猴AIDS模型外周血免疫病毒学指标动态变化及艾可清治疗猴AIDS模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
截至2009年10月底,累计报告艾滋病病毒感染者和病人319 877例,其中艾滋病病人102 323例;报告死亡49 845例。卫生部与联合国艾滋病规划署和世界卫生组织联合对中国2009年艾滋病疫情进行了评估。结果显示,截至2009年底,估计中国目前存活艾滋病病毒感染者和病人(HIV/AIDS)约74万人,其中,艾滋病病人为10.5万人;估计2009年当年新发艾滋病病毒感染者4.8万人。目前我国艾滋病传播途径已由以前的吸毒为主要途径转变为性接触占70%以上。
     我国近年来非常重视艾滋病的防治,积极发挥各方面的力量和手段,包括重视研究用中医来治疗艾滋病。在对中医药治疗艾滋病试点工作项目进行总结后,发现中医药治疗艾滋病在调节免疫功能、改善临床症状、提高生存质量、延缓病情进展等方面有较好疗效。然而也有很多问题需要解决,比如如何客观准确的评估中医在艾滋病治疗中的作用?如果使中医治疗艾滋病的疗效有所突破,不断进步?中医治疗艾滋病所起的疗效的机制何在?
     本论文检测了用SIV感染恒河猴造成猴艾滋病模型外周血的免疫学指标、病毒学指标的变化情况,然后观察了中药复方艾可清对SIV感染前后变化明显的免疫学和病毒学指标的影响。
     1SIV感染猴模型病毒、免疫指标的动态变化
     用SIVmac239感染36只恒河猴,观察外周血指标检测包括血常规、CD4+T细胞、CDS+T细胞计数、血浆病毒载量;外周血PBMC免疫共刺激分子mRNA量,这些免疫共刺激分子包括:CTLA-4、FOXP3、PD-1、IDO、HLA-DR、ICOS、CD28。
     实验结果显示,WBC计数在SIV感染之后并未出现明显变化;CD4+T细胞比例和计数在SIV感染1周后均升高,SIV感染2周时又下降,此后几周有所波动,但都维持在低水平;其中CD4+T细胞比例保持基本稳定,但CD4+T细胞计数有逐渐降低的趋势。CD8+T细胞比例和计数在SIV感染后第]周和第2周均较SIV感染前逐渐升高,至第3周开始下降,第4周降至最低(但仍高于SIV感染前),第5周又有所上升,此后保持基本稳定。CD4/CD8比例在SIV感染后1、2周开始下降,第2周降至最低,然后第3周开始回升,至第4周继续上升,但仍低于第2周;第5周又开始下降,此后保持基本稳定。
     SIV感染猴的病毒载量则与文献报道基本一致,第二周上升达到最高,其后回落,开始波动,第5周后基本保持稳定的波动。
     从这些实验结果可以看出,SIV感染猴的CD4+T细胞计数的下降与感染前比较其下降程度并不大,这可能是因为SIV感染导致的CD4+T细胞减少需要一个比较长的时间,在数周内并不能迅速降低。
     实验结果显示,SIV感染后免疫共刺激分子CTLA-4、FOXP3、PD-1、IDO、HLA-DR、ICOS、CD28的mRNA量出现了不同程的升高,各个免疫共刺激分子mRNA的峰值出现在不同的时间点,只有HLA-DR的峰值出现在SIV感染后第二周,其它免疫共刺激分子mRNA量的峰值均出现在SIV感染第5周之后。
     这些结果说明,本实验所检测的7个免疫共刺激分子均与SIV感染的结果有着密切的关系,这些与AIDS疾病进展密切相关的分子表达的变化规律可能受到多种因素的复杂影响,其表达规律可能反映着疾病的进展规律。2中药复方艾可清对SIV感染猴免疫学、病理改变及病毒载量的影响
     用SIVmac239感染12只恒河猴造成猴艾滋病模型,于感染第71天开始给药,分为模型对照组、艾可清高剂量组、艾可清低剂量组。艾可清高剂量组的给药剂量为0.4455g/kg.天,低剂量组给药剂量为:0.1485g/kg.天,灌胃给药。检测外周血CD4+、CD8+T细胞计数、病毒载量、免疫共刺激分子mRNA变化及浅表淋巴结病理变化。
     结果显示,艾可清高剂量组在给药期间的时间点,CD4+T细胞计数较给药前明显上升,但停药后时间点呈下降趋势;说明艾可清对猴艾滋病模型外周血CD4+T细胞计数具有一定的改善作用。
     在外周血SIV病毒载量方面,艾可清高、低剂量组均在给药8周时使SIV病毒载量明显下降;而在停药后各时间点则均有所回升。这说明艾可清高、低剂量组均对病毒载量有一定的抑制作用。
     在外周浅表淋巴结病理检测方面,高剂量组的淋巴结病理结构在给药期间“好转”和“转坏”各半,在停药后保持稳定。
     本研究检测了7种免疫共刺激分子mRNA量,结果显示,艾可清给药后能显著降低PD-1、IDO、HLA-DRmRNA的表达量。PD-1是促进免疫的重要免疫共刺激分子,IDO则在SIV感染猴血浆及内脏组织中显著升高,且与病毒载量有关:HLA-DR则是免疫活化的指标。因此艾可清降低这几种免疫共刺激分子的mRNA表达说明艾可清可能减轻了SIV导致的免疫激活的程度,从而改善SIV感染导致的免疫病理。全文结论
     1SIV感染猴外周血CD4+T细胞、CD8+T细胞比例及细胞计数、CD4/CD8比值、SIV病毒载量在感染前后均出现明显变化。
     2SIV感染猴外周血PBMC表达免疫共刺激分子CTLA-4、FOXP3、PD-1、IDO、HLA-DR、1COS、CD28的mRNA量出现了不同程的升高,各个免疫共刺激分子mRNA的峰值出现在不同的时间点,
     3中药复方艾可清对猴艾滋病模型外周血CD4+T细胞计数具有一定的升高作用;对病毒载量有一定的降低作用,能够一定程度上改善猴艾滋病模型浅表淋巴结的病理表现。
     4中药复方艾可清对猴艾滋病模型外周血PBMC分泌的PD-1、IDO及HLA-DRmRNA有显著降低作用。
There were 319 877 cases of HIV infected people and AIDS patients in China before October 31,2009. The AIDS patients are 102 323 cases in all of the people infected by HIV. The dead cases is up to 49 845. The AIDS epidemic of 2009 in China was evaluated by Ministry of health of P.R.C and UNAIDS combined with WHO. The results showed that Before the end of 2009, It is evaluated that there are 740,000 HIV infected cases (HIV/AIDS), the AIDS patients is up to 1050000. The de novo HIV infected cases up to 48000 cases. At present, the route of HIV transmission had changed from Drug abuse to 70% more through sexual transmission.
