携带中国CRF07_BC HIV-1毒株env基因的嵌合病毒SHIV构建及体内外生物学活性检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
艾滋病已成为影响人类健康最严重的传染性疾病之一,各国迫切需要研制安全有效的艾滋病疫苗,然而至今还未有成功的范例。疫苗的安全性、有效性以及免疫策略需要在合适的动物模型中进行评价,SHIV/恒河猴模型是应用最为广泛的动物模型之一。SHIV,即SIV/HIV嵌合病毒,是利用基因重组技术,将SIV和HIV的相应基因进行置换而构建出来的重组嵌合病毒,然而尚未有代表中国HIV流行株高致病SHIV和动物模型。
     构建中国HIV-1 CRF07 BC主要流行株基因CCR5嗜性的致病性SHIV/恒河猴艾滋病模型,对于设计艾滋病疫苗和免疫保护效果评价可以发挥重要作用。本研究以SHIV-89.6P的克隆株SHIV-KB9为主要骨架,将从AIDS患者临床样本中制备gp120和部分gp41(从N末端的50到780个氨基酸)的KpnI-BamHI基因片段替换SHIV-KB9的相应区域,得到76个携带中国主要流行亚型CRF07 BC不同毒株env基因的SHIV cDNA嵌合克隆。将这些重组病毒cDNA转染293T细胞,收集病毒上清,分别感染TZM细胞系、人和猴的PBMC细胞,对所有克隆的生物学活性进行细胞水平鉴定。通过SIV p27衣壳蛋白滴定,筛选到4株具有感染活性的SHIV cDNA克隆,分别为SHIV-XJN0363A4,SHIV-XJN036388,SHIV-XJN0421A17和SHIV-XJDC6431。通过对这4株SHIV病毒在恒河猴淋巴细胞中感染能力的比较,筛选活性最高的SHIV-XJDC6431进行一系列细胞水平生物活性的比较。
     透射电镜观察到SHIV-XJDC6431 cDNA克隆在293T转染细胞系中包装出病毒颗粒;利用表达不同辅助受体的细胞系确定SHIV-XJDC6431具有CCR5嗜性;SIVp27衣壳蛋白滴定描绘出其在人、恒河猴PBMC中的复制动力学曲线,复制能力低于SHW-KB9,但高于本室构建的SHIV-XJ01270和SHIV-CN97001;被感染过的恒河猴PBMC出现明显的细胞病变;DNA PCR检测到病毒已成功整合到人、恒河猴PBMC的基因组中;RT-PCR检测到病毒在人、恒河猴PBMC培养上清中gag-pol RNA转录本和(或)RNA基因组的形成。
     随后,将1000TCID_(50)的SHIV-XJDC6431病毒静脉注射两只中国恒河猴443号和444号,两只恒河猴感染特征基本一致。感染后20天左右出现病毒载量,峰值出现时间较晚,仅达到10~(5.12)pg/ml和10~(5.47)pg/ml。检测结果表明SHIV-XJDC6431可在第一代恒河猴443、444中有效复制,两只动物均表现出潜伏期稳定的低水平病毒血症过程。在444感染后第65天进行了一次猴体传代实验,发现经过体内适应的病毒在第二代恒河猴体内(445号)表现出较高的感染活性和复制能力,感染445后第15天可检测到病毒载量,且峰值出现在19天,可达到10_(6.98)pg/ml。通过病毒载量和外周血CD4~+T淋巴细胞计数分析,发现第一代动物表现出的感染活性较弱,与SHIV-KB9相比病毒载量峰值较低并且检测到载量的时间点滞后。
     总之,本研究成功构建了四株在细胞水平具有感染活性的携带中国流行亚型HIV-1 env基因片断的SHIV病毒株,其中一株SHIV-XJDC6431在动物体内已验证具有生物学活性。同时,经过猴体传代试验能够提高其感染、复制能力,并期望经过后期多次动物体内传代实验,能够筛选到高致病性的携带中国流行亚型env基因的SHIV病毒,为构建评价AIDS/HIV疫苗的动物模型提供物质基础。
Human immunodeficiency virus(HIV) infection and AIDS continue to be a growing problem for the world's population.The need to develop a safe and efficacious vaccine against HIV is more pressing than ever.Human immunodeficiency virus(HIV) and simian immunodeficiency virus(SIV) are classified to Lentivirus of Retroviridae.The genome of HIV and SIV is highly homologous and most closely in Lentivirus group.SHIV,SIV/HIV chimeric virus,was constructed by replacing the corresponding region of SIV and HIV.
