠定了基础,为猪RV和
    丁*EV核酸疫苗的深入研究提供了科学的实验依据、理论资料以及技术和物质储备。
The native JL94 isolate of porcine rotavirus (RV) was propagated in MAl04 cel1 culture,
    and harvested after 48 hours. Double-stranded RNA extracted from the virus was used as the
    template for reverse transcription. Using two pairs of primers (Li-9 and Li-11, Li-12 and
    Li-13), two gene segments were amplified by reverse transcription-polymerase chain reaction
    (RT-PCR), respectively. The two gene segments were inserted into pMD18-T vector and
    identified by sequencing, single and double digestion with restriction endonucleases,
    respectively. One of the two gene segments was gene encoding oater capsid protein VP7,
    another was gene encoding inter shell protein VP6. The two recombinant plasmids named
    pMD18-T-JL94/VP7 and pMD18-T-JL94/VP6 were constructed. The result of their homology
    comparison of nucleotide sequence with OSU/VP7, Gottfried /VP7 is 99.9%, 74.1%,
    respectively; with OSU/VP6, Gottfried/VP6 is 86.8%, 82.4%. The result of their homology
    comparison of amino acid sequence with OSU/VP7, Gottfried /VP7 is 99.9%, 75.4%, with
    OSU/VP6, Gottfried/VP6 is 97.5%, 93.2%.
    The gene of VP7 containing Kozak's sequence was amplified from pMD18-T-JL94/VP7
    by PCR using a pair of prirner (Li-l4 and Li-11) designed according to the sequence of
    JL94/VP7 gene cDNA, then it was inserted into pMD18-T vector and was identified by
    digestion. The recombinant plasmid was pMD18-T-VP7. The VP7 gene from pMD18-T-VP7
    digested by restriction endonucleases was recombinated into eukaryotic expression plasmid
    pcDNA3.1(+). The recombinant plasmid, pcDNA-VP7, was constructed successfully after
    being identified by sequencing and digestion.
    The transmissible gastroenteritis virus (TGEV)TH98/N gene was amplified with a pair of
    primer (Li-l5 and Li-2)from the recombinant plasmid, PHD. After being digested, it was
    recombinated inio euknyotic expression plasmid pcDNA3. 1 (+). and named pcDNA-N.
     The Kunming mice used for nucleic acid immtalzation were 6 to 8 weeks of age and
    divided into four groups (35 mice each). Group A was injected with 100 μg of pcDNA-VP7,
    group B with 100μg of pcDNA-N, group C with 100μg of pcDNA-VP7 and 100μg of
    pcDNA-N, group D with 100μg of pcDNA3.1(+) in 100μg l volume via femoral quadriceps
    intramuscular route, respectively, and the mice in ereh group were injected be times totally
    After primary injection, all mice received booster injechon two thoes with the sazne dosage
    and via the sarne route of primny injection at interval of two weeks. Blood saznples collected
    
    3
    
    
    from three mice at 0d before primary injection and those colIected from three mice of each
    group at l4d, 2ld, 28d, 35d. 39d, 47d, 54d, were used for detecting antibody levels and the
    changes of CD4+, CD8+ T cells in peripheral blood lyInphocytes.
    The resultS showed that the anibodies against rotavirus JL94 couId be deteCted in the
    serum of mice from grouP A at l4, 28, 35, 39 and 54 days of POstimmMon (PD, and the
    same anibodies also could be detected in the serum of mice from group C at l4, 28, 39 and 54
    days of PI. The anibodies to N protein of TGEV could be detected in the serum of mice frOm
    group B at 39 days of PI.
    There were significant differences rert0.05) in number of CD4+ T cells in Peripheral
    blood lymphocytes between group A and group D at l4, 47 and 54 days of PI, group A was
    higher than group D. There were sighficant differences (Prt0.05) in number of CD4+ T cel1s
    in peripheral blood lymphocytes betWeen group B and group D at 28 and 47 days of PI, grOuP
    B was higher than group D. There were significant differences (Pwt0.05) in number of CD4+ T
    ceIls in peripheraI blood lymphocytes betWeen group C and group D at 28 days of PI, group C
    was higher than grOup D.
    There were significant differences (Prt0.05) in number of CD8+ T cells in Peripheral
    bIood Iymphocytes betWeen group A and group D at l4 days of PI, group A was nigher than
    group D. There were significant differences (P<0.05) in number of CD8+ T cells in Peripheral
    b1ood lymphocytes b
引文
1. Mebus C A, Underdahl N R. Rhodes M B, et al. Calf Diarrhea (Scours): Reproduced with a Virus from a Field Outbreak. Univ Nebraska Agri Exp Stn Res Bull 1969, 233.
    2.何孔旺,何家惠.我国动物轮状病毒研究概况,江苏农业科学 1994,4:61-63.
    3.赵德明、张中秋、沈建忠,主译;斯特劳B E,阿莱尔S D,蒙加林W L,主编.《猪病学》(第八版).中国农业大学出版社,2000.9,263-276.
    4. Prasad B V, Wang G J, Clerx J P. et al. Three-dimensional structure of rotavirus. J Mol Biol 1988, 199(2): 269-275.
    5.殷震、刘景华,主编.《动物病毒学》(第二版).科学出版社,1997,9,562-571.
    6. Estes M K, and Cohen J. Rotavirus gene structure and function. Microbiol Rev 1989, 53(4): 410-449.
    7. Pedley S, Bridger J C, Chasey D, et al. Definition of two new groups of atypical rotaviruses. J Gen Virol 1986. 67(Pt 1): 131-137.
    8. Beards G M. Polymorphism of genomic RNAs within rotavirus serotypes and subgroups. Arch Virol,1982.74(1): 65-70.
    9. Greenberg H B, Flores J, Kalica A R, et al. Gene coding assignments for growth restriction, neutralization and sub-group specificities of the Wand DS-1 strains on human rotovirus. J Gen Virol 1983a, 64(Pt 2): 313-320.
    10.何孔旺,林继煌,江杰元,等.我国牛猪轮状病毒部分分离株的亚组鉴定.江苏农业科学 1995,6:54-55
    11. Greenberg H B. Valdesuso J. Van Wyke K, et al. Production and preliminary characterization of monoclonal antibodies directed at two surface proteins of Rhesus rotavirus. J Virol 1983b, 47(2): 267-275.
    12. Browning G F, Fitzgerald T A, Chalmers RM, et al. A novel group A rotavirus G serotype: serological and genomic characterization of equine isoalte F123. J Clin Microbiol 1991, 29(9): 2043-2046.
    13. Estes M. Rotaviruses and their replication. In fields Virology 3d ed. Philadelphia: Lippincott-Raven 1996, pp. 1625-1656.
    14. Zaberezhny A D, Lyoo Y S, and Paul P S. Prevalence of P types among porcine rotaviruses using subgenomic VP4gene probes. Vet Microbiol 1994, 39(1-2): 97-110.
    15. Kang S, Saif L J, and Miller K L. Reactivity of VP4-specific monoclonal antibodies to a semtype 4 porcine rotavirus with distinct serotypes of human (symptomatic and asymptomatie) and animal rotaviruses. J. Clin Microbiol 1989, 27(12): 2744-2750.
    16. Nagesha H S, Brown L E, and Holmes I A. Neutralizing monoclonal antibodies against three serotypes of porcine rotavirus. J Virol 1989, 63(8): 3545-3549.
    17. Kang S Y, Benfield D A, Gorziglia M, et al. Characterization of the neutralizing epitopes of VP7 of the Gottfried strain of porcine rotavirus. J Clin Microbiol 1993, 31(9): 2291-2297.
    18. Johnson M E, Paul P S, Gorziglia M, et al. Development of specific nucleic acid probes for the differentiation of porcine rotavirus serotypes. Vet Mierobiol 1990, 24(3-4): 307-326.
    