     China had put much emphasis on the prevention and treatment of HIV/AIDS. All sorts of methods include Chinese Medicine were employed to treat the HIV/AIDS. The pilot programme of Chinese Medicine to treat HIV/AIDS was summarized and the results showed that Chinese Medicine have the favourable effect of immune modulation, clinical symptom improvement, quality of survive improvement and delayed the progression of disease. But there were also some problem to be face and solve. For example, How to objectively evaluate the effects of Chinese Medicine to treat HIV/AIDS? How to make a significant progress in the effects of Chinese Medicine to treat HIV/AIDS? What are the mechanism of the effects of Chinese Medicine to treat HIV/AIDS?
     This research tests the immunological and virological items in peripheral blood in rhesus monkeys infected with SIV. The effects of the herb complex Ai Ke Qing to the immunological and virological items was observed.
     1 The dynamic changes of immunological and virological items in peripheral blood in rhesus monkeys infected with SIV.
     36 rhesus monkeys were infected with SIVmac239, blood routine, CD4+T cell counts and CD8+T cell counts in the peripheral blood, plasma viral load, PBMC costimulatory molecule mRNA quantity include CTLA-4、FOXP3、PD-1、IDC、HLA-DR、ICOS、CD28。
     The results showed that the WBC counts did not significantly change before and after SIV infection. Both the CD4+T cell ratio and counts are up-regulated one week after SIV infection, but down-regulated two weeks after SIV infection, then fluctuate and maintained in a low level. The CD4+T cell ratio remained stable. But the CD4+T cell counts are tend to decrease gradually. The CD8+T cell ratio and counts are both up-regulated
     in the second week after SIV infection, but down-regulated from three weeks after SIV infection. The lowest level occurred at 4 weeks after SIV infection but higher than the level before SIV infection. The CD8+T cell ratio and counts are a bit up at fifth week after SIV infection and then remained stable. The CD4/CD8 is down-regulated after one week after SIV infection and reached lowest level at the second week. Then the CD4/CD8 is up-regulate in third and forth week after SIV infection. But it is lower than the level of second week. The CD4/CD8 down-regulate again at fifth week and then remained stable.
     The dynamic changes of plasma viral load are similar to the previous report. The summit occurred at second week after SIV infection and then decreased and fluctuate stable.
     From these results we can conclude that the down-regulation extent of CD4+T cell counts is not very big compared with the level before infection. This may be because the down-regulation of CD4+T cell counts need a long time. Several weeks are insufficient for significantly down-regulation.
     The results also showed that the mRNA levels of PBMC costimulatory molecule mRNA include TLA-4、FOXP3、PD-1、IDO、HLA-DR、ICOS、CD28 are significantly get up in different extent. The summits of these mRNA levels occurred in different time point. Only the mRNA summit level of HLA-DR is occurred in second week after SIV infection, all the others are occurred fifth week after SIV infection.
     From the above experiments we can conclude that all of the seven costimulatory molecules are closely related to the SIV infection results. The expression rule of these costimulatory molecules may affected by complex factors. The rule of its expression may manifest the rule of HIV disease progression. 2The effects of Chinese herb complex Ai Ke Qing to the immunological, pathological changes and viral load of rhesus monkeys infected with SIV
     12 rhesus monkeys infected with SIVmac239. After 71 days of SIV infection, the 12 monkeys were randomly divided into 3 groups, namely model control group, Ai Ke Qing high dose group and Ai Ke Qing low dose group and start intragastric administration according to the group. The high dose of Ai Ke Qing is 0.4455g/kg.d; The low dose of Ai Ke Qing is 0.1485g/kg.d. The CD4-T cell counts and CD8+T cell counts in the peripheral blood, plasma viral load, PBMC costimulatory molecule mRNA quantity and pathological changes in superficial lymph nodes.
     The results showed that the CD4+T cell counts are increased in the time points during drug administration compared with the level before drug administration. But it tend to get down after drug withdrawal. So the Ai Ke Qing herb complex may have some effect on relief the CD4+T cell counts.
     The plasma viral load of both the Ai Ke Qing high and low dose groups are significantly get down at the time point of eighth week after drug administration. But it back up at time points of drug cessation. These results revealed that both the Ai Ke Qing high and low dose group can inhibit the plasma viral load in some extent.
     To the pathological changes in superficial lymph nodes, The high dose group showed 2 monkeys improved and 2 monkeys deteriorated during drug administration. Then the pathological changes remained stable after drug cessation.
     This experiment tested 7 costimulatory molecule mRNA. The results showed that the mRNA levels of PD-1、IDO and HLA-DR are significantly inhibited by Ai Ke Qing herb complex.PD-1 is an important costimulatory molecule that can promote immune activation. But the IDO is increased in plasma and internal organ tissues and mainly related to plasma viral load. HLA-DR is a marker of immune activation. From these experiments we can conclude that the Ai Ke Qing herb complex may relief the immune activation state because it can inhibit the immune activation costimulatory molecule expression. So results in the improvement of immune pathological changes caused by SIV infection.
     Conclusion
     1 The CD4+T cell, CD8+T cell ratio and counts, CD4/CD8 in blood, SIV plasma viral load showed significant change in SIV infected rhesus monkeys.
     2 The costimulatory molecules mRNA of CTLA-4、FOXP3、PD-1、IDO、HLA-DR、ICOS、CD28 are up-regulated in different extent. The summit levels of them are occurred in different time points.
     3 The CD4+T cell counts can up-regulate in some extent through Ai Ke Qing administration; Ai Ke Qing also can decrease SIV plasma viral load and can improve the pathological changes in superficial lymph nodes in some extent.
     4 The Ai Ke Qing herb complex can significantly decrease the mRNA levels of PD-1、IDO and HLA-DR in PBMC of rhesus monkeys infected with SIV.
引文
[1]卫生部新闻办公室.中国艾滋病疫情现状.首都公共卫生,2010(4)1:1.
    [2]Buchbinder SP, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study):a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet.2008:372:1881-1893.
    [3]张骁,雍晓春,张韬.艾滋病疫苗研发最新进展.中国制药信息.2010,26(1):6-16.
    [4]危剑安.发挥中医药优势,应对艾滋病挑战.环球中医药,2010,3(3):172-176.
    [5]Jay A. Levy.艾滋病病毒与艾滋病的发病机制.科学出版社,2010年3月第三版.邵一鸣主译.第93页.
    [6]Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature.1984;312 (5996):763-7.
    [7]Cordonnier A, Montagnier L, Emerman M. Single amino-acid changes in HIV envelope affect viral tropism and receptor binding. Nature.1989 Aug 17:340(6234):571-4.
