mChIL-18基因与IBDV VP2基因或AIV HA1基因在pFastBac~(TM) Dual中的共表达及其免疫原性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白细胞介素18(Interleukine-18, IL-18)是一种多效细胞因子,具有强烈的IFN-γ诱生能力,对机体起着重要的免疫调节和保护作用,在抗微生物感染、抗肿瘤免疫中具有应用潜力,因此IL-18可作为免疫佐剂与一些病原微生物的保护性基因共表达,从而加强疫苗的免疫效果或制备基因工程疫苗;由于鸡IL-18(ChIL-18)基因发现得比较晚,而对人和哺乳动物IL-18的研究已有许多报道,且其具有与人和哺乳动物相似的生物学功能,因此ChIL-18在比较免疫学研究和禽病治疗中具有重要意义。pFastBac~(TM) Dual载体含有PH启动子和p10启动子,可以同时表达两个具有独立活性的外源蛋白。His标签的引入为重组蛋白的纯化提供可能,为获得大量有生物活性的蛋白开辟了新途径。
     传染性法氏囊病(Infectious bursal disease, IBD)是由IBD病毒(IBDV)感染雏鸡引起的以淋巴组织,特别是中枢免疫器官-法氏囊为主要特征的高度接触性传染病。该病主要导致机体免疫抑制,使机体的免疫能力降低和疫苗免疫接种失败。虽然灭活疫苗和减毒活疫苗是相当成熟的,但由于IBDV强毒株和抗原变异的出现使其免疫效价降低。VP2是IBDV的主要保护性抗原,已经鉴定的IBDV中和表位主要在VP2上,并且多为构象依赖性,这意味着VP2的立体结构对其中和表位的形成至关重要,与病毒中和抗体的诱导、抗原和毒力的变异以及细胞凋亡的诱导等有关。
     禽流感(Avian influenza, AI)是由AI病毒(AIV)感染引起的一种高度接触性人畜共患传染病。HPAI的暴发给养禽业带来了一定的经济损失,H5N1亚型AI的出现不仅产生经济损失,还带来了恐慌。AIV的主要抗原决定簇都位于HA1区域。体外表达HA1涵盖了所有的HA空间中和表位,故其完全可以替代HA作为抗原。所以HA1蛋白是研制基因工程亚单位苗的理想候选抗原。
     本试验分别以pMD18-T-VP2、pMD18-T-HA1和pMD18-T-mChIL18质粒为模板,以杆状病毒pFastBac~(TM) Dual为载体,将mChIL18基因与VP2基因或HA1基因分别插入到载体的PH启动子和P10启动子的下游,构建重组转移载体质粒pF-IL18、pF-VP2、pF-IL18-VP2、pF-HA1、pF-IL18-HA1。将其转化DH10Bac感受态细胞,经三重抗性(含卡那霉素、庆大霉素和四环素)与蓝白斑筛选,用小量法提取重组杆状病毒质粒rBac-IL18、rBac-VP2、rBac-IL18-VP2、rBac-HA1、rBac-IL18-HA1,通过一对通用引物M13(Bacmid含有该引物Forward和Reverse两个引物位点,能够从两侧扩增LacZα互补区域内的mini-attTn7位点,有利于PCR分析)进行PCR扩增鉴定。在转染试剂CellfectinII的作用下,通过脂质体介导法将纯化的rBac-IL18、rBac-VP2、rBac-IL18-VP2、rBac-HA1、rBac-IL18-HA1转染至草地贪夜蛾细胞(Spodoptera frugiperda 9,sf9)获得P1代重组杆状病毒,用P1代病毒感染sf9来扩增病毒滴度,将达到一定滴度(10~7~10~8pfu/mL)的P3代重组杆状病毒感染sf9,感染72h后收获sf9细胞及培养上清,进行聚丙烯酰胺凝胶电泳(SDS-PAGE)检测和间接免疫荧光试验(IFA)检测。SDS-PAGE检测显示,mChIL-18、VP2、HA1基因均在sf9中的裂解上清中得到了高效表达,即表达的蛋白是可溶性的,表达的目的条带分子量分别约为19.5 KD, 48.4 KD, 37.4 KD。IFA检测显示mChIL18基因与VP2基因或HA1基因分别同时在同一细胞中独立表达。
     采用鸡脾淋巴细胞增殖试验(MTT法)、IFN-γ诱导实验和水疱性口炎病毒(VSV)抑制试验对表达的蛋白进行生物学活性测定。鸡脾淋巴细胞增殖试验表明,不同浓度的pIL18、pVP2-IL18和pHA1-IL18均能够明显促进淋巴细胞的增殖,随着蛋白浓度的增加刺激转化作用逐渐增强,均当浓度为200ng/mL时,刺激转化效果最佳,增殖指数可达4.13、4.35、4.09,但随着蛋白浓度的增大淋巴细胞的增殖指数逐渐降低。VSV病毒活性抑制试验表明,当蛋白浓度大于100ng/mL时能刺激脾淋巴细胞产生IFN-γ,并且随着pIL18、pVP2-IL18和pHA1-IL18浓度的增加诱导产生IFN-γ的量随之增加;将不同稀释度的IFN-γ分别作用于VSV,在IFN-γ≥1×10~2U/mL时,具有较强的抑制效果,当IFN-γ为10 U/mL时,只能达到约50%的保护。该结果说明pIL18、pVP2-IL18和pHA1-IL18的抗病毒活性是通过IFN-γ实现的,且在一定浓度范围内具有抑制VSV病毒产生细胞病变的作用。
     将含有pIL18、pVP2、pVP2-IL18的油乳剂疫苗分组免疫动物,14d时一免,28d时二免。I组为传统疫苗组;II组为pIL18与B78减毒疫苗联合疫苗组;III为pIL18与pVP2联合疫苗组;IV组为pVP2-IL18单独免疫组;V组一免注射B78减毒疫苗,二免注射pVP2-IL18;VI组为pVP2单独免疫组;VII组为对照组。从体液免疫和细胞免疫水平上分析试验结果。细胞免疫水平通过流式细胞术检测,从统计学意义上分析处理数据。结果表明,与免疫前和阴性对照组相比,各试验组都促进CD~(4+)和CD~(8+) T细胞增殖。一免后各试验组CD~(4+) T细胞都呈上升趋势,但一免后7d后又呈下降趋势;二免后I、III、V呈上升趋势且持续时间比较长,其中IV组CD~(4+) T增殖水平最高,在一免后21d、28d、35d都与其它组差异显著(P<0.05)。一免后各试验组CD~(8+) T细胞都呈上升趋势,但一免后7d后又呈下降趋势;二免后各实验组仍呈不同下降趋势,其中I组CD~(8+) T增殖水平最高,在一免后14d、21d、28d都与其它组差异显著(P<0.05)。体液免疫水平通过使用传染性法氏囊病病毒抗体检测试剂盒检测,从统计学意义上分析处理数据。结果表明,与免疫前相比,各试验组都有较好的促进IBD抗体生成作用,抗体水平都持续增高且维持时间也较长,都在在一免后28d抗体水平达到最高;与阴性对照组相比,IV组效果最好,抗体效价最高,V组次之,然后是II组、I组、III组、VI组。攻毒试验结果表明,IV组保护率可达90%,V组次之可达80%,然后是I组和II组75%、III组为70%、VI组50%,VII组无一幸免。
     将含有pIL18、pHA1、pHA1-IL18的油乳剂疫苗分组免疫动物,7d时一免,21d时二免。I组为传统疫苗组;II组为pIL18与传统疫苗联合疫苗组;III为pHA1单独免疫组;IV组为pHA1-IL18单独免疫组;V组pIL18与pHA1联合疫苗组;VI组为pHA1单独免疫组;VII组为对照组。从体液免疫和细胞免疫水平上分析试验结果。细胞免疫水平通过流式细胞术检测。结果表明,与免疫前和阴性对照组相比,各试验组都能够明显促进CD~(4+)和CD~(8+) T细胞的增殖反应。一免后各试验组CD~(4+)和CD~(8+)T细胞都呈上升趋势,但一免后7d后又呈下降趋势;二免后虽呈上升趋势且持续时间比较长,但增殖幅度不大,以IV组CD~(4+) T增殖水平最高。体液免疫水平通过使用血凝抑制试验检测。结果表明,各试验组都有较好的促进ND、H5型AI和H9型AI抗体生成作用,都是在一免后28d抗体水平达到最高;与阴性对照组相比,IV组效果最好,抗体效价最高与其它组差异显著(P<0.05)。
Interleukin-18(IL-18) is a novel pleiotropic cytokine, which has the potent inducor of IFN-γproduction.It has been demonstrated that IL-18 plays a major role in immunoregulation and protection, and has large potential in host defense against various micro- organic infection and tumor. So IL-18 which was as a kind of efficient immune adjuvant for vaccine, can coexpress with some protective gene of pathogenic microorganism, thereby enhance and improve the immune effective of vaccine. However, the study on chicken interleukin-18 (ChIL-18) lagged off the mammal interleukin-18. Previously, the gene of ChIL-18 was cloned, but further study is not performed.The discovery of ChIL-18 gene is very meaningful for both the study on comparative immuneology and the therapeutics for poultry diseases. pFastBac~(TM) Dual has the able to express simultaneously two active foreign proteins, because it has PH promoterand p10 promoter. The purification of recombination protein is possible because of inlet of His tag.