    
    19. Paul P S, Brooks M A, and Lyoo Y S. Characterization of serotypic and genetic diversity among porcine rotaviruses. Proc Int Congr Pig Vet Soc 1990, 11: 276.
    20. Rosen B I, Parwani A V, Gorziglia M, et al. Characterization of full-length and polymerase chain reaction-derived partial-length Gottfried and OSU gene 4 probes for serotypic differentiation of porcine rotaviruses. J Clin Microbiol 1992, 30(10): 2644-2652.
    21. Gouvea V, Santos N, Timenetsky Mdo C. Identification of bovine and porcine rotavirus G types by PCR. J Clin Microbiol 1994, 32(5):1338-40.
    22. Tsunemitsu H, Jiang B, Yamashita Y, et al. Evidence of serologic diversity within group C rotaviruses. J Clin Microbiol 1992, 30(11): 3009-3012.
    23. Theil K W, Bohl E H, and Agnes A G. Cell culture propagation of procine rotavirus (reovirus-like agent).Am J Vet Res 1977, 38(11): 1765-1768.
    24. Bohl E H, Theil K W, and Saif L J. Isolation and serotyping of porcine rotaviruses and antigenic comparison with other rotaviruses. J Clin Microbiol 1984, 19(12): 105-111.
    25. Almeida, J. D, and Hall, T. The effect of trypsin on the growth of rotavirus. J Gen Virol 1978, 40(1):213-218.
    26. Terrett L A, and Salf L J. Serial propagation of porcine group C rotavirus (pararotavirus) in primary porcine kidney cell cultures. J Clin Microbiol 1987, 25(7): 1316-1319.
    27. Saif L J, Terrett L A, Miller K L, et al. Serial propagation of porcine group C rotavirus (pararotavirus) in a continuous cell line and characterization of the passaged virus. J Clin Microbiol 1988, 26(7): 1277-1282.
    28. Bridger J C, and Brown J F. Prevalence of antibody to typical and atypical rotaviruses in pigs. Vet Rec 1985, 116(2): 50.
    29. Tzipori S, Chandler D, Smith M, et al. Factors contributing to postweaning diarrhea in a large intensive piggery. Aust Vet J 1980a, 56(6): 274-278.
    30. Askaa J, Bloch B, Bertelsen, G, and Rasmussen K O. Rotavirus-associated diarrhea in nursing piglets and detection of antibody against rotavims in colostrum, milk, and serum. Nord Vet Med 1983, 35(12): 441-447.
    31. Svensmark B, Jorsal S E, Nielsen K, et al. Epidemiological studies of piglet diarrhoea in intensively managed Danish sow herds. I. Pre-weanign diarrhoea. Acta Vet Scand 1989, 30(1): 43-53.
    32. Janke B H, Nelson J K, Benfield D A, et al. Relative prevalence of typical and atypical strains among rotaviruses from diarrheic pigs in conventional swine herds. In Proc 32d Annu Meet Am Assoc Vet Lab Diagn, Las Vegas, 1989, p. 24.
    33. Janke B H, Nelson J K, Bonfield D A, et al. Relative prevalence of typical and atypical strains among rotaviruses from diarrheic pigs in conventional swine herds. J Diagn Invest 1990, 2(4): 308-311.
    34. Atii D J, Ojeh C K, and Durojaiye O A. Detection of rotavirus antigen in diarrhoeic and non-diarrhoeic piglets in Nigeria. Rev Elev Med Vet Pays Trop 1990, 42(4): 494-496.
    35. Collins J E, Benfield D A, and Duimstra J R. Comparative virulence of two porcine group-A rotavirus isolates in gnotobiotic pigs. Am J Vet Res 1989, 50(6): 827-835.
    
    
    36. Shaw D P, Morehouse L G, and Solorzano, Ro F. Experimental rotavirus infection in three-week-old pigs. Am J Vet Res 1989, 50(11): 1961-1965.
    37. Graham D Y, Sackman J W, and Estes M K. Pathogenesis of rotavirus-induced diarrhea. Preliminary studies in miniature swine piglet. Dig dis Sci 1984, 29(11): 1028-1035.
    38. Moon H W. Epithelial cell migration in the alimentary mucosa of the suckling pig. Proc Soc Exp Biol Med 1971, 137(1): 151-154.
    39. Tzipori S, Chandler D, Makin T, et al. Escherichia coli and rotavirus infections in four-week-old gnotobiotic piglets fed milk of dry food. Aust Vet J 1980b, 56(6): 279-284.
    40. Lecce J G, Balsbaugh R K, and clare D A. Rotavirus and hemolytic enteropathogenic Escherichia coli in weanling diarrhea in pigs. J Clin Microbiol 1982, 16(4): 715-723.
    41. Chen W K, Campbell T, Vancott J, Enumeration of isotype-specific antibody-secreting cells derived from gnotobiotic piglets inoculated with porcine rotaviruses. Vet Immunol Immunopathol 1995, 45(3-4): 265-284.
    42. Saif L J, and Fernandez F M. Group A rotavirus veterinary vaccines. J Infec Dis 1996, 174(Suppl 1): S98-106.
    43. Offit P A, and Clark H F. Protection againgst rotavirus-induced gastroenteritis in a murine model by passively acquired gastrointestinal but not circulating antibodies. J Virol 1985, 54(1): 58-64.
    44. Offit P A, and Dudzik K I. Rotavirus-specific cytotoxic T lymphocytes cross-react with target cells infected with different rotavirus erotypes. J Virol 1988, 62(1): 127-131.
    45. Offit P A, and Dudzik K I. Rotavirus-specific cytotoxic T lymphocytes appear at the intestinal mucosal surface after rotavirus infection. J Virol 1989, 63(8): 3507-3512.
    47. Rosen B I, Saif L J, Jackwood D J, et al. Sertoypic differentiation of group A rotaviruses with porcine rotavirus gene 9 probes. J Clin Microbiol 1990a, 28(11): 2526-2533.
    48. Rosen B I, Saif L J, Jackwood D J, et al. Hybridization probes for the detection and differentiation of two serotypes of porcine rotavirus. Vet Microbiol 1990b, 24(3-4): 327-339.
    49. Hoshino Y, Wyatt R G, Greenberg H B, et al. Serotypic similarity and diversity of rotaviruses of mammalian and avian origin as studied by plaque-reduction neutralization. J Infect Dis 1984, 149(5):694-702.
    50. Paul P S, Lyoo Y S, Andrews J J, et al. Isolation of two new serotypes of porcine rotavirus from pigs with diarrhea. Arch Virol 1988, 100(1-2): 139-143.
    51.蔡宝祥,主编.《家畜传染病学》,中国农业出版社 2001,p173-176.
    52. Rixon F P, Taylor P, and Desselberger U. Rotavirus RNA segments sized by electron microscopy. J Gen Virol 1984, 65(Pt 1): 233-239.
    53. Dubois E, Le Guyader F, Haugarreau L. Molecular epidemiological survey of rotaviruses in sewage by reversetranscriptase seminested PCR and restriction fragment length polymorphism assay. Appl Environ Microbiol 1997, 63 (5): 1794-1800.
    