    [8]Cordonnier A, Riviere Y, Montagnier L, Emerman M. Effects of mutations in hyperconserved regions of the extracellular glycoprotein of human immunodeficiency virus type 1 on receptor binding. J Virol.1989 Oct;63(10):4464-8.
    [9]Olshevsky U, Helseth E, Furman C, Li J, Haseltine W, Sodroski J. Identification of individual human immunodeficiency virus type 1 gp120 amino acids important for CD4 receptor binding. J Virol.1990 Dec;64(12):5701-7.
    [10]Camerini D, Seed B. A CD4 domain important for HIV-mediated syncytium formation lies outside the virus binding site. Cell.1990 Mar 9;60(5):747-54.
    [11]Hasunuma T, Tsubota H, Watanabe M, Chen ZW, Lord CI, Burkly LC, Daley JF, Letvin NL. Regions of the CD4 molecule not involved in virus binding or syncytia formation are required for HIV-1 infection of lymphocytes. J Immunol. 1992 Mar 15;148(6):1841-6.
    [12]Truneh A, Buck D, Cassatt DR, Juszczak R, Kassis S, Ryu SE, Healey D, Sweet R, Sattentau Q. A region in domain 1 of CD4 distinct from the primary gpl20 binding site is involved in HIV infection and virus-mediated fusion. J Biol Chem.1991 Mar 25;266 (9):5942-8.
    [13]Popik W, Hesselgesser JE, Pitha PM. Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signaling pathway. J Virol. 1998 Aug;72(8):6406-13.
    [14]Chesebro B, Buller R, Portis J, Wehrly K. Failure of human immunodeficiency virus entry and infection in CD4-positive human brain and skin cells. J Virol.1990 Jan;64(1):215-21.
    [15]Evans LA, McHugh TM, Stites DP, Levy JA. Differential ability of human immunodeficiency virus isolates to productively infect human cells. J Immunol. 1987 May 15;138(10):3415-8.
    [16]Kikukawa R, Koyanagi Y, Harada S, Kobayashi N, Hatanaka M, Yamamoto N. Differential susceptibility to the acquired immunodeficiency syndrome retrovirus in cloned cells of human leukemic T-cell line Molt-4. J Virol.1986 Mar;57(3):1159-62.
    [17]Cheng-Mayer C, Liu R, Landau NR, Stamatatos L. Macrophage tropism of human immunodeficiency virus type 1 and utilization of the CC-CKR5 coreceptor. J Virol.1997 Feb;71(2):1657-61
    [18]Jansson M, Popovic M, Karlsson A, Cocchi F, Rossi P, Albert J, Wigzell H. Sensitivity to inhibition by beta-chemokines correlates with biological phenotypes of primary HIV-1 isolates. Proc Natl Acad Sci U S A.1996 Dec 24;93(26):15382-7.
    [19]Mackewicz CE, Barker E, Greco G, Reyes-Teran G, Levy JA. Do beta-chemokines have clinical relevance in HIV infection? J Clin Invest.1997 Aug 15; 100(4):921-30.
    [20]Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol.1999; 17:657-700.
    [21]Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, Schwartz 0, Heard JM, Clark-Lewis I, Legler DF, Loetscher M, Baggiolini M, Moser B. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature.1996 Aug 29;382(6594):833-5.
    [22]Gosling J, Monteclaro FS, Atchison RE, Arai H, Tsou CL, Goldsmith MA, Charo IF. Molecular uncoupling of C-C chemokine receptor 5-induced chemotaxis and signal transduction from HIV-1 coreceptor activity. Proc Natl Acad Sci U S A.1997 May 13; 94(10):5061-6.
    [23]Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R,O'Brien SJ. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science.1996 Sep 27;273(5283):1856-62.
    [24]Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996 Aug 9;86(3):367-77.
    [25]Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature.1996 Aug 22;382(6593):722-5.
    [26]Zoeteweij JP, Golding H, Mostowski H, Blauvelt A. Cytokines regulate expression and function of the HIV coreceptor CXCR4 on human mature dendritic cells. J Immunol.1998 Oct 1;161(7):3219-23.
    [27]Sozzani S, Ghezzi S, Iannolo G, Luini W, Borsatti A, Polentarutti N, Sica A, Locati M, Mackay C, Wells TN, Biswas P, Vicenzi E, Poli G, Mantovani A. Interleukin 10 increases CCR5 expression and HIV infection in human monocytes. J Exp Med.1998 Feb 2;187(3):439-44.
    [28]Zou W, Foussat A, Houhou S, Durand-Gasselin I, Dulioust A, Bouchet L, Galanaud P, Levy Y, Emilie D. Acute upregulation of CCR-5 expression by CD4+ T lymphocytes in HIV-infected patients treated with interleukin-2. ANRS 048 IL-2 Study Group. AIDS.1999 Mar 11;13(4):455-63.
    [29]Brack-Werner R, Kleinschmidt A, Ludvigsen A, Mellert W, Neumann M, Herrmann R, Khim MC, Burny A, Muller-Lantzsch N, Stavrou D and Erfle V. Infection of human brain cells by HIV-1:restricted virus production in chronically infected human glial cell lines. AIDS.1992 Mar;6(3):273-85.
    [30]Mellert W, Kleinschmidt A, Schmidt J, Festl H, Emler S, Roth WK, Erfle Ⅴ. Infection of human fibroblasts and osteoblast-like cells with HIV-1. AIDS. 1990 Jun;4(6):527-35.
    [31]Sereti I, Lane HC. Immunopathogenesis of human immunodeficiency virus: implications for immune-based therapies. Clin Infect Dis.2001 Jun 15:32(12):1738-55.
    [32]Metzner KJ, Jin X, Lee FV, Gettie A, Bauer DE, Di Mascio M, Perelson AS, Marx PA, Ho DD, Kostrikis LG, Connor RI. Effects of in vivo CD8(+) T cell depletion on virus replication in rhesus macaques immunized with a live, attenuated simian immunodeficiency virus vaccine. J Exp Med.2000 Jun 5;191(11):1921-31.
    [33]Imami N, Hardy G, Gotch F. Development of immunotherapeutic strategies for HIV-1. Expert Opin Biol Ther.2001 Sep;1(5):803-16.
    [34]Oxenius A, Sewell AK, Dawson SJ, Gunthard HF, Fischer M, Gillespie GM, Rowland-Jones SL, Fagard C, Hirschel B, Phillips RE, Price DA; Swiss HIV Cohort Study. Functional discrepancies in HIV-specif ic CD8+T-lymphocyte populations are related to plasma virus load. J Clin Immunol.2002 Nov;22(6):363-74.