     A pathogenic R5 simian-human immunodeficiency virus(SHIV) encoding gene of the predominant prevalent HIV-1 B'/C Recombinant(CRF07_BC) strain in China was highly desirable to study the role of HIV-1 envelopes in transmission and pathogenesis as well as to evaluate candidate AIDS vaccines in nonhuman primates. SHIV-KB9,the clone of SHIV-89.6P was used as starting backbone for the construction of Chinese recombinant B'/C SHIV.The 2.1kb KpnI-BamHI fragment encoding the Chinese HIV envelope gene(covering N-terminal 50 to 780 amino acids) amplified from different HIV infections genomic DNA was replaced with the corresponding region of SHIV-KB9 individually.76 full-length SHIV clones were constructed and their infectious activity was tested in TZM,macaque and human PBMC.Among all full-length proviral clones derived from 7 different HIV-1 samples,only four clones were found to be infectious,they are SHIV-XJN0363A4,SHIV-XJN0363B8,SHIV-XJN0421A17 and SHIV-XJDC6431.One clone SHIV-XJDC6431 was chosed to be the most infectious activity due to dected infectivity in vitro,and was used to check the infectious charactization in vitro/in vivo.
     The virus particle of SHIV-XJDC6431 was packed in transfected 293T cells and could be observed under transmitted electron micrograph.The coreeeptor usage of SHIV-XJDC6431 was tested in GHOST cell lines,which showed that was CCR5-specific SHIVs.The infectivity of SHIV-XJDC6431 in human and rhesus monkey's PBMC were verified by DNA polymerase chain reaction(PCR),reverse transcriptase PCR(RT-PCR) and Simian immunodeficiency virus(SIV) p27 gag antigen titration assay.Also the distinct cytopathogenicity of rhesus monkey PBMC infected could be observed under optical microscope.
     To this end,SHIV-XJDC6431 was adapted by two passages in three Chinese-origin Rhesus Macaques,separately.Up to now,SHIV-XJDC6431 could replicate effectively in first passage 443,444 and second passage 445.It was revealed that the infectivity property of SHIV-XJDC6431 in first passage 443 and 444 was low replicated by measuring viral load and CD4/CD8 ratio analysis. Compared with SHIV-KB9 and SHIV-CN97001,the peak of viral load was low and the time point of deteced plasma viremia was delayed in two macaques post SHIV-XJDC6431 infection.But,the two animals infected had inclined setpoint viral load.After that,444 was passaged in vivo at day 65 post SHW-XJDC6431 infection. It was founded that the infectivity property of SHW-XJDC6431 enhanced during in vivo passage,the viral RNA load of second passage was higher.
     In conclusion,we constructed four R5-tropic and CRF07_BC SHIV strains which could establish persistent infection in human and macaque lymphocyte cells in vitro,and one of them SHIV-XJDC6431 could establish infection also in Chinese rhesus macaque in vivo.In addition,we observed that SHIV-XJDC6431 was capable of replicating more efficiently in macaque through animal passage,and hope for gaining more replication capacity and pathogenicity through continuous passaging in the rhesus macaque passage,which will entitle this strain as a useful tool in AIDS/HIV pathogenic and vaccine research.
引文
[1] Angarano, G, P. Maggi, M.A. Di Bari, et al., Giardiasis in HIV: a possible role in patients with severe immune deficiency. Eur J Epidemiol, 1997, 13(4): 485-487.
    [2] Herve, M., F. Sinoussi-Barre, J.C. Chermann, et al., Correlation between structure of polyoxotungstates and their inhibitory activity on polymerases. Biochem Biophys Res Commun, 1983, 116(1): 222-229.
    [3] M, S., A.C. Lamont, N.A. Alias, et al., Red flags in patients presenting with headache: clinical indications for neuroimaging. Br JRadiol, 2003, 76(908): 532-535.
    [4] Mwau, M. and A.J. McMichael, A review of vaccines for HIV prevention. J Gene Med, 2003, 5(1): 3-10.
    [5] Barre-Sinoussi, F., J.C. Chermann, F. Rey, et al., Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 1983, 220(4599): 868-871.
    [6] Gallo, R.C., S.Z. Salahuddin, M. Popovic, et al., Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science, 1984, 224(4648): 500-503.