     Infectious bursal disease (IBD) causes considerable economic losses to the poultry industry worldwide by causing a high rate of morbidity and mortality in an acute form or as a consequence of severe immunosupression provoked by the destruction of immature B-lymphocytes within the bursa of Fabricius. Vaccination against the disease with inactivated or attenuated live vaccines is widely practiced. However, such traditional vaccines have become less effective due to the emergence of very virulent or antigenic variant strains of IBDV in recent years.VP2 and VP3 are major capsid proteins, whereas VP2 is the major antigen of IBDV and contains major epitopes responsible for protection against IBDV. VP2 can stimulate neutralizing antibodies and accordingly induce humoral immuniny in vivo. Therefore, the VP2 protein has been used quite effectively in developing subunit/DNA vaccines with other expression system against IBDV. Protein immunization opens a new approach to the development of gene vaccines for chickens against infectious diseases.
     Some of the most highly contagious viruses of human and veterinary concern are airborne pathogens, e.g. human and avian influenza virus (AIV). The highly pathogenic avian influenza viruses (HPAI) have been a threat to the poultry industry for many years. However, when the Asian H5N1 subtype emerged, a trans-boundary spread became evident and a new dimension of zoonotic danger and fear for evolution of a pandemic virus was raised. However, traditional vaccines have become less effective due to the emergence of very virulent or antigenic variant strains of AIV years. So a newly vaccine and its adjuvant are urgently demand to research. And major antigen determinants of AIV lie in HA1 gene, so HA1 protein is the ideal electing antigen of studying gene engineering subunit vaccine.
     In the experiment, the mature chicken interleukin-18(mChIL-18) gene and VP2 gene/HA1 gene were amplified on the basis of pMD18-T-VP2 plasmid、pMD18-T-HA1 plasmid、pMD18-T-mChIL18 plasmid. Then mChIL-18 gene and VP2 gene/ HA1 gene were inserted into the downstreams of PH promoter and P10 promoter of baculovirus expression plasmid pFastBacTM Dual, respectively. Finally, the constructing eukaryotic expression plasmid pF-IL18、pF-VP2、pF-IL18-VP2、pF-HA1、pF-IL18-HA1 were transformed into DH10Bac competent cells, and screened by three antibiotics (kanamycin, gentamycin and tetracycline) and blue-white patch. The recombinant bacmid DNA is extracted, on the basis of M13 universal primers(The bacmid contains M13 Forward and M13 Reverse priming sites flanking the mini-attTn7 site within the lacZα-complementation region to facilitate PCR analysis), we analyze rBac-IL18、rBac-VP2、rBac-IL18-VP2、rBac-HA1、rBac-IL18-HA1 DNA by PCR.In order to harvest the P1 recombinant aculovirus, we transfected the purified bacmid into Spodoptera frugiperda 9(sf9) by using a cationic lipid such as Cellfectin Reagent. Raised the virus titre by infecting sf9 many times and infected the sf9 with the higher baculoviral stock (10~7~10~8 pfu/mL) for expressing protein and harvested the supernatant and cells in different times. The expressed recombinant protein was analyzed by SDS– PAGE and IFA. The results demonstrated that IL18 protein and VP2 protein/HA1 protein were simultaneously expressed in sf9 cells.
     The biological activities of pIL18、pVP2-IL18 and pHA1-IL18 were detected by the proliferation of lymphocyte, inducing IFN-γproduction and inhibiting the Vesicular stomatitis virus (VSV). The experiment of MTT showed that every concentration of pIL18、pVP2-IL18 and pHA1-IL18 could enhance proliferation of lymphocyte, and the effect was best when the concentration was 200ng/mL and the proliferation exponent was 4.13、4.35、4.09, respectively. The experiment of VSV inhibition indicated that pIL18、pVP2-IL18 and pHA1-IL18 could induce spleenocytes to produce IFN-γwith high activity when it was more than 100ng/mL, and the amount of recombinant proteins and their inducing effect on IFN-γhad a direct proportion. In the experiment of VSV inhibition, different dilution of IFN-γwas used and they could protect the cells when the concentration was more than 10U/mL. The result showed that pIL18、pVP2-IL18、pHA1-IL18 could inhibit the VSV activity by inducing IFN-γproduction in spleen lymphocyte. So it can be concluded that pIL18、pVP2-IL18 and pHA1-IL18 emerge functional activities by IFN-γ.