    [35]Chouquet C, Autran B, Gomard E, Bouley JM, Calvez V, Katlama C, Costagliola D, Riviere Y; IMMUNOCO Study Group. Correlation between breadth of memory HIV-specific cytotoxic T cells, viral load and disease progression in HIV infection. AIDS.2002 Dec 6;16(18):2399-407.
    [36]Gray CM, Lawrence J, Schapiro JM, Altman JD, Winters MA, Crompton M, Loi M, Kundu SK, Davis MM, Merigan TC. Frequency of class Ⅰ HLA-restricted anti-HIV CD8+T cells in individuals receiving highly active antiretroviral therapy (HAART). J Immunol.1999 Feb 1;162 (3):1780-8.
    [37]Ortiz GM, Wellons M, Brancato J, Vo HT, Zinn RL, Clarkson DE, Van Loon K, Bonhoeffer S, Miralles GD, Montefiori D, Bartlett JA, Nixon DF. Structured antiretroviral treatment interruptions in chronically HIV-1-infected subjects. Proc Natl Acad Sci U S A.2001 Nov 6;98(23):13288-93.
    [38]McNeil AC, Shupert WL, Iyasere CA, Hallahan CW, Mi can JA, Davey RT Jr, Connors M. High-level HIV-1 viremia suppresses viral antigen-specific CD4(+) T cell proliferation. Proc Natl Acad Sci U S A.2001 Nov 20; 98 (24):13878-83
    [39]Kahn JO, Cherng DW, Mayer K, Murray H, Lagakos S. Evaluation of HIV-1 immunogen, an immunologic modifier, administered to patients infected with HIV having 300 to 549×10(6)/L CD4 cell counts:A randomized controlled trial. JAMA.2000 Nov 1;284(17):2193-202.
    [40]Sindhu ST, Ahmad R, Morisset R, Ahmad A, Menezes J. Peripheral blood cytotoxic gammadelta T lymphocytes from patients with human immunodeficiency virus type 1 infection and AIDS lyse uninfected CD4+ T cells, and their cytocidal potential correlates with viral load. J Virol.2003 Feb;77(3):1848-55
    [41]Silvestri G, Sodora DL, Koup RA, Paiardini M, O'Neil SP, McClure HM, Staprans SI, Feinberg MB. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity.2003 Mar;18(3):441-52.
    [42]Gougeon ML. To kill or be killed:how HIV exhausts the immune system. Cell Death and Differentiation (2005) 12,845-854.
    [43]Zvi G, Martin MS, William EP, Louis JP. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nature Medicine 2006; 12,289-295
    [44]Mario S. HIV-1 pathogenesis. Nature Medicine 2003; 9,853-860
    [45]Finkel, T. H., G. Tudor-Williams, N. K. Banda, M. F. Cotton, T. Curiel, C. Monks, T. W. Baba, R. M. Ruprecht, and A. Kupfer.1995. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV-and SIV-infected lymph nodes. Nat. Med.1:129-134.
    [46]Meyaard, L., S. A. Otto, R. R. Jonker, M. J. Mi jnster, R. P. Keet, and F. Miedema.1992. Programmed death of T cells in HIV-1 infection. Science 257:217-219
    [47]Muro-Cacho, C. A., G. Pantaleo, and A. S. Fauci.1995. Analysis of apoptosis in lymph nodes of HIV-infected persons. J. Immunol.154:5555-5566.
    [48]Varbanov M, Espert L, Biard-Piechaczyk M. Mechanisms of CD4 T-cell depletion triggered by HIV-1 viral proteins. AIDS Rev.2006;8 (4):221-36.
    [49]Ahr B, Robert-Hebmann V, Devaux C, Biard-Piechaczyk M. Apoptosis of uninfected cells induced by HIV envelope glycoproteins. Retrovirology. 2004,23; 1(1):12.
    [50]Perfettini JL, Castedo M, Roumier T, Andreau K, Nardacci R, Piacentini M, Kroemer G. Mechanisms of apoptosis induction by the HIV-1 envelope. Cell Death Differ.2005;12 Suppl 1:916-923.
    [51]Zhao RY, Bukrinsky M, Elder RT. HIV-1 viral protein R (Vpr) & host cellular responses. Indian J Med Res.2005;121(4):270-286.
    [52]Bouzar AB, Villet S, Morin T, Rea A, Genestier L, Guiguen F, Garnier C, Mornex JF, Narayan 0, Chebloune Y. Simian immunodeficiency virus Vpr/Vpx proteins kill bystander noninfected CD4+T-lymphocytes by induction of apoptosis. Virology.2004,15;326(1):47-56.
    [53]Fletcher TM 3rd, Brichacek B, Sharova N, Newman MA, Stivahtis G, Sharp PM, Emerman M, Hahn BH, Stevenson M. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). EMBO J.1996,15(22):6155-6165.
    [54]Gibbs JS, Lackner AA, Lang SM, Simon MA, Sehgal PK, Daniel MD, Desrosiers RC. Progression to AIDS in the absence of a gene for vpr or vpx. J Virol.1995; 69:2378-2383.
    [55]Hirsch VM, Sharkey ME, Brown CR, Brichacek B, Goldstein S, Wakefield J, Byrum R, Elkins WR, Hahn BH, Lifson JD, Stevenson M. Vpx is required for dissemination and pathogenesis of SIV(SM) PBj:evidence of macrophage-dependent viral amplification. Nat Med.1998;4:1401-1408. doi:10.1038/3992.
    [56]Fletcher, T. M., B. Brichacek, N. Sharova, M. A. Newman, G. Stivahtis, P. M. Sharp, M. Emerman, B. H. Hahn, and M. Stevenson. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). EMBO J.1996.15:6155-6165.
    [57]Heinzinger N, Bukinsky M, Haggerty S, Ragland A, Kewalramani V, Lee M, et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 1994; 91:7311-7315.
    [58]Jenkins, Y., M. McEntee, K. Weis, and W. C. Greene.1998. Characterization of HIV-1 vpr nuclear import:analysis of signals and pathways. J. Cell. Biol.143:875-885.
    [59]He J, Choe S, Walker R, Di Marzio PD, Morgan DO, Landau NR. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity.J Virol 1995; 69 6705-6711.
    [60]Stewart SA, Poon B, Jowett JB, Chen IS. Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest.J Virol 1997; 71 5579-5592.
    [61]Waldhuber MG, Bateson M, Tan J, Greenway AL, McPhee DA:Studies with GFP-Vpr fusion proteins:induction of apoptosis but ablation of cell-cycle arrest despite nuclear membrane or nuclear localization. Virology. 2003,313(1):91-104.