    [7] Popovic, M., M.G. Sarngadharan, E. Read, et al., Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science, 1984,224(4648): 497-500.
    [8] Sarngadharan, M.G., M. Popovic, L. Bruch, et al., Antibodies reactive with human T-lymphotropic retroviruses (HTLV-III) in the serum of patients with ADDS. Science, 1984,224(4648): 506-508.
    [9] Schupbach, J., M. Popovic, R.V. Gilden, et al., Serological analysis of a subgroup of human T-lymphotropic retroviruses (HTLV-III) associated with AIDS. Science, 1984, 224(4648): 503-505.
    [10] Levy, J.A., A.D. Hoffman, S.M. Kramer, et al., Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science, 1984,225(4664): 840-842.
    
    [11] Coffin, J., A. Haase, J.A. Levy, et al., Human immunodeficiency viruses. Science, 1986, 232(4751): 697.
    [12] Letvin, N.L., M.D. Daniel, P.K. Sehgal, et al, Induction of AIDS-like disease in macaque monkeys with T-cell tropic retrovirus STLV-III. Science, 1985,230(4721): 71-73.
    [13] Biberfeld, G., B. Bottiger, U. Bredberg-Raden, et al., Findings in four HTLV-IV seropositive women from West Africa. Lancet, 1986,2(8519): 1330-1331.
    [14] Khabbaz, R.F., W. Heneine, J.R. George, et al., Brief report: infection of a laboratory worker with simian immunodeficiency virus. N Engl J Med, 1994, 330(3): 172-177.
    [15] Gao, F., L. Yue, A.T. White, et al., Human infection by genetically diverse SIVSM-related HIV-2 in west Africa. Nature, 1992, 358(6386): 495-499.
    
    [16] Marlink, R., Lessons from the second AIDS virus, HIV-2. AIDS, 1996, 10(7): 689-699.
    [17] Janssens, W., K. Fransen, M. Peeters, et al., Phylogenetic analysis of a new chimpanzee lentivirus SIVcpz-gab2 from a wild-captured chimpanzee from Gabon. AIDS Res Hum Retroviruses, 1994,10(9): 1191-1192.
    [18] Muller-Trutwin, M.C., S. Corbet, S. Souquiere, et al., SIVcpz from a naturally infected Cameroonian chimpanzee: biological and genetic comparison with HIV-1 N. J Med Primatol, 2000, 29(3-4): 166-172.
    [19] Beer, B., M. Peeters, S.G. Norley, et al., Failure to infect lower primate species with SIVcpz. AIDS, 1995, 9(5): 527-528.
    [20] Takehisa, J., B. Bikandou, E. Ido, et al., Natural infection of chimpanzees with new lentiviruses related to HIV-1/SIVcpz. J Med Primatol, 1999,28(4-5): 169-173.
    [21] Putkonen, P., K. Warstedt, R. Thorstensson, et al., Experimental infection of cynomolgus monkeys (Macaca fascicularis) with simian immunodeficiency virus (SIVsm). J Acquir Immune Defic Syndr, 1989, 2(4): 359-365.
    [22] Bailes, E., F. Gao, F. Bibollet-Ruche, et al., Hybrid origin of SIV in chimpanzees. Science, 2003,300(5626): 1713.
    [23] Joling, P., D.F. van Wichen, H.K. Parmentier, et al., Simian immunodeficiency virus (SIVsm) infection of cynomolgus monkeys: effects on follicular dendritic cells in lymphoid tissue. AIDS Res Hum Retroviruses, 1992, 8(12): 2021-2030.
    [24] Peeters, M., W. Janssens, K. Fransen, et al., Isolation of simian immunodeficiency viruses from two sooty mangabeys in Cote d'Ivoire: virological and genetic characterization and relationship to other HIV type 2 and SIVsm/mac strains. AIDS Res Hum Retroviruses, 1994, 10(10): 1289-1294.
    [25] Kaaya, E., S.L. Li, H. Feichtinger, et al, Accessory cells and macrophages in the histopathology of SIVsm-infected cynomolgus monkeys. Res Virol, 1993,144(1): 81-92.
    [26] Chen, Z., P. Telfier, A. Gettie, et al., Genetic characterization of new West African simian immunodeficiency virus SIVsm: geographic clustering of household-derived SIV strains with human immunodeficiency virus type 2 subtypes and genetically diverse viruses from a single feral sooty mangabey troop. J Virol, 1996, 70(6): 3617-3627.