     Two-week-old SPF chickens were randomly divided into 7 groups with 20 chickens per group. Group I received B78. Group II received pIL18 and B78. Group III received pIL18 and pVP2. Group IV received of pVP2-IL18. Group V received B78 in primary immunization and pVP2-IL18 in booster immunization. Group VI received pVP2. Group VII served as PBS control and the normal control. The results were analyzed at the level of humoral and cellular immunity to interpret the immunity enhancement. The level of cellular immunity was detected by FACS. The number of CD~(4+) and CD~(8+) T lympholeukocytes in peripheral blood of chickens immunized with genetically engineered vaccine were obviously higher than the control group and only B78 vaccine immunity class, which demonstrated satisfactory cell-mediated immunity (CMI) induced by genetically engineering vaccine. Group IV was always higher than group III and group I, and then presented significant difference. The number of CD~(4+) T lympholeukocytes in pVP2-IL immunized group kept increasing tendency and longer persistence comparing with the B78 group after the secondary immunization. The level of humoral immunity was detected by Infectious Bursal Disease Virus Antibody Test Kit. The anti-IBDV antibody titers of all experiment groups were presented upgrade tendency after secondary immunity and up to maximum in 4 weeks post inoculation. The antibody against IBDV detected in six chickens of group IV was always higher than other groups at days 7, 14, 21, 28 and 35 post-immunization. It presented significant difference (P<0.05) between group IV and group I at days 14, 21, 28 and 35 post-immunization. In addition, it also presented significant difference (P<0.05) between group IV and group III at days 7, 14, 21, 28 and 35 post-immunization.
     One-week-old SPF chickens were randomly immuned with pIL18、pHA1 and pHA1-IL18. The results were analyzed at the level of humoral and cellular immunity to interpret the immunity enhancement. The results showed that compared with pre-immunization, all experiment groups promoted the proliferation of CD~(4+) and CD~(8+) T lympholeukocytes. The results showed that compared with pre-immunization, all experiment groups had higher titers of antibodies and maintained high titer levels for longer times.
引文
陈化兰,于康震,田国斌,等. DNA免疫诱导鸡对禽流感病毒的免疫保护反应[J] .中国农业科学, 1998, 31(5) : 63-68.
    陈化兰,马文军,于康震,等.表达禽流感病毒血凝素基因的重组禽痘病毒的构建[J].中国农业科学,2000, 39 (5): 86-90.
    陈湘琦,林挺岩.白细胞介素18研究进展[J]. Journal of Chinese Physician, 2005, 7(7): 1004-1005.
    陈全姣,金梅林,陈焕春.禽流感疫苗研究进展[J].中国生物工程杂志,2004, 24(4):34-38.
    窦永喜,景志忠,才学鹏.细胞因子及其应用的研究进展[J].中国兽医科技, 2005, 35(3): 233-238.
    费聿锋,钱建飞,凌雯,等.重组鸡IL-2增强鸡四联灭活苗免疫效果的研究[J].畜牧兽医,2004,36(4):9-11.
    韩宗玺,刘胜旺,孔宪刚,等.鸡白细胞介素18成熟蛋白在昆虫细胞/杆状病毒系统中的表达[J].中国生物工程杂志, 2004, 24(4): 59-62.
    胡敬东,崔治中,赵宏坤.鸡IL-18 cDNA的克隆及在大肠杆菌中的高效表达[J].畜牧兽医学报, 2005, 36(3): 264-268.
    纪丽丽,王玉艳,王纯净,等.白细胞介素-18极其生物学作用[J].黑龙江畜牧兽医, 2005, 12: 76-78.
    江文正,金宁一,李子健.共表达HIV1中国流行株gp120与IL 18重组鸡痘病毒的构建及其免疫原性观察[J],生物工程学报,2004,20(3):338-341.
    卡尔尼克BW主编.禽病学[M] .高福,刘文军,译.北京:中国农业出版社,1997: 914-938.
    李宏梅,胡敬东,马凤龙,等.鸡白细胞介素-18(ChIL-18)重组蛋白的生物学活性检测[J]. 农业生物技术学报, 2007, 15(1): 5-10.
    刘红梅,秦爱建,许小琴,等.传染性法氏囊病病毒JS株vp2基因真核表达载体的构建及其应用[J].中国预防兽医学报, 2006, 28 (4): 461?465.
    卢觅佳,于涟,谢荣辉,等.家蚕生物反应器表达传染性法氏囊病病毒多聚蛋白的免疫原性研究[J].浙江大学学报(农业与生命科学版) 2004,30( 5):545-552.
    欧阳伟,王永山,张海彬,等.传染性法氏囊病安徽近期毒株VP2基因在昆虫细胞中的表达[J].中国预防兽医学报. 2009, 31(8): 587-591.
    裴建武,郭玉璞,周顺伍,等.传染性法氏囊炎基因工程疫苗研究进展[C].中国畜牧兽医学会.第十届全国会员代表大会暨学术年会论文集.北京:中国畜牧兽医学会, 1996:35-41.
    彭广能,耿长国,何春燕,等.表达虎源H5N1亚型禽流感病毒NP蛋白重组犬2型腺病毒的构建及鉴定[J].中国兽医学报,2010, 30(12): 1623-1628.
    祁小乐,王笑梅,高玉龙,等.鸡传染性法氏囊病病毒Vp2蛋白研究进展[J].中国预防兽医学报, 2008, 30(8) : 656?660.
    师文娟,邵丁丁,钟翔,等.人II型CD74基因胞外片段在昆虫细胞中的表达[J].基础医学与临床,2010,30(6) : 598-602.
    王文,陈红,谭文杰,等.表达人高致病性禽流感病毒H5N1(安徽株)结构基因的DNA疫苗在小鼠中诱导的免疫应答分析[J].病毒学报2010, 26(3): 170-175.
    王宪文,刘兴友,王岩,等.鸡白细胞介素18研究进展[J].安徽农业科学, 2008, 36(16): 6776-6777.
    温纳相,黄青云,陈荣光,等.鸡IL 18基因重组真核表达载体的构建及其表达产物的生物学活性[J].,中国兽医科技. 2005,35(7): 547-550.
    杨松涛,高玉伟,王承宇.虎源H5N1亚型禽流感病毒感染小鼠模型的建立[J].中国病毒学, 2006, 21(4): 353-357.
    于涟,宋坤华,张耀洲,等.家蚕表达传染性法氏囊病病毒VP2蛋白的免疫原性研究[J].浙江大学学报(农业与生命科学版),2000,26(1): 9-16.
    张勇,任战军,张淑侠,等.非洲鸵鸟感染H9亚型禽流感病毒的诊断及防治[J].养禽与禽病防治. 2008, 6: 42-43.
    赵丽,崔保安,陈红英.白细胞介素18研究进展[J].动物医学进展, 2006, 27(10): 108-111.
    赵荣乐,郑光宇.禽流感与禽流感病毒研究进展[J].生物学通报,2002, 39(4): 12.
    Akita, K., Ohtsuki, T., Nukada, Y., et al. Involvement of caspase-1 and caspase-3 in the production and processingof mature human interleukin 18 in monocytic THP.1 cells [J]. J. Biol.Chem., 1997, 272:26595–26603.
    Alexander D.J. A review of avian influenza in different bird species [J]. Vet Microbiol 2000, 74:3–13.
    Arulkanthan A., Brown W.C., McGuire TC., et al.. Biased immunoglobulin G1 isotyperesponses induced in cattle with DNA expressing mspla of Anaplasma marginale [J]. Infect Immun 1999, 67: 3481–3487.