    [62]Nishizawa M, Kamata M, Mojin T, Nakai Y, Aida Y:Induction of apoptosis by the Vpr protein of human immunodeficiency virus type 1 occurs independently of G(2) arrest of the cell cycle. Virology.2000,276 (1):16-26
    [63]Conti L, Rainaldi G, Matarrese P, Varano B, Rivabene R, Columba S, Sato A, Belardelli F, Malorni W, Gessani S. The HIV-1 vpr protein acts as a negative regulator of apoptosis in a human lymphoblastoid T cell line:possible implications for the pathogenesis of AIDS. J Exp Med.1998; 187(3):403-413.
    [64]Moon HS, Yang JS. Role of HIV Vpr as a regulator of apoptosis and an effector on bystander cells. Mol Cells.2006 Feb 28;21(1):7-20.
    [65]Huang, M. B., Weeks,O., Zhao, L. J., Saltarelli, M., and Bond, V. C. (2000) Effects of extracellular human immunodeficiency virus type 1 vpr protein in primary rat cortical cell cultures. J. Neurovirol.6,202-220.
    [66]Levy, D. N., Refaeli, Y., and Weiner, D. B. (1995) Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus replication and reactivates virus from latency. J. Virol.69,1243.1252.
    [67]Levy DN, Refaeli Y, MacGregor RR, Weiner DB:Serum Vpr regulates productive infection and latency of human immunodeficiency virus type 1. Proc Nat J Acad Sci USA 1994,91:10873-10877.
    [68]Yasuda J, Miyao T, Kamata M, Aida Y, Iwakura Y:T cell apoptosis causes peripheral T cell depletion in mice transgenic for the HIV-1 vpr gene. Virology 2001,285:181-192.
    [69]Lum JJ, Cohen OJ, Nie Z, Weaver JG, Gomez TS, Yao XJ, Lynch D, Pilon AA, Hawley N, Kim JE, et al.:Vpr R77Q is associated with long-term nonprogressive HIV infection and impaired induction of apoptosis. J Clin Invest 2003,111:1547-1554.
    [70]Jian H, Zhao LJ:Pro-apoptotic activity of HIV-1 auxiliary regulatory protein Vpr is subtype-dependent and potentlyenhanced by nonconservative changes of the leucine residue at position 64.J Biol Chem 2003, 278:44326-44330.
    [71]Ueno F, Shiota H, Miyaura M, Yoshida A, Sakurai A, Tatsuki J, Koyama AH, Akari H, Adachi A, Fujita M. Vpx and Vpr proteins of HIV-2 up-regulate the viral infectivity by a distinct mechanism in lymphocytic cells. Microbes Infect.2003;5(5):387-95
    [72]Ayyavoo V, Muthumani K, Kudchodkar S, Zhang D, Ramanathan P, Dayes NS, Kim JJ, Sin JI, Montaner LJ, Weiner DB. HIV-1 viral protein R compromises cellular immune function in vivo. Int Immunol.2002 Jan;14(1):13-22.
    [73]Altfeld M, Addo MM, Eldridge RL, Yu XG, Thomas S, Khatri A, Strick D, Phillips MN, Cohen GB, Islam SA, Kalams SA, Brander C, Goulder PJ, Rosenberg ES, Walker BD; HIV Study Collaboration. Vpr is preferentially targeted by CTL during HIV-1 infection. J Immunol.2001;167(5):2743-2752
    [74]Majumder B, Janket ML, Schafer EA, Schaubert K, Huang XL, Kan-Mitchell J, Rinaldo CR Jr, Ayyavoo V. Human immunodeficiency virus type 1 Vpr impairs dendritic cell maturation and T-cell activation:implications for viral immune escape. J Virol.2005;79(13):7990-8003.
    [75]Belshan M, Mahnke LA, Ratner L. Conserved amino acids of the human immunodeficiency virus type 2 Vpx nuclear localization signal are critical for nuclear targeting of the viral prcintegration complex in non-dividing cells. Virology.2006;346(1):118-126.
    [76]Singhal PK, Rajendra Kumar P, Subba Rao MR, Mahalingam S. Nuclear export of simian immunodeficiency virus Vpx protein. J Virol.2006;80 (24):12271-12282.
    [77]Rajendra Kumar P, Singhal PK, Subba Rao MR, Mahalingam S. Phosphorylation by MAPK regulates simian immunodeficiency virus Vpx protein nuclear import and virus infectivity. J Biol Chem.2005; 280 (9):8553-8563.
    [78]Hirsch, V. M., M. E. Sharkey, C. R. Brown, B. Brichacek, S. Goldstein, J. Wakefield, R. Byrum, W. R. Elkins, B. H. Hahn, J. D. Lifson, and M.Stevenson.1998. Vpx is required for dissemination and pathogenesis of SIV(SM) PBj:evidence of macrophage-dependent viral amplification. Nat Med.4:1401-1408.
    [79]Hirsch VM, Sharkey ME, Brown CR, Brichacek B, Goldstein S, Wakefield PE, Duperrier K, Negre D, Boson B, Rigal D, Cosset FL, Darlix JL High levels of transduction of human dendritic cells with optimized SIV vectors. Mol Ther 2002,5:283-290.
    [80]Jarrosson-Wuilleme L, Goujon C, Bernaud J, Rigal D, Darlix JL, Cimarelli A:Transduction of nondividing human macrophages with gammaretrovirus-derived vectors. J Virol 2006,80:1152-1159.
    [81]Goujon C, Riviere L, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, Cimarelli A. SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology.2007;4:2
    [82]S. M. Mueller, S. M. Lang, The first HxRxG motif in simian immunodeficiency virus mac239 Vpr is crucial for G2/M cell cycle arrest, J. Virol.76 (2002) 11704-11709.
    [83]V. Planelles, J. B. Jowett, Q. X. Li, Y. Xie, B. Hahn, I. S. Chen, Vprinduced cell cycle arrest is conserved among primate lentiviruses, J. Virol.70(1996) 2516-2524.
    [84]Khamsri B, Murao F, Yoshida A, Sakurai A, Uchiyama T, Shirai H, Matsuo Y, Fujita M, Adachi A. Comparative study on the structure and cytopathogenic activity of HIV Vpr/Vpx proteins. Microbes Infect. 2006;8(1):10-15.
    [85]Chatila TA. Role of regulatory T cells in human diseases. J Allergy Clin Immunol.2005 Nov;116 (5):949-59.
    [86]Epple HJ, Loddenkemper C, Kunkel D, Troger H, Maul J, Moos V, Berg E, Ullrich R, Schulzke JD, Stein H, Duchmann R, Zeitz M, Schneider T. Mucosal but not peripheral FOXP3+ regulatory T cells are highly increased in untreated HIV infection and normalize after suppressive HAART. Blood.2006 Nov 1; 108(9):3072-8.