    [27] Walther, L., O. Grankvist, P. Putkonen, et al., Nested polymerase chain reaction primers that distinguish between SIVSM and HIV type 2. AIDS Res Hum Retroviruses, 1996, 12(12): 1077-1079.
    [28] Apetrei, C., A. Kaur, N.W. Lerche, et al., Molecular epidemiology of simian immunodeficiency virus SlVsm in U.S. primate centers unravels the origin of SIVmac and SIVstm. J Virol, 2005, 79(14): 8991-9005.
    [29] Goujon, C., L. Riviere, L. Jarrosson-Wuilleme, et al., SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology, 2007,4: 2.
    [30] Hirsch, V.M., R.A. Olmsted, M. Murphey-Corb, et al., An African primate lentivirus (SIVsm) closely related to HIV-2. Nature, 1989, 339(6223): 389-392.
    [31] Keele, B.F., F. Van Heuverswyn, Y. Li, et al., Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science, 2006,313(5786): 523-526.
    [32] Ratner, L., B. Starcich, S.F. Josephs, et al., Polymorphism of the 3' open reading frame of the virus associated with the acquired immune deficiency syndrome, human T-lymphotropic virus type III. Nucleic Acids Res, 1985, 13(22): 8219-8229.
    [33] Wong-Staal, F., L. Ratner, G. Shaw, et al., Molecular biology of human T-lymphotropic retroviruses. Cancer Res, 1985,45(9 Suppl): 4539s-4544s.
    [34] Fisher, A.G., E. Collalti, L. Ratner, et al., A molecular clone of HTLV-III with biological activity. Nature, 1985, 316(6025): 262-265.
    [35] Ratner, L., R.C. Gallo, and F. Wong-Staal, HTLV-III, LAV, ARV are variants of same AIDS virus. Nature, 1985, 313(6004): 636-637.
    [36] Ratner, L., W. Haseltine, R. Patarca, et al., Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature, 1985, 313(6000): 277-284.
    [37] Oroszlan, S. and R.B. Luftig, Retroviral proteinases. Curr Top Microbiol Immunol, 1990, 157: 153-185.
    [38] Tobin, G.J., R.C. Sowder, 2nd, D. Fabris, et al., Amino acid sequence analysis of the proteolytic cleavage products of the bovine immunodeficiency virus Gag precursor polypeptide. J Virol, 1994, 68(11): 7620-7627.
    [39] Andresson, O.S., J.E. Elser, G. Georgsson, et al., Pathogenic proviral molecular clone of neurovirulent visna virus. Ann N Y Acad Sci, 1994, 724: 133-139.
    [40] Brown, A.E., B. Jackson, S.A. Fuller, et al., Viral RNA in the resolution of human immunodeficiency virus type 1 diagnostic serology. Transfusion, 1997, 37(9): 926-929.
    [41] Cannon, P.M., S. Matthews, N. Clark, et al., Structure-function studies of the human immunodeficiency virus type 1 matrix protein, pl7. J Virol, 1997, 71(5): 3474-3483.
    [42] von Schwedler, U.K., T.L. Stemmler, V.Y. Klishko, et al., Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J, 1998, 17(6): 1555-1568.
    [43] Borsetti, A., A. Ohagen, and H.G. Gottlinger, The C-terminal half of the human immunodeficiency virus type 1 Gag precursor is sufficient for efficient particle assembly. J Virol, 1998, 72(11): 9313-9317.
    [44] Liang, C., J. Hu, R.S. Russell, et al., Translation of Pr55(gag) augments packaging of human immunodeficiency virus type 1 RNA in a cis-acting manner. AIDS Res Hum Retroviruses, 2002, 18(15): 1117-1126.
    [45] Rong, L., R.S. Russell, J. Hu, et al., Hydrophobic amino acids in the human immunodeficiency virus type 1 p2 and nucleocapsid proteins can contribute to the rescue of deleted viral RNA packaging signals. J Virol, 2001, 75(16): 7230-7243.
    [46] Kozal, M.J., R.W. Shafer, M.A. Winters, et al., HIV-1 syncytium-inducing phenotype, virus burden, codon 215 reverse transcriptase mutation and CD4 cell decline in zidovudine-treated patients. J Acquir Immune Defic Syndr, 1994, 7(8): 832-838.
    [47] Hung, M., P. Patel, S. Davis, et al., Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication. J Virol, 1998, 72(6): 4819-4824.