    Azad A.A., Fahey K.J., Barrett S.A., et al. Expression in Escherichia coli of cDNA fragments encoding the gene for the host-protective antigen of infectious bursal disease virus [J].Virology, 1986, 149 (2): 190-198.
    Barbazan P., Thitithanyanont A., Misse D., et al. Detection of H5N1 Avian Influenza Virus from Mosquitoes Collected in an Infected Poultry Farm in Thailand [J]. Vector Borne Zoonotic Dis, 2008, 8(1): 105-109.
    Bayliss C.D., Peters R.W., Cook J.K., et al. A recombinant fowlpox virus that expresses the VP2 antigen of infectious bursal disease virus induces protection against mortality caused by the virus [J]. Arch Virol 1991, 120: 193–205.
    Bayliss C.D., Spies U, Shaw K, et al. A comparison of the sequences of segment A of four infectious bursal disease virus strains and identification of a variable region in VP2 [J]. Gen Virol 1990, 71:1303-1312.
    Bazan J.F., Timans J.C., Kastelein R.A.. A newly defined interleukin-1 [J]. Nature, 1996, 379: 591-593.
    Belshe R.B. The origins of pandemic influenza—lessons from the 1918 virus [J]. N. Engl. J. Med., 2005, 353: 2209–2211.
    Berg T.P., Gonze M., Meulemans.G. Acute infectious bursal disease in poultry: Isolation and characterisation of a highly virulent strain [J].Avian Pathol 1991, 20(1):133–43.
    Birghan C., Mundt E., Gorbalenya A.E. A non-canonical Lon proteinase deficient of the ATPase domain employs the Ser-Lys catalytic dyad to impose broad control over the life cycle of a double-stranded RNA virus [J]. EMBO 2000, 19:114-123.
    Bossu P., Neumann D., Del Giudice E. IL-18 cDNA vaccination protects mice from spontaneous lupus-like autoimmune disease [J]. Proc Natl Acad Sci USA. 2003 100(24):14181-6.
    Brankston G., Gitterman L., Hirji Z., et al. Transmission of influenza A in human beings [J]. Lancet. Infect. Dis., 2007, 7: 257–265.
    Brown F. The classification and nomenclature of viruses: summary of results of meetings of the International Committee on Taxonomy of Viruses in Sendai [J]. Intervirology 1984,25(9):141-143.
    Brown I.H., Banks J., Manvell R.J., et al. Recent epidemiology and ecology of influenza A viruses in avian species in Europe and the Middle East [J]. Dev Biol, 2006, 124: 45-50.
    Brown L.E., Kelso A. Prospects for an influenza vaccine that induces cross-protective cytotoxic T lymphocytes [J]. Immunol Cell Biol, 2009, 87: 300-308.
    Brun A., Albina E., Barret T., et al. Antigen delivery systems for veterinary vaccine development: Viral-vector based delivery systems [J]. Vaccine, 2008, 26 (51): 6508-6528.
    Calnek B.W., Gao F, Su J.L. translation. Diseases of Poultry.10th ed. Beijing: China Agriculture Press, 1999: 914-937.
    Cavazzana-Calvo M., Hacein-Bey-Abina S., de Saint Basile G., et al. Genetherapy of human severe combined immunodeficiency (SCID)-X1 disease[J]. Science 2002, 288: 669-72.
    Chang J. T., Segal B.M., Nakanishi K. The costimulatory effect of IL-18 on the induction of antigen-specific IFN -γproduction by resting T cells is IL-12 dependent and is mediated by up-regulation of the IL-12 receptorβ2 subunit.Eur [J].Immunol. 2000, 30:1113.
    Chang, H.C., Lin, T.L., Wu, C.C. DNA vaccination with plasmids containing various fragments of large segment genome of infectious bursal disease virus [J]. Vaccine 2003, 21, 507-513.
    Chang, H.C., Lin, T.L., Wu, C.C. DNA-mediated vaccination against infectious bursal disease in chickens [J]. Vaccine 2001, 20, 328-335.
    Chen M.W., Cheng T.J., Huang Y., et al. A consensus-hemagglutinin-based DNA vaccine t hat protects mice against divergent H5N1 influenza [J]. Proc Natl Acad Sci USA, 2008, 105(36): 13538-13543.
    Chettle N., Stuart J.C., Wyeth P.J. Outbreak of virulent infectious bursal disease in East Anglia [J]. Vet Rec 1989, 125(10):271-272.
    Choi Y.K., Ozaki H., Webby R.J., et al. Continuing evolution of H9N2 influenza viruses in southeastern China [J]. J Virol, 2004, 78: 8609-8614.
    Claas E.C., de Jong J.C., van Beek R. Links Human influenza virus A/Hong Kong/156/97 (H5N1) infection [J]. Vaccine 1998(16):977-88.
    Conti,B., Jahng,J.W., Tinti,C.,et al. Induction of interferon-gamma inducing factor in theadrenal cortex [J].J Biol Chem.,1997, 272: 2035-2037.
    Cosgrone A.S. An apparentlv new disease of chicken-avian nephritis [J].Avian Diseases, 1962, 6: 385-389.
    Cui X., Nagesha H.S., Holmes I.H. Mapping of conformational epitopes on capsid protein VP2 of infectious bursal disease virus by fd-tet phage display [J]. J Virol Methods, 2003, 114 (1): 109-112.
    David L. Suarez. Overview of avian influenza DIVA test strategies [J]. Biologicals, 2005, 33 (4): 221-226.
    Degen W.G., van Zuilekom H.I., Scholtes N.C. Potentiation of humoral immune responses to vaccine antigens by recombinant chicken IL-18 (rChIL-18) [J]. Vaccine, 2005, 23(33): 4212-4218.
    Dinarello C., Novick D., Puren A.J., et al. Overview of interleukin-18: more than an interferon-gamma inducing factor [J]. LeukocBio, 2003, 63(6): 658- 664.
    Dinarello C.A. Interleukin-1 beta interleukin-18 and the interleukin-1 beta converting Enzyme [J]. Ann N Y Acad Sci., 1998, 856:1-11.
    Dolz R., Majo N., Ordonez G., et al. Viral genotyping of infectious bursal disease viruses isolated from the 2002 acute outbreak in Spain and comparison with previous isolates [J]. Avian Dis, 2005, 49(3): 332-339.
    Dybing J.K., Jackwood D.J. Expression of MD infectious bursal disease ins in baculovirus [J] Avian Dis.,1996, 40: 617-626.
    Eterradossi, N., Saif, Y.M. et al. Infectious Bursal Disease. 12th edition. Blackwell Publishing, Ames, IA, USA, pp. 185-208.
    Fahey K.J., Erny K., Crooks J. A conformational immunogen on VP2 of infectious bursal disease virus that induces virusneutralizing antibodies that passively protect chickens [J]. J Gen Virol, 1989, 70(6): 1473-1481.
    Fantuzzi G., Puren A. J., Harding M.W., et al.Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1beta-converting enzyme (caspase-1)-deficient mice[J]. Blood, 1998, 91:2118~2125.