    
    54.刘尚高,刘爵.轮状病毒的分子生物学研究进展.中国兽医科技 1994,24(9):40-42.
    55. Chen D, Zeng CQY, and Wentz M J. Template-dependent in vitro replication of rotavirus RNA. J Virology 1994, 68(11): 7030-7039.
    56. Horie Y, Masamune O, and Nakagomic O. Three major alleles of rotavirus NSP4 proteins identified by sequence analysis. J Gen Virol 1997, 78(Pt 9): 2341.
    57.温乐英.轮状病毒蛋白的研究进展.国外医学病毒学分册,1996,3(3):65.
    58. Zeng C Q Y, Wentz M J, Cohen J, et al. Characterization and replicase activity of double-layered and single-layered rotavirus-like particles expressed from baculovirus recombinants. J Virol 1996, 70(4):2736.
    59. Liu M, Offit P A, and Estes M K. Identification of simian rotavirus SAll genome segment 3 product. Virol 1988, 163(1): 26-32.
    60.石长信,王长安,王湛,等.A组轮状病毒外壳蛋白VP4的原核表达.中华实验和临床病毒学杂志 1996,10(2):114.
    61. Ruggeri F M, and Greenberg H B. Antibodies to the trypsing cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. J Virol 1991, 65 (5): 2211.
    62. Coulson B S, Londrigan S H, and Lee D J. Rotavirus contains integrin ligand sequences and a disintegrin-like domain implicated in virus entry into cells. Proc Natl Acad Sci USA 1997, 94(10):5389-5394.
    63. Mendez E, Barias C F, and Lopez S. Binding to sialic acids is not an essential step for the entry of animal rotavirus to epithelial cells in culture. J Virol 1993, 67(9): 5253.
    64. Mendez E, Arias C F, and Lopez S. Interactions between the two surface proteins of rotavirus may alter the receptor-binding specificity of the virus. J Virol 1996, 70(2): 1218.
    65. ljaz MK, Attah-Poku SK, Redmond MJ, et al. Heterotypic passive protection induced by synthetic peptides corresponding to VP7 and VP4 of bovine rotavirus. J Virol 1991, 65(6):3106-3113.
    66. Kohli E, Pothier P, Tosser G, et al. In vitro reconstitution of rotavirus transcriptional activity using viral cores and recombinant baculovirus expressed VP6. Arch Virol 1993, 133(3-4): 451-458.
    67. Afrikanova J, Fabbretti E, Miozzo M. C. Rotavirus NSP5 phosphorylation is up-regulated by interaction with NSP2. J Gen Virol 1998, 79(Pt 11): 2679-2686.
    68.苏琦华.轮状病毒蛋白的作用.天津医科大学学报 2001,7(2):299-300.
    69. Mirazimi A, Nilsson M, Sevensson L, The molecular chaperone calnexin interacts with the NSP4 enterotoxin of rotavirus in vivo and in vitro. J Virol 1998, 72 (11): 8705.
    70. Angel J, Tang B, Feng N, et al. Studies of the role for NSP4 in the pathogenesis of homologous murine mtavirus diarrhea. J Infect Dis, 1998, 177(2): 455-458.
    71. Blackhall J, Munoz M, Fuentes A, et al. Analysis of rotavirus nonsteuctural protein NSP5 phosphosylation. J Virol 1998, 72 (8): 639.
    72. Caust J, Dyall-Smith ML, Lazdins I, et al. Glycosylation, an important modifier of rotavirus antigenicity. Arch Virol 1987, 96(3-4): 123-34.
    73. Emslie K R, Miller J M, Slade M B, el al. Expression of the rotavirus SAII protein VP7 in the simple eukaryote Dictyostelium discoideum. J Virol 1995, 69(3): 1747-1754.
    
    
    74. Andrew ME, Boyle DB, Whitfeld PL, Lockett LJ, Anthony ID, Bellamy AR, Both GW. The immunogenicity of VP7, a rotavirus antigen resident in the endoplasmic Reticulum is enhanced by cell surface expression. J Virol 1990, 64(10):4776-83.
    75. Wang L, Huang JA, Phelps A, et al.Periplasmic expression of part of the major rotavirus capsid protein VP7 contalning all the three antigenic regions in Escherichia coli. Gene 1996, 177(1-2): 155-62.
    76. Wang L, Huang JA, Nagesha HS, et al. Bacterial expression of the major antigenic regions of porcine rotavirus VP7 induces a neutralizing immune response in mice. Vaccine 1999, 17(20-21):2636-45.
    77.陈钧,纪绍忠,谈幸之,等.轮状病毒1、2血清型VP7蛋白基因的扩增及其克隆,中华实验和临床病毒学杂志 1994,8(4):312-315.
    78.李国华,钱渊,熊朝晖,等.北京地区G1-G4型人轮状病毒地方株VP7编码基因的序列分析.病毒学报1998,14(2):126-131.
    79.熊朝晖,钱渊,袁丽娟,等.应用多聚酶链扩增技术鉴别混合感染轮状病毒VP7的血清型别.中华微生物学和免疫学杂志1995,15(2):105-108.
    80.何湘君,钱渊,李国华,等.在昆虫细胞中表达G2型轮状病毒地方株VP7基因.病毒学报1998,14(4):374-376.
    81.刘勇,崔丽,庄俊英,等.轮状病毒VP7基因修饰载体的构建及其在Hela细胞中的表达.白求恩医科大学学报 2000,26(4):440-444.
    82. Xu Z, Tuo W, Clark KI,et al. A major rearrangement of the VP6 gene of a strain of rotavirus provides replication advantage. Vet Microbiol 1996,52(3-4): 235-47.
    83.江志奎、李钟铎.轮状病毒疫苗的研究进展,中国生物制品学杂志2000,13(1):61-62.
    84.陈冬梅,白植生,刘溯,等.口服轮状病毒活疫苗LL-85-37株反应及血清学效果初步观察.中国生制品学杂志 1994,7(2):53-56.
    85.高明,轮状病毒基因重配研究现状.微生物学免疫学进展 1996,24(4):67-69.
    86. Midthun K, Greenberg HB, Hoshino Y, et al. Reassortant rotavirus as potential live rotavirus vaccine candidates. J Virol 1985, 53(3): 949-954.
    87.杨国峰,周鹏,王健伟.轮状病毒疫苗研究进展及其转基因植物疫苗的开发前景,生物技术通报,2001,1,16-19.
    88. Brussow H, Bruttin A, and Marc-Martin S. Polypeptide composition of rotavirus empty capsids and their possible use as a subunit vaccine. J Virol 1990, 64(8): 3635-42.
    89. Conner M E. Zarley C D, Hu B, et al. Virus-like particles as a rotavirus subunit vaccine. J Infect Dis 1996, 174 (suppl): 88-92.
    90.陈元鼎,刘名英,赵玮,等.重组轮状病毒SAll VP4抗原表位诱导广泛交叉中和抗体反应.中国病毒学 1998,13(1):57-63.
    91. O'Neal C M, Crawford S E, Estes M K, et al. Rotavirus virus-like particles administered mucosally induce protective immunity. J Virol 1997, 71 (11): 8707-8717.
    92.周旭,李益民,侯玲,等.轮状病毒DNA疫苗的制备及其抗体应答,中国生物制品学杂志 1999,12 (2):72-74.
    