    [48] Jacks, T. and R.A. Weinberg, The expanding role of cell cycle regulators. Science, 1998, 280(5366): 1035-1036.
    [49] Heuer, T.S. and P.O. Brown, Mapping features of HIV-1 integrase near selected sites on viral and target DNA molecules in an active enzyme-DNA complex by photo-cross-linking. Biochemistry, 1997,36(35): 10655-10665.
    
    [50] Katzman, M. and M. Sudol, Mapping viral DNA specificity to the central region of integrase by using functional human immunodeficiency virus type 1/visna virus chimeric proteins. J Virol, 1998, 72(3): 1744-1753.
    [51] Dalgleish, A.G., P.C. Beverley, P.R. Clapham, et al, The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature, 1984,312(5996): 763-767.
    [52] Wyatt, R. and J. Sodroski, The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science, 1998,280(5371): 1884-1888.
    [53] Chan, D.C., D. Fass, J.M. Berger, et al., Core structure of gp41 from the HIV envelope glycoprotein. Cell, 1997, 89(2): 263-273.
    [54] Das, A.T., B. Klaver, B.I. Klasens, et al., A conserved hairpin motif in the R-U5 region of the human immunodeficiency virus type 1 RNA genome is essential for replication. J Virol, 1997, 71(3): 2346-2356.
    [55] Jeang, K.T., R. Chiu, E. Santos, et al., Induction of the HTLV-I LTR by Jun occurs through the Tax-responsive 21-bp elements. Virology, 1991, 181(1): 218-227.
    [56] Jeang, K.T., Y. Chang, B. Berkhout, et al., Regulation of HIV expression: mechanisms of action of Tat and Rev. AIDS, 1991, 5 Suppl 2: S3-14.
    [57] Furuta, R.A., S. Kubota, M. Maki, et al., Use of a human immunodeficiency virus type 1 Rev mutant without nucleolar dysfunction as a candidate for potential AIDS therapy. J Virol, 1995, 69(3): 1591-1599.
    [58] Furuta, R.A., H. Sakai, M. Kawamura, et al., Functionality of chimeric Rev proteins of HIV/SIV. Virus Genes, 1995,11(1): 11-14.
    [59] Cullen, B.R., Retroviruses as model systems for the study of nuclear RNA export pathways. Virology, 1998,249(2): 203-210.
    [60] Cullen, B.R., HIV-1 auxiliary proteins: making connections in a dying cell. Cell, 1998, 93(5): 685-692.
    [61] Selig, L., J.C. Pages, V. Tanchou, et al., Interaction with the p6 domain of the gag precursor mediates incorporation into virions of Vpr and Vpx proteins from primate lentiviruses. J Virol, 1999,73(1): 592-600.
    [62] Paul, M., S. Mazumder, N. Raja, et al., Mutational analysis of the human immunodeficiency virus type 1 Vpu transmembrane domain that promotes the enhanced release of virus-like particles from the plasma membrane of mammalian cells. J Virol, 1998, 72(2): 1270-1279.
    [63] Callahan, M.A., M.A. Handley, Y.H. Lee, et al., Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family. J Virol, 1998, 72(10): 8461.
    [64] Roberts, J.D., K. Bebenek, and T.A. Kunkel, The accuracy of reverse transcriptase from HIV-1. Science, 1988,242(4882): 1171-1173.
    [65] Coffin, J.M., Genetic diversity and evolution of retroviruses. Curr Top Microbiol Immunol, 1992,176: 143-164.
    [66] Sharp, P.M., D.L. Robertson, and B.H. Hahn, Cross-species transmission and recombination of 'AIDS' viruses. Philos Trans R Soc Lond B Biol Sci, 1995,349(1327): 41-47.
    [67] Robertson, D.L., P.M. Sharp, RE. McCutchan, et al., Recombination in HIV-1. Nature, 1995, 374(6518): 124-126.
    [68] Valadas, E., L. Franca, S. Sousa, et al., 20 years of HIV-2 infection in Portugal: trends and changes in epidemiology. Clin Infect Dis, 2009,48(8): 1166-1167.
    [69] Gottlieb, G.S., P.S. Sow, S.E. Hawes, et al., Molecular epidemiology of dual HIV-1/HIV-2 seropositive adults from Senegal, West Africa. AIDS Res Hum Retroviruses, 2003, 19(7): 575-584.