    Fodor I., Horvath E., Fodor N., et al. Induction of protective immunity in chickens immunized with plasmid DNA encoding infectious bursal disease virus antigens [J]. Acta Vet Hung,1999, 47(4): 481-492.
    Fouchier R.A.M., Schneeberger P.M., Rozendaal F.W., et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome [J]. PNAS 2004, 101:1356-1361.
    French, T.J., Roy, P., 1990. Synthesis of bluetongue virus (BTV)corelike particles by a recombinant baculovirus expressing the two major structural core protein of BTV [J]. Virol. 64, 1530-1536.
    Gambotto A., BarrattBoyes S.M., de Jong M.D. et al. Human infection with highly pathogenic H5N1 influenza virus [ J] . Lancet, 2008, 371 (9622): 1464-1475.
    Gatehouse L.N., Markwick N.P., Poilton J., et al. Expression of two heterologous proteins depends on the mode of expression comparison of in vivo and in vitro method [J]. Biosyst Eng, 2008, 31(5):469-475.
    Ghayur T., Banerjee S., Hugnin M., et al. Caspase-1 processes IFN-gamma- inducing factor and regulates LPS-induced IFN-gamma production[J]. Nature, 1997, 386: 619-623.
    Gilbert M., Xiao X., Chaitaweesub P., et al. Avian influenza, domestic ducks and rice agriculture in Thailand [J]. Agric Ecosyst Environ, 2007, 119: 409-415.
    Gobel T.W., Schneider K., Schaerer B., et al. IL-18 stimulates the pro- liferation and IFN-g Release of CD4+T Cells in the Chicken: Conservation of a Th1-Like System in a Nonmammalian Species [J]. The Journal of Immu- nology, 2003, 171: 1809-1815.
    Gracie J.A., Robertson S.E., McInnes L.B. Interleukin-18[J].Leukocyte Biology, 2003, 73: 213-224.
    Greene C.M., Meachery G, Taggart C.C., et al. Role of IL-1 in CD4 T lym- phocyte activation in Sarcoidosis [J]. Immunol, 2000, 165: 4718.
    Gu Y., Kuida K., Tsutsui H., et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme [J]. Science, 1997, 275: 206-209.
    Guo Y.J., Krauss S., Senne D.A., et al. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia [J]. Virol, 2000, 267: 279-288.
    Harder T.C., Teuffert J., Starick E., et al. Phylogenetic and epidemiologic evidence for limited spread of highly pathogenic avian influenza virus H5N1 by deep-freeze duck carcassesin Germany in 2007 [J]. Emerg. Inf. Dis., 2009, 15: 272-279.
    Heilie L.P., Particle A.B. Expression of Influenza Virus Hemagglutinin Activates Transcription Factor NF-kB [J]. Journal of Virology, 1995, 69 (3): 1480-1484.
    Heine H.G., Hariton M., Failla P., et al. Sequence analysis and expression of the host-protective immunogen VP2 of a variant strain of infectious bursal disease virus which can circumvent vaccination with standard type I strains [J]. Gen Virol, 1991, 72 (8): 1835-1843.
    Henke A., Rohland N., Zell R. Co-expression of interleukin-2 by a bicistronic plasmid increases the efficacy of DNA immunization to prevent influenza virus infections[J]. Intervirology 2006, 49:249-252.
    Henke A., Rohland N., Zell R., et al. Coexpression of interleukin-2 by a bicistronic plasmid increases the efficacy of DNA immunization to prevent influenza virus infections [J]. Intervirology, 2006, 49: 249-252.
    Hinshaw V.S. Water-borne transmission of avian influenza viruses [J]. Intervirol, 1979, 11: 66-68.
    Hitchner S.B. Infectivity of infectious bursal disease virus for embroynating eggs [J].Poultry Science, 1970, 49: 511-516.
    Hoshino T., Wiltrout R.H., Young H.A. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response [J]. Immunol, 1999, 162: 5070-5077.
    Hu Y.C., Luo Y.L., Ji W.T., et al. Dual expression of the HA protein of H5N2 avian influenza virus in a baculovirus system [J]. Virol Methods, 2006, 135(1):43-48.
    Hulse-Post D.J., Sturm-Ramirez K.M., Humber J., et al. Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia [J]. Proc Natl Acad Sci, 2005, 102(30): 10682-10687.
    Iinuma H., Okinaga K., Fukushima R. Superior protective and the rapeutic effects of IL-12 and IL-18 gene-transduced dendritic neuroblastoma fusion cells on liver metastasis of murine neuroblastoma [J].Immunol. 2006, 176(6): 3461-3469.
    Itamura S., Morikawa Y., Shida H., et al. Biological and immunological characterization of influenza virus haemagglutinin expressed from the haemagglutinin locus of vacciniavirus [J]. Journal of General Virology, 1990, 71:1293-1301.
    Jackwood, D.J., Sommer, S.E., Knoblich, H.V., Amino Acid comparison of infectious bursal disease viruses placed in the same or differentmolecular groups by RT/PCR-RFLP [J]. Avian Dis. 2001, 45, 330-339.
    Jackwood, D.J., Sommer-Wagner, S.E. Molecular epidemiology of infectious bursal disease viruses: distribution and genetic analysis of newly emerging viruses in the United States [J]. Avian Dis. 2005, 49, 220-226.
    Jackwood, D.J., Sreedevi, B., LeFever, L.J. Studies on naturally occurring infectious bursal disease viruses suggest that a single amino acid substitution at position 253 in VP2 increases pathogenicity [J]. Virology2008. 377, 110-116.
    Johansson B.E. Immunization with influenza a virus hemagglutinin and neuraminidase produced in recombinant baculovirus results in a balanced and broadened response superior to conventional vaccine [J]. Vaccine, 1999, 17: 2073-2080.
    Johansson B.E., Matthews J.T., Kilbourne E.D. Supplementation of conventional influenza A vaccine with purified viral neraminidase results in a balance and broadened immune response [J]. Vaccine 1998, 16: 1009-1015.
    Jun R., Taozhen J., Taipin C., et al. Large-scale manufacture and use of recombinant VP2 vaccine against infectious bursal disease in chickens [J].Vaccine 2007, 25: 7900-7908.
    Karen J.C., Laura M.B., David A.S. Mechanisms of cell entry by influenza virus. Molecular Medicine. 2001, 1462-3994.
    Katz J.M., Lu X. Pathogenesis of and immunity to avian influenza A H5 viruses [J]. Biomed Pharmacother, 2000, 54 (4): 178-187.
    Kibenge F.S., Dhillon A.S., Russell R.G. Biochemistry and immunology of infectious bursal disease virus [J]. Gen Virol 1988, 69(Pt 8):1757-1775.
    Kim S.J., Sung H.W., Han J.H, et al. Protection against very virulentinfectious bursal disease virus in chickens immunized with DNA vaccines [J].Vet Microbiol 2004, 101(1):39-51.