    
    93. Chen S C, Jones D H, Fynan E F, et al. Protective immunity induced by oral immunizaion with a rotavirus DNA vaccine encapsulated in micropartieles. J Virol 1998, 72(7): 5757-5766.
    94.殷震,刘景华,主编.《动物病毒学》,北京:科学出版社.1997,p671-688.
    95.冉智光,王玉春,刘晓滨,等.猪传染性胃肠炎病毒血凝作用.中国兽医科技 1997,27(9):3-4.
    96.苏万国,唐永兰,邹勇,等.猪传染性胃肠炎病毒在PK15和ST细胞上的增殖特性比较.上海畜牧兽医通讯 2000,3:40.
    97. Kemeny LJ. Antibody response in pigs inoculated with transmissible gastroenteritis virus and cross reactions among ten isolates. Can J Comp Med 1976, 40(2): 209-214.
    98. Paton D, Bridges A, Cartwright F, et al. Detection of transmissible gastroenteritis virus by RT-PCR and differentiation from PRCV. Journal of Virological Meyhods 1997, 66(2): 303-309.
    99. Jones T, and Shenk T. Transmissible gastroenteritis virus of pigs. Veterinary Record 1997, 141(16): 427-428.
    100. Pensaen M, Callebaut P, Vergote J. Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet. Q. 1986, 8:257-261.
    101.赵德明、张中秋、沈建忠,主译.B.E.斯特劳,S.D.阿莱尔,W.L.蒙加林,等,主编.《猪病学》(第八版).中国农业大学出版社,2000.9,263-276.
    102. Klernm R. C, and ristic M. The effect of propagation of transmissible gastroenteritis (TGE) virus in pups and the lungs of baby pigs on the immunologic properties of the virus. Proc Int Congr Pig Vet Soc 1976, 4:K11.
    103. Haelterman E. O. Epidemiological studies of transmissible gastroenteritis of swine. Proc US Livest Sanit Assoc 1962, 66: 305-315.
    104. Reynolds D. J, and Garwes D. J. Virus isolation and serum antibody responses after Infection of cats with transmissible gastroenteritis virus. Arch Virol 1979, 60:161-166.
    105.蔡宝祥,主编.《家畜传染病学》.北京:中国农业出版社 2001,p213-216.
    106. Hooper B. E, and Haelterman E. O. Concepts of pathogenesis and passive immunity, in transmissible gastroenteritis of swine. J Am Vet Med Assoc 1966, 149: 1580-1586.
    107. Butler D. G, Gall D. G, Kelly M. H, et al. Transmissible gastroenteritis: Mechanisms responsible for diarrhea in an acute enteritis in piglets. J Clin Invest 1974, 53: 1335-1342.
    108. Cornelius L. M, Hooper B. E, and Haelterman E. O. Changes in fluid and electrolyte balance in baby pigs with transmissible gastroenteritis. 1968, Am J Clin Pathol 2:105-113.
    109. Moon H. W. Mechanisms in the pathogenesis of diarrhea: A review. J Am Vet Med Assoc 1978, 172: 443-448.
    110. LaBonnardiere C, and Laude H. High interferon titer in newborn pig intestine during experimentally induced viral enteritis. Infect Immun 1981, 32: 28-31.
    111. Pensaert M. B, Haelterman E. O, and Hinsman E. J. Transmissible gastroenteritis of swine:Ⅰ. Virus-in-testinal cell interactions. Ⅱ. Electron microscopy of the epithelium in isolated jejunal loops. Arch Gesamte Virusforsch 1970, 31: 335-351.
    112. Shepherd R. W, Gall D. G, Butler D. G, et al. Determinates of diarrhea in viral enteritis: The role of ion transport and epithelial changes in the ileum in transmissible gastroenteritis in piglets. Gastroenterology 1979. 76(1): 20-24.
    
    
    113. Wagner J. E, Beamer P. D, and Ristic M. Electron microscopy of intestinal epithelial cells of piglets infected with a transmissible gastroenteritis virus. Can J Comp Med 1973, 37: 177-188.
    114. Witte K. H, and Walther C. Age-dependent susceptibility of pigs to infection with the virus of transmissible gastroenteritis. Proc Int Congr Pig Vet Soc 1976, 4: K3.
    115. Dulac G. C, Ruckerbauer G. M, and Boulanger P. Transmissible gastroenteritis: Demonstration of the virus from field specimens by means of cell culture and pig inoculation. Can J Comp Med 1977, 41: 357-363.
    116 Kemeny L. J. Isolation of transmissible gastroenteritis virus from pharyngeal swabs obtained from sows at slaughter. Am J Vet Res 1978.39: 703-705.
    117. Bohl E. H. Diagnosis of diarrhea in pigs due to transmissible gastroenteritis virus or rotavirus. In Viral Enteritis in Humans and Animals. Ed. F. Bricout and R. Scherrer. INSERM (Paris) 1979, 90: 341-343.
    118. Woods R. D. Studies of enteric coronaviruses in a feline cell line. Vet Microbiol 1982, 7: 427-435.
    119. Stark S. L. Femelius A. L, Booth G. D, et al. Transmissible gastroenteritis (TGE) of swine: Effect of age of swine testes cell culture monolayers on plaque assays of TGE virus. Can J Comp Med 1975, 39: 466-468.
    120.陈焕春,刘操,金梅林,等.猪传染性胃肠炎病毒的分离鉴定.华中农业大学学报 1992,11(1):82-86.
    121. Black J. W. Diagnosis of TGE by FA: Evaluation of accuracy on field specimens. Proc US Anim Health Assoc 1971, 75: 492-498.
    122.曹军平,朱爱萍,肖作焕,等.猪传染性胃肠炎的诊断与防制.中国动物检疫 2000,6:29.
    123. Garwes D. J. Stewart F. Cartwright S. F. et al. Differentiation of porcine coronavirus from transmissible gastroenteritis virus. Vet Rec 1988, 122: 86-87.
    124. Van Nieuwstadt A. P. and Pol J. M. A. Isolation of a TGE virus-related respiratory coronavirus causing fatal pneumonia in pigs. Vet Rec 1989. 124: 43-44.
    125. Benfield D. A. Jackwood D. J. Bae I. et al. Detection of transmissible gastroenteritis virus using cDNA probes.Arch Virol 1991. 116: 91-106.
    126. Park J Y. Lavada M, Correa Ⅰ. et al. Sequence analysis and cDNA probe hybridization of the nucleocapsid (N) protein gene of TGEV and PEDV. Korean Journal of Veterinary Research 1997, 35(3): 515-530.
    127. Woods R D. Development of PCR-based technique to identify porcine transmissible gastroenteritis virus isolates. Canadian Journal of Veterinary Research 1997, 61 (3): 167-172.
    128.李军,林继煌,陆承平等.RT-PCR检测猪传染性胃肠炎病毒.中国兽医学报 2001,21(3):246-248.
    129.唐丽杰,李一经。RT-PCR方法快速诊断猪传染性胃肠炎 黑龙江畜牧兽医 2001,12:26-27.
    130. Errington W, Steward M, Emmerson P T. A diagnostic immunoassay for New castle disease virus based on the nucleocapsid protein expressed by a recombinant baculovirus. Journal of Virology Methods 1995, 55: 357-365.
    131.周仲芳,李力复,罗长保,等.利用重组抗原建立间接酶联免疫吸附试验检测猪传染性胃肠炎血清抗体中国兽医杂志 2000,16(10):12-14.
    