    [70] Schim van der Loeff, M.F. and P. Aaby, Towards a better understanding of the epidemiology of HIV-2. AIDS, 1999,13 Suppl A: S69-84.
    [71] Soriano, V, M. Gutierrez, E. Caballero, et al., Epidemiology of HIV-2 infection in Spain. The HIV-2 Spanish Study Group. Eur J Clin Microbiol Infect Dis, 1996, 15(5): 383-388.
    [72] Kwiek, J.J., E.S. Russell, K.K. Dang, et al., The molecular epidemiology of HIV-1 envelope diversity during HIV-1 subtype C vertical transmission in Malawian mother-infant pairs. AIDS, 2008, 22(7): 863-871.
    [73] Locateli, D., P.H. Stoco, A.T. de Queiroz, et al., Molecular epidemiology of HIV-1 in Santa Catarina State confirms increases of subtype C in Southern Brazil. J Med Virol, 2007, 79(10): 1455-1463.
    [74] Castro, E., M. Moreno, L. Deibis, et al., Trends of HIV-1 molecular epidemiology in Venezuela: introduction of subtype C and identification of a novel B/C mosaic genome. J Clin Virol, 2005, 32(3): 257-258.
    [75] Gurtler, L.G., L. Zekeng, J.M. Tsague, et al., HIV-1 subtype O: epidemiology, pathogenesis, diagnosis, and perspectives of the evolution of HIV. Arch Virol Suppl, 1996,11: 195-202.
    [76] Delwart, E., Anew HIV-1 group: abstract and commentary. JAMA, 1998, 280(22): 1960.
    [77] Morris, K., Scientists identify a new HIV-1 group. Lancet, 1998,352(9130): 791.
    [78] Charneau, P., A.M. Borman, C. Quillent, et al., Isolation and envelope sequence of a highly divergent HIV-1 isolate: definition of a new HIV-1 group. Virology, 1994,205(1): 247-253.
    [79] Kim, S., K. Ikeuchi, J. Groopman, et al., Factors affecting cellular tropism of human immunodeficiency virus. J Virol, 1990, 64(11): 5600-5604.
    [80] Ao, Z., G. Huang, H. Yao, et al., Interaction of human immunodeficiency virus type 1 integrase with cellular nuclear import receptor importin 7 and its impact on viral replication. J Biol Chem, 2007, 282(18): 13456-13467.
    [81] Kinter, A.L., M. Ostrowski, D. Goletti, et al., HIV replication in CD4+ T cells of HIV-infected individuals is regulated by a balance between the viral suppressive effects of endogenous beta-chemokines and the viral inductive effects of other endogenous cytokines. Proc Natl Acad Sci U S A, 1996, 93(24): 14076-14081.
    [82] Kinter, A.L., S.M. Bende, E.C. Hardy, et al., Interleukin 2 induces CD8+ T cell-mediated suppression of human immunodeficiency virus replication in CD4+ T cells and this effect overrides its ability to stimulate virus expression. Proc Natl Acad Sci U S A, 1995, 92(24): 10985-10989.
    [83] Goletti, D., A.L. Kinter, P. Biswas, et al., Effect of cellular differentiation on cytokine-induced expression of human immunodeficiency virus in chronically infected promonocytic cells: dissociation of cellular differentiation and viral expression. J Virol, 1995, 69(4): 2540-2546.
    [84] Laughlin, M.A. and R.J. Pomerantz, Cellular latency in HIV-1 infectioa Clin Lab Med, 1994, 14(2): 239-255.
    [85] Fox, C.H., Lymphoid germinal centers are reservoirs of HIV infection and account for the apparent latency of infectioa AIDS Res Hum Retroviruses, 1992, 8(5): 756-758.
    [86] Saah, A.J., Latency preceding seroconversion in sexually transmitted HIV infectioa Lancet, 1987,2(8572): 1402.
    [87] Siliciano, J.D. and R.F. Siliciano, Latency and viral persistence in HIV-1 infectioa J Clin Invest, 2000,106(7): 823-825.
    [88] Laurence, J., Macrophage biology, latency, and HIV infectioa AIDS Res Hum Retroviruses, 1988,4(5): v-vi.
    [89] Gorny, M.K., A.J. Conley, S. Karwowska, et al., Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody. J Virol, 1992, 66(12): 7538-7542.
    [90] Thali, M., C. Furman, D.D. Ho, et al., Discontinuous, conserved neutralization epitopes overlapping the CD4-binding region of human immunodeficiency virus type 1 gp 120 envelope glycoprotein. J Virol, 1992, 66(9): 5635-5641.