    [87]Nilsson J, Boasso A, Velilla PA, Zhang R, Vaccari M, Franchini G, Shearer GM, Andersson J, Chougnet C. HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood. 2006,108(12):3808-17.
    [88]Kinter A, McNally J, Riggin L, Jackson R, Roby G, Fauci AS. Suppression of HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-inf ected individuals. Proc Natl Acad Sci U S A.2007 Feb 27; 104 (9):3390-5.
    [89]张莹,姚咏明,盛志勇. 调节性T细胞研究进展.生理科学进展,2007,38(1):83-88.
    [90]Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, Maeda M, Onodera M, Uchiyama T, Fujii S, Sakaguchi S. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol. 2004 Nov;16(11):1643-56.
    [91]Nik Tavakoli N, Hambly BD, Sullivan DR, Bao S. Forkhead box protein 3: Essential immune regulatory role. Int J Biochem Cell Biol.2007 Oct 10 [Epub ahead of print]
    [92]Mozos A, Garrido M, Carreras J, Plana M, Diaz A, Alos L, Campo E, Garcia F, Martinez A. Redistribution of FOXP3-positive regulatory T cells from lymphoid tissues to peripheral blood in HIV-infected patients. J Acquir Immune Defic Syndr.2007 Dec 15;46(5):529-37.
    [93]Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, Mathis D, Benoist C, Chen L, Rao A. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell.2006 Jul 28;126(2):375-87
    [94]Rudensky AY, Gavin M, Zheng Y. FOXP3 and NFAT:partners in tolerance. Cell. 2006 Jul 28;126(2):253-6
    [95]Steinman RM. Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med.2007 Oct;13(10):1155-9.
    [96]Dillon SM, Robertson KB, Pan SC, Mawhinney S, Meditz AL, Folkvord JM, Connick E, McCarter MD, Wilson CC. Plasmacytoid and Myeloid Dendritic Cells With a Partial Activation Phenotype Accumulate in Lymphoid Tissue During Asymptomatic Chronic HIV-1 Infection. J Acquir Immune Defic Syndr.2008 Jan 31 [Epub ahead of print]
    [97]Schmidt B, Fujimura SH, Martin JN, Levy JA. Variations in plasmacytoid dendritic cell (PDC) and myeloid dendritic cell (MDC) levels in HIV-infected subjects on and off antiretroviral therapy. J Clin Immunol.2006 Jan;26(1):55-64.
    [98]Lichtner M, Rossi R, Rizza MC, Mengoni F, Sauzullo I, Massetti AP, Luzi G, Hosmalin A, Mastroianni CM, Vullo V. Plasmacytoid dendritic cells count in antiretroviral-treated patients is predictive of HIV load control independent of CD4+ T-cell count. Curr HIV Res.2008 Jan;6(1):19-27
    [99]Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura T, Palmer S, Brockman M, Rathod A, Piechocka-Trocha A, Baker B, Zhu B, Le Gall S, Waring MT, Ahern R, Moss K, Kelleher AD, Coffin JM, Freeman GJ, Rosenberg ES, Walker BD. Upregulation of CTLA-4 by HIV-specif ic CD4 (+) T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol.2007 Nov;8(11):1246-54.
    [100]Petrovas, C., J. P. Casazza, J. M. Brenchley, D. A. Price, E. Gostick, W. C. Adams, M. L. Precopio, T. Schacker, M. Roederer, D. C. Douek, and R. A. Koup.2006. PD-1 is aregulator of virus-specifi c CD8+ T cellsurvival in HIV infection. J. Exp. Med. 203:2281-2292.
    [101]. Day, C. L., D. E. Kaufmann, P. Kiepiela, J. A. Brown, E. S. Moodley, S. Reddy, E. W. Mackey, J. D. Miller, A. J. Leslie, C. DePierres, et al.2006. PD-1 expression on HIV-specifi c T cells is associated with T cell exhaustion and disease progression.443:350-354.
    [102]. Trautmann, L., L. Janbazian, N. Chomont, E. A. Said, G. Wang, S. Gimmig, B. Bessette, M. R. Boulassel, E. Delwart, H. Sepulveda, et al.2006. Upregulation of PD-1 expression on HIV-specifi c CD8+ T cells leads to reversible immune dysfunction. Nat Med.2006; 12(10):1198-202.
    [103]Holm M, Pettersen FO, Kvale D. PD-1 predicts CD4 loss rate in chronic HIV-1 infection better than HIV RNA and CD38 but not in cryopreserved samples. Curr HIV Res.2008 Jan;6(1):49-58.
    [104]Rehr M, Cahenzli J, Haas A, Price DA, Gostick E, Huber M, Karrer U, Oxenius A. Emergence of polyfunctional CD8+ T cells after prolonged suppression of HIV replication by antiretroviral therapy. J Virol.2008 Jan 16 [Epub ahead of print]
    [105]Rosignoli G, Cranage A, Burton C, Nelson M, Steel A, Gazzard B, Gotch F, Imami N. Expression of PD-L1, a marker of disease status, is not reduced by HAART in aviraemic patients. AIDS.2007,19;21(10):1379-81
    [106]De Trez C, Schneider K, Potter K, Droin N, Fulton J, Norris PS, Ha SW, Fu YX, Murphy T, Murphy KM, Pfeffer K, Benedict CA, Ware CF. The inhibitory HVEM-BTLA pathway counter regulates lymphotoxin receptor signaling to achieve homeostasis of dendritic cells. J Immunol.2008 Jan 1;180(1):238-48
    [107]Chougnet C. Role of CD40 ligand dysregulation in HIV-associated dysfunction of antigen-presenting cells. J Leukoc Biol.2003 Nov;74(5):702-9.
    [108]张文颖.IDO、树突状细胞与免疫耐受.国际免疫学杂志.2006,29(6):364-367.
    [109]Hwang SL, Chung NP, Chan JK, Lin CL. Indoleamine 2,3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines. Cell Res.2005 Mar;15(3):167-75
    [110]Boasso A, Herbeuval JP, Hardy AW, Anderson SA, Dolan MJ, Fuchs D, Shearer GM. HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood.2007 Apr 15;109 (8):3351-9.
    [111]Boasso A, Vaccari M, Hryniewicz A, Fuchs D, Nacsa J, Cecchinato V, Andersson J, Franchini G, Shearer GM, Chougnet C. Regulatory T-cell markers, indoleamine 2,3-dioxygenase, and virus levels in spleen and gut during progressive simian immunodeficiency virus infection. J Virol.2007 Nov;81(21):11593-603.
    [112]Boasso A, Shearer GM. How does indoleamine 2,3-dioxygenase contribute to HIV-mediated immune dysregulation. Curr Drug Metab.2007 Apr;8(3):217-23.