    
    132. Pensaert M. B. Transmissible gastroenteritis virus (respiratory variant). In Virus Infections of Porcines. Ed. M. B. Pensaert. Amsterdam: Elsevier Science 1989, pp. 154-165.
    133. Pensaert M. B, and Cox E. Porcine respiratory coronavirus related to transmissible gastroenteritis virus. Agri-Pract 1989, 10: 17-21.
    134. Carman S, Josephson G, McEwen B, et al. Field validation of a commercial blocking ELISA to differentiate antibody to transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirusand to identify TGEV-infected swine herds. J Vet Diagn Invest 2002, 14(2): 97-105.
    135. Vaughn E. M, Halbur P. G, and Paul P. S. Three new isolates of porcine respiratory coronavirus with various pathogenicities and spike (S) gene deletions. J Clin Microbiol 1994, 32: 1809-1812.
    136. Vaughn E. M, Halbur P. G, and Paul P. S. Use of nonradioactive cDNA probes of differentiate porcine respiratory coronavirus and transmissible gastroenteritis virus isolates. J Vet Diagn Invest 1996, 8: 241-244.
    137. Van Cott J. L, Brim T. A, Simkins r. A, et al. Antibody-secreting cells to transmissible gastroenteritis virus and porcine respiratory coronavirus in gut- and bronchus-associated lymphoid tissues of neonatal pigs. J Immunol 1993, 150: 3990-4000.
    138. Saif L. J. Van Cott J. L, and Brim T. A. Immunity to transmissible gastroenteritis virus and porcine respiratory coronavirus infections in swine. Vet Immunol Immunopathol 1994. 43: 89-97.
    139. Anton I. M, Gonzalez S, Bullido M. J, et al. Cooperation between transmissible gastroenteritis coronavirus (TGEV) structural proteins in the in vitro induction of virus-specific antibodies. Virus Res 1996, 46: 111-124.
    140. Siddle S G, Anderson R, Cavanagh D. et al. Coronaviridae. Intervirology. 1983, 20: 181-189.
    141. Spaan W, Cavanagh D, and Horizinek M C. Coronavirus: Structure and gene expression. Virol 1988, 69: 2939-2952.
    142. Eleouet J. Bett A, Koolen M. et al. Complete sequence(20Kilobases)of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Journal of Virology 1995,206:817-822.
    143. Britton P, and Page K W. Sequence of the S gene from a virulent British field isolate of transmissible gastroenteritis virus. Virus Res 1990, 18: 71-80.
    144. Lai M C, Patton C D, Baric R S. et al. Presence of leader sequence in the mRNA of mouse hepatitis virus. Journal of Virol 1983, 46: 1027-1033.
    145. Kevin W, Britton P. and Michael E G. Sequence analysis of the leader RNA of transmissible gastroenteritis virus. Virus Gene 1990, 4: 289-303.
    146. Hiscox J A. Characterization of the transmissible gastroenteritis virus(TGEV) transcription initiation sequence. Journal of Adu Exp Med Biol 1995, 380: 529-535.
    147. Paul B, Kevin W. The cloning and sequencing of the virion protein genes from a British isolate of PRCV: comparison with TGEV. Virus Research 1991, 21: 181-198.
    148. Wesley R, Woods R, and Cheuny A. Nucleotide sequence of the E2-peplomer protein gene and partial nucleotide sequence of upstream polymerase gene of transmissible gastroenteritis virus(Miller strain) [J]. Adv Exp Med Biol 1990, 276: 301-306.
    
    
    149. Julian A, Hiscox, David C, et al. Quantification of individual subgenomic mRNA species during replication of the transmissible gastroenteritis virus. Virus Research 1995, 36:119-130.
    150.冉智光,王玉春.猪传染性胃肠炎病毒分子生物学研究新进展.天津畜牧兽医 1998,15(4):4-6.
    151. Cristinina Risco, Inés M. Antn and Luis Enjuanes, et al. The transmissible gastroenteritis coronavirus contains a spherical cor shell consisting of M and N proteins. Journal of Virology 1996, 70(7): 4773-4777.
    152. Fatima G, Willewp A, Correa C, et al. Residues involved in the antigenic sites of transmissible gastroenteritis virus S glycoprotein. Journal of Virol 1991, 183: 225-238.
    153.黄军建等,猪传染性胃肠炎病毒国外株与国内株的比较研究.中国畜牧兽医年会1980年年会论文.1980,2:13-16.
    154. Bernard S and Laude H. Site-specific alteration of transmissible gastroenteritis virus spike protein results in markedly reduced pathogenicity. Journal of Gen. Virol 1995, 76:2235-2241.
    155. Christine K, Graham D. Yolken R. et al. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of TGEV. Journal of Virol 1997, 71(4): 3285-3287.
    156. Laviada M D, Videgain S P. Moreno L, et al. Expression of swine transmissible gastroenteritis virus envelope antigens on the surface of infected cell: Epitopes externally exposed. Virus Res 1990, 16:247-254.
    157 Sune C. Jimenez G. Correa Ⅰ. et al. Mechanisms of transmissible gastroenteritis virus coronavirus neutralization. Virology 1990, 177: 559-569.
    158. Delmas B. Rasschaert D. Gtodet M, et al. Four major antigenic site of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. Journal of Gen. Virol 1990. 71: 1313-1323.
    159. Delmas B. Gelfi J. and Laude H.Antigenic structure of transmissible gastroenteritis virus, journal of Virol 1986.67: 1405-1418.
    160. Kim L. Hayes J. Parwani P. et al. Molecular characterization and pathogenesis of transmissible gastroenteritis virus (TGEV) and respirartory coronavirus (PRCV) field isolates co-circulating in a swine herd. Arch Virology 2000, 145:1133-1147.
    161. Sanchez C, Jimenez G, Laviada M D. et al. Antigenic homology among coronavirus related to transmissible gastroententis virus [J]. Virology 1990, 174:410-413.
    162. Ballesteros L, Sanchez C, and Enjuanes L. Two amino acid changes at the N-terninus of TGEV spike protein result in the loss of enteric tropism. Virology 1997, 227(2): 378-388.
    163. Riffault S, Baric R, and Levy L. In vivo induction of inferonalpha in pig by non-infectious coronavirus: tissue localizaton and in situ phcnotypic characterization of inferonalpha producing cells. Journal of General Virology 1997, 78(10): 2483- 2487.
    164. Motokawa K. Comparision of the amino acid sequence and phylogenetic analysis of the peplomer, inteyral membrane and nucleocapsid protein of feline, canine and porcine coronavirus. Microbiology and Immunology 1996, 40(6): 425-433.
    165. Britton P, Camemes R S, Page K W. et al. Sequence of the nucleoprotein gene from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae. Mol Microbiol 1988,2:89-99.
    