    [91] Purtscher, M., A. Trkola, G. Gruber, et al., A broadly neutralizing human monoclonal antibody against gp41 of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses, 1994, 10(12): 1651-1658.
    [92] Bagley, J., P.J. Dillon, C. Rosen, et al., Structural characterization of broadly neutralizing human monoclonal antibodies against the CD4 binding site of HIV-1 gp 120. Mol Immunol, 1994, 31(15): 1149-1160.
    [93] Sattentau, Q.J. and J.P. Moore, Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J Exp Med, 1991, 174(2): 407-415.
    [94] Robinson, W.E., Jr., D.C. Montefiori, and W.M. Mitchell, Antibody-dependent enhancement of human immunodeficiency virus type 1 infectioa Lancet, 1988,1(8589): 790-794.
    [95] Antibody-dependent enhancement of HIV infectioa Lancet, 1988,1(8597): 1285-1286.
    [96] Homsy, J., M. Meyer, M. Tateno, et al., The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells. Science, 1989, 244(4910): 1357-1360.
    [97] Artenstein, A.W., T.C. VanCott, K.V. Sitz, et al., Mucosal immune responses in four distinct compartments of women infected with human immunodeficiency virus type 1: a comparison by site and correlation with clinical information. J Infect Dis, 1997, 175(2): 265-271.
    [98] Mohamed, O.A., R. Ashley, A. Goldstein, et al., Detection of rectal antibodies to HIV-1 by a sensitive chemiluminescent western blot immunodetection method J Acquir Immune Defic Syndr, 1994, 7(4): 375-380.
    [99] Musey, L., Y. Hu, L. Eckert, et al., HIV-1 induces cytotoxic T lymphocytes in the cervix of infected women. J Exp Med, 1997, 185(2): 293-303.
    [100] Robinson, W.E., Jr., D.C. Montefiori, and W.M. Mitchell, Will antibody-dependent enhancement of HIV-1 infection be a problem with AIDS vaccines? Lancet, 1988, 1(8589): 830-831.
    [101]HIV gp120 vaccine - VaxGen:AIDSVAX,AIDSVAX B/B,AIDSVAX B/E,HIV gp120vaccine - Genentech,HIV gp120 vaccine AIDSVAX - VaxGen,HIV vaccine AIDSVAX -VaxGen- Drugs R D,2003,4(4):249-253.
    [102]Trinvuthipong,C.,Thailand's Prime-Boost HIV Vaccine Phase HI.Science,2004,303(5660):954-955.
    [103]Robb,M.L.,Failure of the Merck HIV vaccine:an uncertain step forward.Lancet,2008,372(9653):1857-1858.
    [104]Watkins,D.I.,D.R.Burton,E.G.Kallas,et al.,Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans.Nat Med,2008,14(6):617-621.
    [105]Sekaly,R.P.,The failed HIV Merck vaccine study:a step back or a launching point for future vaccine development? J Exp Med,2008,205(1):7-12.
    [106]Montefiori,D.C.,K.A.Reimann,N.L.Letvin,et al.,Studies of complement-activating antibodies in the SIV/macaque model of acute primary infection and vaccine protection.AIDS Res Hum Retroviruses,1995,11(8):963-970.
    [107]Beale,J.,An attenuated vaccine for AIDS? Lancet,1995,345(8961):1318-1319.
    [108]Stahl-Hennig,C.,R.M.Steinman,P.Ten Haaft,et al.,The simian immunodeficiency virus deltaNef vaccine,after application to the tonsils of Rhesus macaques,replicates primarily within CD4(+) T cells and elicits a local perforin-positive CD8(+) T-cell response.J Virol,2002,76(2):688-696.
    [109]Zou,W.,A.A.Lackner,M.Simon,et al.,Early cytokine and chemokine gene expression in lymph nodes of macaques infected with simian immunodeficiency virus is predictive of disease outcome and vaccine efficacy.J Wirol,1997,71(2):1227-1236.
    [110]Wyand,M.S.,K.H.Manson,M.Garcia-Moll,et al.,Vaccine protection by a triple deletion mutant of sirnian immunodeficiency virus.J Virol,1996,70(6):3724-3733.