    [113]杨凤珍. HIV/AIDS中医病因病机及证治规律研究进展[J].中国中医药信息杂志,2004,4(4):123-126.
    [114]王振坤.中医药治疗艾滋病的体会[J].中医杂志,1995,36(4):208.
    [115]赵淑珍.艾滋病中医证治探讨[J].浙江中医杂志,1998,24(10):435.
    [116]李发枝,徐立然,李柏龄.中医学对艾滋病病因病机的认识[J].中医杂志,2006,47(5):395-396.
    [117]徐志明,李铭,和丽生.对艾滋病的探讨[J].云南中医学院学报,2000,23(12):12-14.
    [118]何颖.浅析爱滋病的病因病机[J].湖北中医杂志,2002,24(6):11.
    [119]林培政.温病学[M].北京:中国中医药出版社,2003:1.
    [120]屈冰.试述艾滋病的病因病机[J].中医研究,2006,19(5):10—12.
    [121]孙利民,危剑安,黄霞珍,等.从中医理论谈艾滋病的发病机制[J].中华中医药杂志,2005,20(2):102—101.
    [122]于志敏.中医药治疗艾滋病相关综合征初探[J].中国医刊,2001,36(2):46.
    [123]危剑安,孙利民,张维,等.艾灵颗粒治疗HIV感染ARC期40例[J].中国中医药信息杂志,2001,8(7):62-63.
    [124]黄世敬,危剑安,曹惠云,等.中医辨证治疗艾滋病729例临床观察[J].中医杂志,2004,45(9):680-682.
    [125]彭勃,王丹妮.扶正排毒片Ⅱ号治疗无症状HIV感染65例临床观察[J].中医药学刊,2006,24(10):1781-1783.
    [126]郭会军,刘学伟,王丹妮.扶正排毒Ⅰ号方治疗无症状HIV感染疗效观察[J].上海中医药杂志,2006,40(1):20-21.
    [127]彭勃,王丹妮.无症状感染期是中医药治疗艾滋病的黄金切入点[J].中国临床康复,2006,10(19):166-167.
    [128]姜楠,薛晓玲.无症状期艾滋病HIV感染者CD4-、CD8+T淋巴细胞检测结果分析[J].医药论坛杂志,2005,26(7):1-2.
    [129]彭勃,王丹妮.中医药治疗无症状HIV感染期探析[J].山东中医杂志,2006,25(7):446-447.
    [130]郭会军,王丹妮,刘学伟,等.中医药治疗艾滋病应重视对无症状HIV感染期的早期干预[J].上海中医药杂志,2006,40(7):17-18
    [131]彭勃,王丹妮.无症状HIV感染期是中医药治疗艾滋病的关键切入点[J].浙江中医杂志,2006,41(10):571
    [132]杨凤珍,烟建华,王健,等. HIV/AIDS中医分期辨证治疗.中国医药学报,2004,19(4):240—242
    [133]王文奎.中医论治艾滋病.中国工程科学,2004,6(1):43—47.
    [134]蒋岩.中医治疗艾滋病的途径——实验和临床研究结合促进中医的发展.中国中西医结合杂志,2002,22(10):728—731.
    [135]贺金华,买尔旦.中药防治艾滋病概况.中国药物与临床,2004,4(6):454—456.
    [136]罗士德,来国防,曹建新,等.中药治疗艾滋病的特色.中国中西医结合杂志,o02,22(10):729—732.
    [137]周文华,杨辉岳,岳庆磊,等.天然产物在抗爱滋病病毒中研究新进展.中成药,2003,25(9):750—752
    [138]Andrieu JM, Lu W. A dendritic cell-based vaccine for treating HIV infection:background and preliminary results. J Intern Med.2007 Feb;261(2):123-31.
    [139]Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura T, Palmer S, Brockman M, Rathod A, Piechocka-Trocha A, Baker B, Zhu B, Le Gall S, Waring MT, Ahern R, Moss K, Kelleher AD, Coffin JM, Freeman GJ, Rosenberg ES, Walker BD. Upregulation of CTLA-4 by HIV-specific CD4(+) T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol.2007 Nov;8(11):1246-54.
    [140]Petrovas, C., J. P. Casazza, J. M. Brenchley, D. A. Price, E. Gostick, W. C. Adams, M. L. Precopio, T. Schacker, M. Roederer, D. C. Douek, and R. A. Koup.2006. PD-1 is aregulator of virus-specifi c CD8+ T cellsurvival in HIV infection. J. Exp. Med.203:2281-2292.
    [141]. Day, C. L., D. E. Kaufmann, P. Kiepiela, J. A. Brown, E. S. Moodley, S. Reddy, E. W. Mackey, J. D. Miller, A. J. Leslie, C. DePierres, et al.2006. PD-1 expression on HIV-specifi c T cells is associated with T cell exhaustion and disease progression.443:350-354.
    [142]. Trautmann, L., L. Janbazian, N. Chomont, E. A. Said, G. Wang, S. Gimmig, B. Bessette, M. R. Boulassel, E. Delwart, H. Sepulveda, et al.2006. Upregulation of PD-1 expression on HIV-specifi c CD8+ T cells leads to reversible immune dysfunction. Nat Med.2006; 12(10):1198-202.
    [143]Holm M, Pettersen F0, Kvale D. PD-1 predicts CD4 loss rate in chronic HIV-1 infection better than HIV RNA and CD38 but not in cryopreserved samples. Curr HIV Res.2008 Jan; 6(1):49-58.
    [144]Rehr M, Cahenzli J, Haas A, Price DA, Gostick E, Huber M, Karrer U, Oxenius A. Emergence of polyfunctional CD8+T cells after prolonged suppression of HIV replication by antiretroviral therapy. J Virol.2008 Jan 16 [Epub ahead of print]
    [145]Rosignoli G, Cranage A, Burton C, Nelson M, Steel A, Gazzard B, Gotch F, Imami N. Expression of PD-L1, a marker of disease status, is not reduced by HAART in aviraemic patients. AIDS.2007,19;21(10):1379-81
    [146]De Trez C, Schneider K, Potter K, Droin N, Fulton J, Norris PS, Ha SW, Fu YX, Murphy T, Murphy KM, Pfeffer K, Benedict CA, Ware CF. The inhibitory HVEM-BTLA pathway counter regulates lymphotoxin receptor signaling to achieve homeostasis of dendritic cells. J Immunol.2008 Jan 1;180(1):238-48
    [147]张莹,姚咏明,盛志勇. 调节性T细胞研究进展.生理科学进展,2007,38(1):83-88.
    [148]Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, Maeda M, Onodera M, Uchiyama T, Fujii S, Sakaguchi S. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol. 2004 Nov;16(11):1643-56.