    
    166. Kapke P A, and Brian D A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology 1986, 151:41-49
    167. Rasschaert D,, Gelfi J, and Laude H. Enteric coronavirus TGEV: partial sequence of the genomic RNA, its organization and expression. Biochimie 1987, 69: 591-600.
    168. M Martin Alonso, M Balbin, D J Garwes, et al. Antigenic structure of transmissible gastroenteritis virus Nucleoprotein. Virology 1992, 188: 168-174.
    169. Anton I. M, Sune C, Meloen R. H, et al. A transmissible gastroenteritis coronavirus nucleoprotein epitope elicits T-helper cells that collaborate in the in vitro antibody synthesis to the three major structural viral proteins. Virol 1995, 212: 746-751.
    170. Gershoni J M, E Hawrot and T L Lentz. Binding of alpha-bungarotoxin to isolatedalpha subunit of the acetylcholine analysis with protein blots. Proc Nat Acad Sci USA 1983. 80: 4973-4977.
    171.佟有恩,冯力,李伟杰,等.猪传染性胃肠炎与猪流行性腹泻二联弱毒疫苗的研究.中国预防兽医学报 1999,21(6):406-410.
    172. Lanza I, Shoup D I, and Saif L J. Lactogenic immunity and milk antibody isotypes to transmissible gastroenteritis virus in sows exposed to porcine respiratory coronavirus during pregnancy. Am J Vet Res 1995,56: 739-748.
    173. Sestak K, Lanza I, Park S K, et al. Contribution of passive immunity to porcine respiratory coronavirus to protection against transmissible gastroenteritis virus challenge exposure in suckling pigs. Am J Vet Res 1996, 57: 664-671.
    174. Garwes D. J, Lucas M. H, Higgins D. A, et al. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet Microbiol 1978/1979, 3: 179-190.
    175. Gough P. M, Frank C. J, Moore D. G, et al. Lactogenic immunity to transmissible gastroenteritis virus induced by a subunit immunogen. Vaccine 1983. 1: 37-41.
    176. Posthumus W. P, Lenstra J. A. Schaaper W. M. et al. Analysis and simulation of a neutralizing epitope of transmissible gastroenteritis virus. J Virol 1990, 64: 3304-3309.
    177. Tuboly T, Nagy E, Dennis J. T. et al. Immunogenicity of the S protein of transmissible gastroenteritis virus expressed in bacutovirus. Arch Virol 1994. 137: 55-67.
    178. Tuboly T, Nagy E, and Derbyshire J. B. Passive protection of piglets by recombinant baculovirus induced transmissible gastroenteritis virus specific antibodies. Can J Vet Res 1995, 59: 70-72.
    179. Smerdou C, Anton I. M, Plana J, et al. A continuous epitope from transmissible gastroenteritis coronavirus S protein fused to E. Coil heat-labile toxin B subunit expressed by attenuated Salmonella induces serum and secretory immunity. Virus Res 1996, 41: 1-9.
    180. Torres J M, Alonso C, Ortega A, et al. Tropism of human adenovirus type 5-based vectors in swine and their ability to protect against transmissible gastroenteritis coronavirus. J Virol 1996, 70: 3770-3780.
    181. Izeta A, Smerdou C, Sanchez C M, et al. Replication, packaging, and expression of foregn genes using synthetic minigenomes derived from transmissible gastroenteritis coronavirus defective interfering RNAs. Abst 7th Int Symp on Coronavirus and Arteriviruses. 1997 May 10-15, Segovia, Spain.
    
    
    182. Liu C, Kokuho T, Kubota T, et al. DNA mediated immunization with encoding the nucleoprotein gene of porcine transmissible gastroenteritis virus. Virus Res 2001, 80(1-2): 75-82.
    183. Wolff J a, Malone R W, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990, 247(4949 Pt 1): 1465-1468.
    184. Tang DC, De Vit M, Johnston S A. Genetic immunization is a simple method for eliciting an immune response. Natrue 1992, 356(6365): 152-154.
    185. Encke J. Zu Putlity J, Wands J R. DNA vaccines. Intervirology 1999, 42(2-3): 117-124.
    186. Leitner W W, Ying H, Restifo N P. DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 1999, 18(9-10): 765-777.
    187. Raz E, Carson P A. Parker S E, et al. Intradermal gene immunization: The possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci USA 1994, 91(12): 9519-9523.
    188. Leinevr W W, Seguin M C, Ballou W R, et al. Immune responses induced by intramuscular or gene gun injection of protective deoxyribomucleic acid vaccines that express the circurnsporozoite. J Immunol 1997, 159(12): 6112-6119.
    189. Prayaga S K, Ford M J, Haynes J R. Manipulation of HIV-1 gp120-specifc immune responses elicited via gene gun-based DNA immunization. Vaccine 1997, 15 (12-13): 1349-1352.
    190. Johnston S A. and Barry M A. Genetic to genemic vaccination. Vaccine, 1997, 15(8): 808-809.
    191. Okada E. Sasaki S. Ishii N et al. Intranasal immunization of a DNA vaccine with IL-12 and granulocyte macrophage colony- stimulating factors- expressing plasmids in liposomes induce strong mucosal and cell mediated immune responses against HIV- 1 antigens. J Immunol 1997, 159(4): 3638-3647.
    192.陈吉祥,李广林,薛飞群等,核酸免疫与核酸疫苗研究进展,中兽医医药杂志 2000,1,42-44.
    193.孟松树,传染性喉气管炎病毒基因免疫的研究(博士论文) 2000,p34.
    194. Montgomery D L. Shiver J W. Leander K R, et al. Heterologous and homologous protection against influenza A by DNA vaccination: optimization of DNA vectors. DNA Cell Biol 1993, 12 (9): 777-783.
    195.刘海鹏,赵玉军,核酸疫苗的研究和应用,中国兽医杂志2001,37(9):34-37.
    196. Barry M A, and Johnston S A. Biological features of genetic immunization. Vaccine 1997, 15(8): 788-791.
    197.许崇波,核酸疫苗研究进展,畜牧与兽医 1998,30(4):179-180.
    198.陈洪岩,新城疫病毒基因免疫的实验研究(博士论文) 1998,p17.
    199. Davis H L, Whalen R G, Demeneix B A. Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum Gene Ther 1993, 4:151-159.
    200. Davis H L, Michel M L, Mancini M, et al. Direct gene transfer in skelated muscle: plasmid DNA-based immunization against the hepatitis B virus surface antigen. Vaccine 1994, 12(16): 1503-1509.
    201. Danko I, and Wollf J A. Direct gene transfer into muscle. Vaccine 1994, 12(16): 1499-1502.
    202. Vitadello M, Schiaffino M V. Picard A, et al. Gene transtfer in regenerating muscle. Hum Gene Ther 1994,5(1): 11-18.
    203. Barry M A, Lai W C, Johnston S A. Protection against mycoplasma infection using espression-library immunization. Nature 1995, 377(6550): 632-635.
    