    Kim Y.M., Im J.Y., Han S.H., et al. IFN-gamma up-regulates IL-18 gene expression via IFN consensus sequence-binding protein and activator protein-1 elements in macrophages [J]. Immunol., 2000, 165(6): 3198-3205.
    Kodihalli S., Kobasa D.L., Webster R.G. Stratigies for inducing protection against avianinfluenza A virus subtypes with DNA vaccines [J]. Vaccine, 2000 (8): 2592-2599.
    Kohno K., Kataoka J., Ohtsuki T., et al. IFN-γ-inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12 [J]. Immunol, 1997, 158: 1541-1550.
    Kuiken T., Rimmelzwaan G., van Riel D., et al. Avian H5N1 Influenza in Cats [J]. Science, 2004, 306: 241.
    Kumar S., Ahi Y.S., Salunkhe S.S., et al. Effective protection by high efficiency bicist ronic DNA vaccine against infectious bursal disease virus expressing VP2 protein and chicken IL-2 [J]. Vaccine, 2009, 27 (6): 864-869.
    Laddy D.J., Weiner D.B. From plasmids to protection: a review of DNA vaccines against infectious diseases [J]. Int Rev Immunol. 2006, 25(3-4): 99-123.
    Lee Y.J., Shin J.Y., Song M.S., et al. Continuing evolution of H9 influenza viruses in Korean poultry [J]. Virol 2006, 359: 313-323.
    Letzel T., Coulibaly F., Rey, F.A., et al. Molecular and structural bases for the antigenicity of VP2 of infectious bursal disease virus [J]. Virol. 2007, 81: 12827-12835.
    Li C., Yu K., Tian G., et al. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China [J]. Virol, 2005, 40: 70-83.
    Li K.S., Xu K.M., Peiris J.S., et al. Characterization of H9 subtype influenza viruses from the ducks of southern China: a candidate for the next influenza pandemic in humans? [J]. J Virol, 2003, 77: 6988-6994.
    Liu H., Liu X., Cheng J., et al. Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996–2001[J]. Avian Dis, 2003, 47: 116-127.
    Liu M.A., Ulmer J.B. Human clinical trials of plasmid DNA vaccines [J]. Adv Genet 2005, 55: 25-40.
    Lombardo E., Maraver A., Espinosa I., et al. VP5, the nonstructural polypeptide of infectious bursal disease virus, accumulates within the host plasma membrane and Induces cell lysis [J]. Virology, 2000, 277(2): 345-357.
    Lorey S.L., Huang Y.C., SHARMA V., et al. Constitutive expression of Interleukin-18 and Interleukin-18 receptor mRNA in tumour derived human B-cell lines [J]. Clin ExpImmunol., 2004, 136(3):456-462.
    Lowen A.C., Mubareka S., Tumpey T.M., et al. The guinea pig as a transmission model for human influenza viruses [J]. Proc Natl Acad Sci, 2006, 103 (26): 9988-9992 .
    Ma M.X., Jin N.Y., Wang Z.G. , et al. Construction and immunogenicity of recombinant fowlpox vaccines coexpressing HA of AIV H5N1 and chicken IL18[J]. Vaccine, 2006, 24: 4304-4311.
    Macreadie I.G., Vaugham P.R., Chapman A.J., et al. Passive protection against infectious bursal disease virus by viral VP2 expressed in yeast [J]. Vaccine, 1990, 8(6): 549-552.
    Mahmood, M.S., Hussain, I., Siddique, M., et al. DNA vaccination with VP2 gene of very virulent infectious bursal disease virus (vvIBDV) delivered by transgenic E. coli DH5alpha given orally confers protective immune responses in chickens against infectious diseases [J]. Int Rev Immunol. 2006, 25(3-4): 99-123.
    Mardassi H., Khabouchi N., Ghram A., et al. A very virulent genotype of infectious bursal disease virus predominantly associated with recurrent infectious bursal disease outbreaks in Tunisian vaccinated flocks [J]. Avian Dis, 2004, 48(4): 829-840.
    Marshall D.J., Rudnick K.A., McCarthy S.G. Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine [J]. Vaccine, 2006, 24(3): 244-253.
    Martinez J.L., Lazaro B., Rodriguez J.F., Casal J.I. Antigenic properties and diagnostic potential of bacuovirus-expressed infectious bural disease virus proteins VPX and VP3 [J]. Clin Diagn Lab Immunol 2000, 7: 645-651.
    Melnikov V. Y., Ecder T., Fantuzzi G., et al. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure [J]. Clin. Invest, 2001, 107:1145-1152.
    Micallef M.J., Ohtsuki T., Kohno K., et al. Interferon-γinducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-γproduction [J]. Eur J Immunol, 1996, 7: 571-581.
    Muller H., Islam M .R., Raue R. Research on infectious bursal disease-the past, the present and the future [J]. Vet Microbiol, 2003, 97(1-2): 153-165.
    Nagata T., Ishikawa S., Shimokawa E. et al. High level expression and purification of bioactive bovine interleukin-18 using a baculovirus system[J].Veterinary Immunologyand Immunopathology, 2002, 87: 65-72.
    Nakanishi K., Yoshimoto T., Tsutsui H. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu [J]. Cytokine Growth Factor Rev., 2001, 12: 53-72.
    Nicholls J.M., Chan M.C., Chan W.Y., et al. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract [J]. Nat. Med., 2007, 13 (2): 147-149.
    O’Hagan D.T., Valiante N.M. Recent advances in the discovery and delivery of vaccine adjuvants [J]. Nat Rev 2003, 2: 727-735.
    Ohuchi M., Cramer A., Vey M., et al. Rescue of Vector-Expressed Fowl Plague Virus Hemagglutinin in Biologically Active Form by Acidotropic Agents and Coexpressed M2 Protein [J]. Journal of Virology, 1994, 68 (2): 920-926.
    Okamura H., Nagata K., Komatsu T., et al. A novel costimulatory factor for gamma-interferon found in the lives of mice causes endotoxic shock [J]. Infect Immun, 1995, 63: 3966-3972.
    Okamura H., Tsutsui H., Kashiwamura S., et al. Interleukin-18 a novel cytokine that augments both innate and acquired immunity [J]. Adv Immunol, 1998, 70: 281-312.
    Okamura H., Tsutsui H., Komatsu T., et al. Cloning of a new cytokine that induces IFN-γproduction by T cells [J]. Nature, 1995, 378(11): 88-91.
    Okmura H., Kawaguchi K., Shoji K., et al. High-level induction ofγ- interferon with various mitogens in mice preteated with propio- nibacterium acnes [J]. Infect Immun, 1982, 38: 440.
    Ong W.T., Omar A.R., Ideris A., et al. Development of a multiplex real-time PCR assay using SYBR Green 1 chemistry for simultaneous detection and subtyping of H9N2 influenza virus type A [J]. J Virol Methods, 2007, 144: 57-64.
    Patel A., Tran K., Gray M., et al. Evaluation of conserved and variable influenza antigens for immunization aginst different isolates o f H5N1 viruses [J]. Vaccine, 2009, 27: 3083-3089.