    [149]Nik Tavakoli N, Hambly BD, Sullivan DR, Bao S. Forkhead box protein 3: Essential immune regulatory role. Int J Biochem Cell Biol.2007 Oct 10 [Epub ahead of print]
    [150]Mozos A, Garrido M, Carreras J, Plana M, Diaz A, Alos L, Campo E, Garcia F, Martinez A. Redistribution of FOXP3-positive regulatory T cells from lymphoid tissues to peripheral blood in HIV-infected patients. J Acquir Immune Defic Syndr.2007 Dec 15;46(5):529-37.
    [151]Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, Mathis D, Benoist C, Chen L, Rao A. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell.2006 Jul 28;126(2):375-87
    [152]Rudensky AY, Gavin M, Zheng Y. FOXP3 and NFAT:partners in tolerance. Cell. 2006 Jul 28;126 (2):253-6
    [153]张文颖.IDO、树突状细胞与免疫耐受.国际免疫学杂志.2006,29(6):364-367.
    [154]Hwang SL, Chung NP, Chan JK, Lin CL. Indoleamine 2,3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines. Cell Res.2005 Mar;15(3):167-75
    [155]Boasso A, Herbeuval JP, Hardy AW, Anderson SA, Dolan MJ, Fuchs D, Shearer GM. HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood.2007 Apr 15; 109(8):3351-9.
    [156]Boasso A, Vaccari M, Hryniewicz A, Fuchs D, Nacsa J, Cecchinato V, Andersson J, Franchini G, Shearer GM, Chougnet C. Regulatory T-cell markers, indoleamine 2,3-dioxygenase, and virus levels in spleen and gut during progressive simian immunodeficiency virus infection. J Virol.2007 Nov;81(21):11593-603.
    [157]Boasso A, Shearer GM. How does indoleamine 2,3-dioxygenase contribute to HIV-mediated immune dysregulation. Curr Drug Metab.2007 Apr;8(3):217-23.
    [158]廖月香.SIV感染CEM×174细胞后免疫调控分子mRNA动态变化及中药干预作用.广州中医药大学硕士学位论文.2008年6月.导师:郭兴伯研究员。
    [159]田圣志,卢杰,李俊伟,施钧瀚.中药抗艾滋病的药理药效.河南中医学院学报.2007,22(1):9-12.
    [160]刘建中,赵映前.中药提高AIDS患者免疫功能的研究.河南中医学院学报.2005,20(5):3-4.
    [161]张可,王健,姜岩,徐莲芝.中药治疗200例HIV感染者/AIDS患者的结果分析.2005,11(2):94-96.
    [162]张清仲、符林春、岑玉文、陈滢宇.艾可清治疗HIV/AIDS的研究进展.中药新药与临床药理.2010,21(1):98100.
    [163]马伯艳,符林春,陈谐捷,蔡卫平,谭兴华,胡英杰.艾可清胶囊治疗获得性免疫缺陷综合症的疗效分析.中医杂志,2007,48(12):1092-1094.
    [164]张苗苗,符林春,蔡卫平,陈谐捷,岑玉文,马伯艳,胡英杰,谭行华.艾可清胶囊对HIV感染者的疗效观察.中华中医药学刊.2008,26(10):2233-2236.
    [165]马伯艳,符林春,蔡卫平,陈谐捷,胡英杰,谭行华.艾可清胶囊对高效抗病毒逆转录疗法的增效减毒作用.中国实验方剂学杂志.2007,13(8):60-63.
    [166]曹廷智,刘水腾,王辉,刘艳,聂广.艾可清胶囊联合HAART治疗艾滋病30例临床观察.中国医疗前沿.学术版,2008,3(10):1-4.
    [167]刘建中,赵映前.河南中医学院学报,2005,20(120):3-4.
    [168]王宝亮,刘晓民,郭百涛,杨秀菊,刘志斌,蒋自强.益艾康胶囊对艾滋病患者 免疫功能的影响.河南中医学院学报,2008,23(6):6-7.
    [169]危剑安,孙利民,陈宇霞,薛柳华,苏小游,黄霞珍,白文山,送春鑫,周伟,金燕.中药艾灵颗粒对HIV/AIDS患者免疫重建的影响.中国中西医结合杂志,2006,26(4):319-321.
    [170]贾新亭,付芳玉,郭震,索芳玉,李爱军,周青山.中药治疗义滋病腹泻探讨.亚太传统医药.2007,3(7):60-61.
    [171]忽中乾.中药治疗艾滋病并发末梢神经炎疗效观察.辽宁中医杂志,2008,35(5):721-722.
    [172]李辉,张琳.中医药对抗艾滋病高效逆转录病毒疗法毒副作用的研究进展.中国药业,2009,18(20):78-80.
    [173]杨合功.中医药治疗艾滋病605例临床体会.辽宁中医杂志,2008,35(5):738-739.
    [174]危剑安,孙利民,吕维柏,苏诚炼,许铣,李国勤,苏小游,黄霞珍,薛柳华,马赛那,那奥米.中药治疗10年以上23例艾滋病病例报告.中医杂志,2005,46(11):829-831.
    [175]田圣志,黄海英.中药复方抗艾滋病的回顾分析.中成药,2006,28(6):868-871.
    [176]Liu J. The use of herbal medicines in early drug development for the treatment of HIV infections and AIDS. Expert Opin Investig Drugs.2007 Sep;16(9):1355-64.
    [177]李明华,张高红,孙涛,郑永唐.灵长类动物模型在抗艾滋病毒药物研究中的应用.中国新药杂志,2007,16(16):1237-1242.
    [178]李明华,何昭阳,郑永唐.人类AIDS的研究替身.自然杂志,2005,27(4):208-212.
    [179]张高红,李明华,郑永唐. AIDS猕猴模型在HIV疫苗研究中的应用.动物学研究.2007,28(5):556-562.
    [180]夏祖昌,魏征,王丹,杨明.艾滋病灵长类动物模型研究进展.中华中医药学刊,2008,26(10):2122-2124.
    [181]李平,关崇芬. SIVmac感染恒河猴诱发猴艾滋病模型的免疫学特征.中国中医基础医学杂志,2004,10(6):30-33.
    [182]冯育芳,王卫,许琰,丛晶,蒋虹,佟巍,吴小闲,卢耀增,魏强. SIVmac251不同途径感染恒河猴急性期实验研究.中国实验动物学会第七届学术年会论文集,2006年9月,224-228.
    [183]卢耀增,吴小闲,李国桥,符林春,郭卫中,杨书兰,邓文娣,罗红梅,周映云,文静,陈颂.猴免疫缺陷病毒急性及慢性感染淋巴结的病理变化.广州中医药大学学报,2003,20(3):191-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700