    
    204. Ulmer J B, Liu M A. ELI's coming: expression library immunization and vaccine antigen discovery. Trends Microbiol 1996, 4(5): 169-170.
    205. Manoutcharian K, Terrazas L I, gevorkiam G, et al. DNA pulsed macrophage-mediated cDNA expression library immunization in vaccine development. Vaccine 2000, 18(5-6): 398-391.
    206. Chen S Y, and Marasco W A. Novel genetic immunotexins and intracellular antibodies for cancer therapy. Semin Oncol 1996, 23(1): 148-153.
    207. Chen S Y, Zani C, Khouri Y, et al. Design of a genetic immunotoxin to elimiated toxin immunogenecity. Gene They 1995, 2(2): 116-123.
    208. Yu Z, Karem K L, Kanangat S, et al. Protection by minigenes: a novel approach of DNA vaccines. Vaccine 1998, 16(17): 1660-1667.
    209. Iwasaki A, Cruz CSD, Young A R. et al. Epitope-specific cytotoxic T lymphocyte induction by minigene DNAimmunization. Vaccine 1999, 17(15-16): 2081-2088.
    210. Fomsgard A, Nielsen H V, Kirkby N. et al. Induction of cytotoxic T-cell responses by gene gun DNA vaccination with minigenes encoding influenza Avirus HA and WP CTL-epitopes. Vaccine 2000(18): 681-691.
    211. Qiu P, Ziegelhoffer P. Sun J, et al. Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther 1996, 3(3): 262-268.
    212. Geissler M, Tokushige K, Wakita T, et al. Differential cellular and humoral immune responses to HSV core and HBV envelope poteins after genetic immunizations using chimeric constructs. Vaccine 1998,16(8): 857-867.
    213.杨莉,刘晶,孔玉英,等.HCV核心区与HBV核心区融合基因的DNA免疫.中国科学(C辑) 1999,29(3):246—252.
    214. Chen Z, Matsuo K, Asanuma H, et al. Enhanced protection against a lethal influenza virus challenge by immuniation with both hemagglutinin and neuramingidase-expressing DNAs. Vaccine 1999, 17(7-8): 653-659.
    215. Hinkula J, Lundholm P. Wahren B. Nucleic acid vaccination with HIVregulatory genes: a combination of HIV-1 genes in separate plasmids induces strong immune responses. Vaccine 1997, 15(8): 874-878.
    216. Sato Y, Roman M, Tighe H, et at. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 1996, 273(5273): 352-354.
    217. Krieg A M, Yi A K, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995, 374(6522): 546-549.
    218. Bird A P. CpG rich islands and the function of DNA methylation. Nature 1986, 321(6067): 209-213.
    219. Bird A P. CpG islands as gene markers in the vetebrate nucleus. Trends Genet 1987, 3(12): 342-347.
    220. Yamamoto S, Kuramoto R, Shimada S, et al. In vitro augmeatation of natural killer cell activity and production of interferon-alpha/beta and-gamma with deoxyribonucleic acid fraction from mycobacterium bovis. BCH Jpn J Cancer Res 1988, 79(7): 866-873.
    221. Yi A K, Hornberk P, Krieg A M, et al. CpG DNA rescue of murine B lymphoma cells from anti-IgM reduced growth arrest and programmed cell death is associated with increased expression of c-mye and bel-XL. J Immunol 1996, 157(11): 4918-4925.
    
    
    222. Chace J H, Hooker N A, Mildeastein K L. Bacterial DNA iinduced NK cell IFN-γ production is dependent on macrophage secretion IL-12. Clin Immunol Immunopath 1997, 84(2): 185-193.
    223. Halpem M D, Kurlander R J, Pisetsky D S. Bacterial DNA induces murine IFN-γ Production by stimulating of IL-12 and TNF-α. Cell Immunol 1996, 167(1): 72-78.
    224. Yamamoto S, Yamamoto Y, Kataoka T, et al. Unique palindromic sequences in synthetic oligo nucleotides are required to induce IFN-γ and augment IFN-mediated natural killer activity. J Immunol 1992, 148(12): 4072-4076.
    225. Klinman D M, Ti A K, Krieg A M, et al. CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete IL-6, IL-12, and IFN. Proc Natl Acad Sci USA 1996, 93: 2879-2883.
    226. Klinman D M, Barnhart k M, Conover J. CpG motifs as immune adjuvants. Vaccine 1999, 17(1): 19-25.
    227. Sparwasser T, Miehtke T, Lipford G B, et al. Bacterial DNA cause septic shock. Nature 1997a, 386(6623):336-337.
    228. Sparwasser T, Miethke T, Lipford G B, et al. Macrophages sense pathogens via DNA motifs: induction of TNF-ahpa-mediated shock. Eur J Immunol 1997b, 27(7): 1671-1679.
    229. Chow Y H. Chiang B L, Lee Y L. et al. Development of th1 and Th2 populations and the nature of immune response to hepatitis b virus DNA vaccines can be moduated by codelivery of various cytokine genes. J Immunol 1998, 160(3): 1320-1329.
    230. Sin J J. Kim J J, Boyer J D. et al. In vivo modulation of vaccine-induced immune responses toward a Th1 phenotype increases potency and vaccine effectiveness in Herpes Simplex Virus Type 2 mouse model. J Virol 1999a. 73(1): 501-509.
    231. Sin J J, Kin J J. amold R L. et al. IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model: IL-12 enhances Th1-type CD4~+ T cell-mediated protective immunity against Herpes Simplex Vrius-2 challenge. J Immunol 1999b, 162(5): 2912-2921.
    232. Kim J J. Ayyavoo V. Bagarazzi M L. et al. In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J Immunol 1997, 158(2): 816-826.
    233. Kim J J, trivedi N W, Nottingham L K. et al. Modulation of amplitude and direction of in vivo immune responses by co-administration of cytokine gene expression cassettes with DNA immunogens. Eur J Immunol 1998a, 28(3): 1098-1103.
    234. Boyer J D. Kim J, Ogen K. et al. HIV-1 DNA vaccines and chemokines. Vaccine 1999, 17(1): S53-S64.
    235. Kim J J, Nottingham L K. Wilson D M, et al. Engineering DNA vaccines via co-delivery of co-stinulatory molecule genes. Vaccine 1998b. 16(19): 1828-1935.
    236. Van Donkersgoed J, Janzen ED. Potter AA. et al. The occurrence of Haemophilus somnus in feedlot calves and its control by postarrival prophylactic mass medication. Can Vet J 1994, 35(9): 573-580.
    237.李学荣,核酸疫苗及其免疫机制研究.中国人兽共患病杂志 2000,16(6):82-86.
    238. Mor G. Singla M. Steinberg A D, et al. Do DNA vaccines induce autoimmune disease? Human Gene Therapy 1997, 8(3): 293-300.
    239. Parker S E. Borellini F, Wenk M L. et al. Plasmid DNAmalaria vaccine: Tissue distribution and safety.studies in mice and rabbits. Human Gene Therapy 1999, 10(5): 741-758.
    