    Pathology of Fatal Highly Pathogenic H5N1 Avian Influenza Virus Infection in Large-billed Crows (Corvus macrorhynchos) during the 2004 Outbreak in Japan [J]. Vet Pathol 4, 2006, 3: 500-501.
    Pavlova B., Volf J., Alexa P., et al. Cytokine mRNA expression in porcine cell lines stimulated by enterotoxigenic Escherichia coli [J].Veterinary Microbiology, 2008, 132: 105-110.
    Peiris J.S.M., de Jong M.D., Guan, Y. Avian Influenza virus (H5N1): a threat to human health [J]. Clin. Microbiol. Rev., 2007, 20 (2): 243-267.
    Pensaert M., Ottis K., Vandeputte J., et al. Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential importance for man [J]. Bull World Health Organ, 1981, 59 (1): 75-78.
    Pereda A.J., Uhart M., Perez A.A., et al. Avian influenza virus isolated in wild waterfowl in Argentina: Evidence of a potentially unique phylogenetic lineage in South America [J]. Virol, 2008, 378(2): 363-370.
    Pirhonen, J., Sareneva, T., Kurimoto, M., et al. Virus infection activates IL-1 beta and IL-18 production in human macrophages by a caspase-1-dependent pathway [J]. J. Immunol., 1999, 162: 7322-7329.
    Pitcovski J., Gutter B., Gallili G., et al. Development and large-scale use of recombinant VP2 vaccinefor the prevention of infectious bursal disease of chickens [J]. Vaccine 2003, 21: 4736-4743.
    Puren A.J., Fantuzzi G., Dinarello C.A. Gene expression synthesis and secretion of interleukin-18 and interleukin-1 beta are differentially regulated in human blood mononuclear cells and mouse spleen cells [J]. Immunology 1999, 96: 2256-2261.
    Rao S., Kong W.P., Wei C.J., et al. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice [J]. Plo S ONE, 2008, 3(6): e2432.
    Rinder M., Lang V., Fuchs C., et al. Genetic evidence for multi-event imports of avian influenza virus A (H5N1) into Bavaria, Germany[J]. Vet. Diagn. Invest., 2007, 19: 279-282.
    Rong J., Cheng T.P., Liu X.N et al. Development of recombinant VP2 vaccine for the prevention of infectious bursal disease of chickens [J]. Vaccine 2005, 23: 4844-4851.
    Rong J., Jiang T., Cheng T., et al. Large-scale manufacture and use of recombinant VP2 vaccine against infectious bursal disease in chickens [J]. Vaccine 2007, 25: 7900-7908.
    Rosalia M., Enrique R.B., Peter P., et al. Apical Budding of a Recombinant Influenza A VirusExpressing a Hemagglutinin Protein with a Basolateral Localization Signal [J]. Journal of Virology, 2002, 76 (7): 3544-3553.
    Rothe H., Jenkins N. A., Copeland N. G., et al. Active stage of autoimmune diabetes is associated with the expression of a novel cytokine, IGIF, which is located near Idd2 [J]. Clin. Invest., 1997, 99: 469-474.
    Scarselli M., Giuliani M.M, Adu-Bobie et al. The impact of genomics on vaccine design [J].Trends Biotechnol 2005, 23: 84-91.
    Schneider K., Puehler F., Baeuerle D., et al. cDNA cloning of biologically active chicken interleukin-18 [J]. Journal of Interferon and Cytokine Research, 2000, 20: 879-883.
    Schultz U., Fitch W.M., Ludwig S., et al. Evolution o f pig influenza viruses [J]. Viro logy, 1991, 183(1): 61-73.
    Sekiyama A., Ueda H., Kashiwamura S. A cytokine translates a stress into medical science [J]. Journal of Medicine Invest, 2005, 52 (Suppl): 236-239.
    Sene D.A., Panigraphy B., Kawaoka Y., et al. Survey of hemaegglutinin (HA) cleavage site sequence of H5 and H7 avian inflluenza virus amino acid sequence at the HA cleavage site asa marker of Pathogenicity Potential [J]. Avian Disease, 1996, 40: 425-437.
    Shantba K., Hideo G., DaxwynL K., et al. DNA vaccine encoding hemagglutinin protective immunity against HSN1 influenza virus infection in mice [J]. Journal of Virology, 1999, 73 (3): 2094 -2098.
    Shaw I., Davison T.F. Protection from IBDV-induced bursal damage by a recombinant fowlpox vaccine, fpIBD1, is dependent on the titre of challenge virus and chicken genotype [J]. Vaccine, 2000, 18(28): 3230-3241.
    Shi K. C., Guo X., Ge X. N., et al. Cytokine mRNA expression profiles in peripheral blood mononuclear cells from piglets experimentally co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 [J]. Veterinary Microbiology, 2010, 140: 155-160.
    Shinya K., Ebina M., Yamada S., et al. Influenza virus receptors in the human airway[J]. Nature, 2006, 440: 435-436.
    Shu Y., Yu H., Li D. Lethal avian influenza A (H5N1)infection in a pregnant woman in Anhui Province, China [ J] . N Eng l J Med, 2006, 354 (13): 1421-1422.
    Snyder D.B., Vakharia V.N., Mengel-Whereat S.A., et al. Active cross-protection induced by a recombinant baculovirus expressing chimeric infectious bursal disease virus structural proteins [J].Avian Dis, 1994, 38(4): 701-707.
    Songserm T., Amonsin A., Jam-on R., et al. Fatal Avian Influenza A H5N1 in a Dog [J]. Emerg Infect Dis, 2006, 12(11): 1744-1747.
    Spackman E., Senne D.A., Davison S. Sequence analysis of recent H7 avian influenza viruses associated with three different outbreaks in commercial poultry in the United States [J]. Virol 2003, 77: 13399-13402.
    Spies U., Müller H., Becht H. Nucleotide sequence of infectious bursal disease virus segment A delineates two major open reading frames [J]. Nucleic Acids Res 1989, 17(19): 7982.
    Starick E., Beer M., Hoffmann B., et al. Phylogenetic analyses of highly pathogenic avianinfluenza virus isolates from Germany in 2006 and 2007 suggest at least three separate introductions of H5N1 virus. Vet. Microbiol., 2007, 128: 243-252.
    Stoll S., Jonuleit H., Schmitt E, et al. Production of functional IL-18 by different subtypes of murine and human dendritic cells (DC): DC-derived IL-18 enhances IL-12-dependent Th1 development [J]. Eur J Immunol., 1998, 28:3231-3239.
    Sturm-Ramirez K.M., Hulse-Post D.J., Govorkova E.A., et al. Are Ducks Contributing to the Endemicity of Highly Pathogenic H5N1 Influenza Virus in Asia? [J]. J Virol, 2005, 79(17): 11269-11279.
    Subbarao K., Klimov A., Katz J., et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness [J]. Science 1998, 279: 393-396.
    Subbarao K., Luke C. H5N1 viruses and vaccines [J]. PloS Pathog, 2007, 3(3): e40.
    Sugawara S., Uehara A., Nochi T. et al. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells [J]. Immunol., 2001, 167: 6568-6575.
    Swayne D.E., Garcia M., Beck J.R., et al. Protection against diverse highly pathogenic HS avian influenza virus in chickens immunized with a recombinant fowlpox vaccine containing an HS avian influenza hemagglutinin gene insert [J]. Vaccine, 2000, 18: 1088-1095.
    Takehara, K., Nagata, T., Kiluma, R., et al. Expression of a bioactive bovine interleukin-12using baculovirus [J]. Vet. Immunol. Immunopathol. 2000, 77: 15-25.
    Tang M., Wang H., Zhou S., et al. Enhancement of the immunogenicity of an infectious bronchitis virus DNA vaccine by a bicistronic plasmid encoding nucleocapsid protein and interleukin-2 [J]. Virol Methods, 2008, 149(1): 42-48.
    Taniguchi M., Nagaoka K., Kunikata T., et al. Characterization of anti-human interleukin-18 (IL-18)/ interferon-γ-inducing factor(IGIF) monoclonal antibodies and their application in the measurement of human IL-18 by ELISA [J]. Journal of Immunological Methods, 1997, 206(5): 107-113.
    Tayade C., Jaiswal T.N., Mishra S.C. l-Arginine stimulatesimmuneresponse in chickens immunized with intermediate plus strain of infectious bursal disease vaccine [J]. Vaccine 2006, 24(5): 552-560.
    Tayade C., Koti M., Mishra S.C. l-Arginine stimulates intestinal intraepithelial lymphocyte functions and immune response in chickens orally immunized with live intermediate plus strain of infectious bursal disease vaccine [J]. Vaccine 2006, 24(26): 5473-5480.
    Tellier R. Review of aerosol transmission of influenza A virus [J]. Emerg. Infect. Dis., 2006, 12: 1657-1662.
    Thomas W.G., Kirsten S., Beatrice S., et al. IL-18 stimulates the proliferation and IFN-γrelease of CD4+ T cell in the chicken: conservation of a Th1-like system in a nonmammalian species [J]. Immunol, 2003, 171(4): 1809-1815.
    Tsukamoto K., Tanimura N., Kakita S., et al. Efficacy of three live vaccines against highly virulent infectious bursal disease virus in chickens with or without maternal antibodies [J]. Avian Dis 1995, 39(2): 218-229.
    Tsutsui H., Matsui K., Kawada N., et al. IL-18 accounts for both TNF-alpha and Fas ligand-mediated hepatotoxic pathways in endotoxin induced liver injury in mice [J]. Immunol, 1997, 159: 3961-3967.
    Ushio S., Namba M., Okura T., et al. cDNA cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli and studies on the biologic activities of the protein [J]. Immuno., 1996, 156: 4274-4279.
    Vakharia V.N., Snyder D.B., Lutticken D, et al. Active and passive protection again variant and classic Infectious bursal disease virus strains induced by baculovirus -expressedstructural proteins [J].Vaccine 1994, 12(5): 452-456.
    Van den Berg T.P. Acute infectious bursal disease in poultry: a review [J]. Avian Pathol 2000, 29(3):175-194.
    Wack A., Rappuoli R. Vaccinology at the beginning of the 21st century [J]. Curr Opin Immunol 2005, 17: 411-418.
    Wang R., Epstein J., Baraceros F.M., et al. Induction of CD4+ T celldependent CD8+ type 1 responses in humans by a malaria DNA vaccine [J]. PNAS (USA) 2001, 98: 10817-10822.
    Wang Y.S., Fan H.J., Li Y., et al. Development of a multi-mimotope peptide as a vaccine immunogen for infectious bursal disease virus [J]. Vaccine, 2007, 25(22): 4447-4455.
    Weber S., Harder T., Starick E., et al. Molecular analysis of highly pathogenic avian influenza virus of subtype H5N1 isolated from wild birds and mammals in northern Germany[J]. Gen. Virol., 2007, 88: 554-558.
    Webster R.G., Taylor J., Pearson J., et al. Immunity to Mexican H5N2 avian influenza viruses induced by a fowl pox2H5 recombinant [J]. Avian Dis., 1996, 40: 461-465.
    Wheeler R.D., Brough D., Le Feuvre R.A., et al. Interleukin-18 induces expression and release of cytokines from murine glial cells: interactions with interleukin-1 beta [J]. Neurochem., 2003, 85:1412-1420.
    Wienhold D., Armengol E., Marquardt A., Immunomodulatory effect of plasmids co-expressing cytokines in classical swine fever virus subunit gp55/E2-DNA vaccination [J]. Vet Res. 2005,36 (4): 571-587.
    Winfried G.J., Hanneke I.V., Nicolette C.S. et al. Potentiation of humoral immune responses to vaccine antigens by recombinant chicken IL-18 (rChIL-18) [J]. Vaccine 2005, 23: 4212- 4218.
    Winterfield R.W.,Appleton G.S. Avian nephrosis, nephritis and Gumboro disease [J].L&M News and Views,1962, 3: 103.
    Wood G.W., Mclauley J., Bas W.E., et al. Deduced amino acid sequences cleavage site of avian influenza A virus of HS and H7 at the haemagglutinin subypes [J]. Archive Virology, 1993, 130: 209-213.
    World Health Organization (WHO). Review of latest available evidence on potentialtransmission of avian influenza (H5N1) through water and sewage and ways to reduce the risks to human health. Water, sanitation and health, public health and environment, Geneva 2006, Last updated 10/10/2007.
    Xavier S., Peter V., Wim M., et al. Protection of mice against a lethal influenza virus challenge after immunization with yeast-derived secreted influenza virus hemagglutinin [J]. Eur. J. Biochem. 1999, 260: 166-175.
    Xing Z., Cardona C.J., Li J., et al. Modulation of the immune responses in chickens by low pathogenicity avian influenza virus H9N2 [J]. J Gen Virol, 2008, 89: 1288-1299.
    Xu Q., Song X., Xu L., et al. Vaccination of chickens with a chimeric DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 induces protective immunity against coccidiosis [J]. Vet Parasitol, 2008, 156 (324): 319-323.
    Yamaguchi T., Kasanga C.J., Terasaki K., et al. Nucleotide sequence analysis of VP2 hypervariable domain of infectious bursal disease virus detected in Japan from 1993 to 2004 [J]. Vet Med Sci, 2007, 69(7): 733-738.
    Yamaguchi T., Lwata K., Kobayashi M., et al. Epitope mapping of capsid proteins VP2 and VP3 of infectious bursal disease virus [J]. Arch Virol, 1996, 141(8): 1493-1507.
    Yoshimoto T., Takeda K., Tanaka T., et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production [J]. Immunol., 1998, 161:3400-3407.
    Yoshimoto T., Tsutsui H., Tominaga K., et al. IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils [J]. Proc. Natl. Acad. Sci. USA. 1999, 96: 13962-13966.
    Yu X.M., Shou C.B., Zhang X.D., et al. Immunoenhancement on DNA vaccine of polyprotein gene in infectious bursal disease virus by co-delivery with plasmid encoding chicken interleukin-18 [J]. J. Zhejiang University 2008, 34: 13-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700