    
    240.李忠明,主编,《当代新疫苗》,高等教育出版社 2001, p141-166.
    241. Cox G J M, Zamb T J, Babiuk L A. Bovine herpesvirus 1: responses in mice and cattle injected with plasmid DNA. J Virol 1993, 67(9): 5664-5667.
    242. Fynan E F, Webster R G, Fuller D H, et al. DNA vaccines: Protective immunization by parenteral mucosa and gene-gun inoculation. Proc Natl Acad Sci USA 1993, 90(8): 11478-11482.
    243. Robinso H L, Hunt L A, Webster R G. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine 1993, 11(9): 957-960.
    244. Olsen C W. Mcgregor M W, Dybdahl-Sissoko N,et al. Immunogenicity and efficacy of baculovirus-expressed and DNA-based equine influenza virus hemagglutinin vaccines in mice. Vaccine 1997, 15(10): 1149-1156.
    245. Ruitenberg K M, Walker C, wellington J E. DNA-mediated immunization with glycoprotein D of equine herpesvirus I (EHN-1) in a murine model of EHV-1 respiratory infection. Vaccine 1999, 17(3): 237-244.
    246. Bennett A M, Phillpotts R J, Perkings S D, et al. Gene gun mediated vaccination if superior to manual delivery for immunisation with DNA vaccines expressing protective antigens from yersinia pestis or venezuelan Equine Encephalitis virus. Vaccine, 2000(18): 588-596.
    247. Schrijver R S, Langedijk J P M, Keil G M, et al. Immunization of cattle with a brivivector vaccine or a DNA vaccine both coding for the g Notein of BRSV. Vaccine 1997, 15(12/18): 1908-1916.
    248. Schrijver R S. Langedijk J P M, Keil G M, et al. Comparison of DNA application methoes to reduce BRSV shedding in cattle. Vaccine 1998, 16(2/3): 130-134.
    249. Sagodira S, Buzoni-Gatel D, Iochmann S, et al. Protection of kids against cryptosporidium parvum infection after immunization of dams with CP15-DNA. Vaccine 1999, 17(19): 1246-1255.
    250. Drew D R, Lightowlers M, Strugnell r A. Vaccination with plasmid DNA expressing antigen from genomic or cDNA gene forms induces equivalent humoral immune responses. Vaccine 2000, 18: 692-702.
    251. Ward G, Rieder E, Mason D W. Plasmid DNAencoding replicating foot-and mouth disease virus genomes induces antiviral immune responses in swine. J Virol 1997, 71 (10): 7442-7447.
    232. Pirzadeh B. and Dea S. Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus. J Gen Virol 1998, 79(Pt5): 989-999.
    253. Kwang J, Zuckermann F, Ross G, et al. Antibody and cellluar immune responses of swine following immunisation with plasmid DNA encoding the PRRS virus ORF's 4, 5, 6 and 7. Research in Vet Sci 1999, 67(2): 199-201.
    254. Ho T Y, Hisang C Y, Hsiang C H, et al. DNA vaccination induces a long-term antibody response and protective immunity against pseudorabies virus in mice. Arch Virol 1998, 143(1): 115-125.
    255. Macklin M D, Mccabe D, Mcgregor M W, et al. Immunization of pigs with a particle-mediated DNA vaccine to influenza A virus protects against challenge with homologous virus. J Virol 1998, 72(2):1491-1496.
    256. Tumes C G, Aleixo J A G, Monteiro A V, et al. DNA inoculation with a plasmid vector carrying the fae Gadhesing gene of Escherichia coli K88ab induced immune responses in mice and pigs. Vaccine 1999, 17(15-16): 2089-2095.
    
    
    257. Perrin P, Jacob Y, Aguilar-Setien A, et al. Immunization of dogs with a DNA vaccine induces protection against rabies virus. Vaccine 1999, 18(5-6): 479-486.
    258. Jiang W, Baker H J, swango L J, et al. Nucleic acid immunization protects dogs against challenge with virulent canine parvovirus. Vaccine 1998, 16(6): 601-607.
    259. Sixt N, Cardoso A, Vallier A, et al. Canine distemper virus DNA vaccination induces humoral and cellular immunity and protects against a lethal intracerebral challenge. J Virol 1998, 72(11): 8422-8476.
    260. Chen S C, Fynan E F, Robinson H L. Protective immunity induced by rotavirus DNA vaccines. Vaccine 1997, 15(8): 899-902.
    261. Sakaguchi M. Nakamara H, Sonocla K. et al. Protection of chickens from Newcastle disease by vaccination with a linear plasmid DNA expressing the F protein of Newcastle disease virus. Vaccine 1996,14(8): 747-752.
    262. Seo S H, Wang L, Smith R. 包含CTL表位的多阶IBV 核酸疫苗应用的可行性研究.99’北京国际禽病会议暨展览会议文集.1999,20-28.
    263. Triyami M, Jilbert A R, Qiao M, et al. Protective efficacy of DNA vaccines against Duck Hepatitis Bvirus infection. J Virol 1998.72(1): 84-94.
    264. Kanellos T. Sylvester I D. Howard C R. et al. DNA is as effective as protein at inducing antibody in fish. Vaccine 1999, 17(7-8): 965-972.
    265.王宁,张楚瑜,付烈振,等.猪瘟病毒囊膜糖蛋白DNA疫苗的研制.中国预防兽医学报 1999,21(3):201-203.
    266.陈化兰,于康震,田国斌,等.DNA免疫诱导鸡对禽流感病毒的免疫保护反应.中国农业科学 1998,31 (5):63-68.
    267.陈洪岩,刘胜旺,陈奖励,等.新城疫病毒HN基因免疫引起的雏鸡细胞免疫及体液免疫动态变化研究.《畜禽重大疫病生物技术防制研究》,白新盛,卢景良主编.中国农业业科学技术出版社 1998,48-51.
    268.步志高,赵晓岩,刘长军,等.DNA免疫防制鸡传染性支气管炎的探索研究.中国预防兽医学报 2000,22(4):252-255.
    269.刘毅,金宁一,司兴奎,等.传染性法氏囊病病毒重组疫苗和基因疫苗的构建、表达及实验应用研究.99’北京国际禽病会议暨展览会论文集 1999,274-275.
    270.孟松树,张绍杰,童光志.鸡传染性喉气管炎病毒DNA疫苗免疫效果观察.中国预防兽医学报 2000,2:(3):179-181.
    271.徐春厚,辛殿龙,王辉,等.用双夹心法ELISA检测兔轮状病毒的研究.黑龙江八一农垦大学学报 1995,8(1):73-78.
    272.徐宏军.A群猪轮状病毒OSU株VP7基因的克隆用其在杆状病毒中的表达.硕士学位论文.2002,5.
    273.唐丽杰,等.猪传染性胃肠炎病毒核衣壳N蛋白基因的克隆与鉴定.中国兽医科技 2002,32(1):8-11.
    274.林继煌.人轮状病毒感染悉生猪——交叉保护试验的研究.中国人兽共患病杂志 1985,1:12-17.
    
    
    275.倪亚伟.猪和牛轮状病毒的分离与鉴定.病毒学报 2(1):1986,3,36-39.
    276.倪艳秀,林继煌,陆承平,等.逆转录-聚合酶链反应(RT-PCR)检测轮状病毒.中国兽医学报 1998,18(5):437-440.
    277.J.萨姆布鲁克,E F.弗里奇,T.曼尼阿蒂斯.《分子克隆实验指南》(第二版).北京:科学出版社1992,p16-34.
    278.杜德伟,周永兴,白宪光,等.小鼠对HBV DNA疫苗的免疫应答及细胞因子的免疫佐剂效应.医学研究生学报 2001,14(2):95-99.
    279.李国华,钱渊,何湘君,等.A组轮状病毒我国地方株VP6基因的序列测定及其在杆状病毒系统中的表达.病毒学报 1999,15(3):231-237.
    280. Offit P A. and Blavat G. Identification of the two rotavirus genes determining neutralization specificities. Virol 1986, 57: 376-378.
    281. McNeal M M, Rae M N, and Ward R L. Evidence that resolution of rotavirus infection in mice is due to both CD4 and CD8 cell-dependent activities. J Virol 1997, 71(I 1): 8735-8742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700