    [111]Wilson,N.A.,J.Reed,G.S.Napoe,et al.,Vaccine-induced cellular immune responses reduce plasma viral concentrations after repeated low-dose challenge with pathogenic simian immunodeficiency virus SIVmac239.J Virol,2006,80(12):5875-5885.
    [112]Matano,T.,M.Kobayashi,H.Igarashi,et al.,Cytotoxic T lymphocyte-based control of simian immunodeficiency virus replication in a preclinical AIDS vaccine trial.J Exp Med,2004,199(12):1709-1718.
    [113] Vogel, T.U., M.R. Reynolds, D.H. Fuller, et al., Multispecific vaccine-induced mucosal cytotoxic T lymphocytes reduce acute-phase viral replication but fail in long-term control of simian immunodeficiency virus SIVmac239. J Virol, 2003, 77(24): 13348-13360.
    
    [114] Belshe, R.B., G.J. Gorse, M.J. Mulligan, et al., Induction of immune responses to HIV-1 by canarypox virus (ALVAC) HIV-1 and gp120 SF-2 recombinant vaccines in uninfected volunteers. NIAID AIDS Vaccine Evaluation Group. AIDS, 1998,12(18): 2407-2415.
    
    [115] Tubiana, R., E. Gomard, H. Fleury, et al., Vaccine therapy in early HIV-1 infection using a recombinant canarypox virus expressing gp 160MN (ALVAC-HIV): a double-blind controlled randomized study of safety and immunogenicity. AIDS, 1997, 11(6): 819-820.
    
    [116] Pialoux, G., J.L. Excler, Y. Riviere, et al., A prime-boost approach to HIV preventive vaccine using a recombinant canarypox virus expressing glycoprotein 160 (MN) followed by a recombinant glycoprotein 160 (MN/LAI). The AGIS Group, and l'Agence Nationale de Recherche sur le SIDA AIDS Res Hum Retroviruses, 1995,11(3): 373-381.
    
    [117] Lee, D., B.S. Graham, Y.L. Chiu, et al., Breakthrough infections during phase 1 and 2 prime-boost HIV-1 vaccine trials with canarypox vectors (ALVAC) and booster dose of recombinant gp 120 or gp160. J Infect Dis, 2004, 190(5): 903-907.
    
    [118] Parren, P.W., P. Fisicaro, A.F. Labrijn, et al., In vitro antigen challenge of human antibody libraries for vaccine evaluation: the human immunodeficiency virus type 1 envelope. J Virol, 1996, 70(12): 9046-9050.
    
    [119] Gotch, F.M., N. Imami, and G. Hardy, Candidate vaccines for immunotherapy in HIV. HIV Med, 2001, 2(4): 260-265.
    
    [120] Notka, F., C. Stahl-Hennig, U. Dittmer, et al., Accelerated clearance of SHIV in rhesus monkeys by virus-like particle vaccines is dependent on induction of neutralizing antibodies. Vaccine, 1999, 18(3-4): 291-301.
    
    [121] Deml, L., G. Kratochwil, N. Osterrieder, et al., Increased incorporation of chimeric human immunodeficiency virus type 1 gp 120 proteins into Pr55gag virus-like particles by an Epstein-Barr virus gp220/350-derived transmembrane domain. Virology, 1997, 235(1): 10-25.
    
    [122] Buonaguro, L., C. Devito, M.L. Tornesello, et al., DNA-VLP prime-boost intra-nasal immunization induces cellular and humoral anti-HIV-1 systemic and mucosal immunity with cross-clade neutralizing activity. Vaccine, 2007,25(32): 5968-5977.
    
    [123] Bertley, F.M., P.A. Kozlowski, S.W. Wang, et al., Control of simian/human immunodeficiency virus viremia and disease progression after IL-2-augmented DNA-modified vaccinia virus Ankara nasal vaccination in nonhuman primates. J Immunol, 2004, 172(6): 3745-3757.
    [124] Boyer, J.D., T.M. Robinson, M.A. Kutzler, et al., Protection against simian/human immunodeficiency virus (SHIV) 89.6P in macaques after coimmunization with SHIV antigen and IL-15 plasmid. Proc Natl Acad Sci U S A, 2007, 104(47): 18648-18653.
    [125] Seth, A., I. Ourmanov, J.E. Schmitz, et al., Immunization with a modified vaccinia virus expressing simian immunodeficiency virus (SIV) Gag-Pol primes for an anamnestic Gag-specific cytotoxic T-lymphocyte response and is associated with reduction of viremia after SIV challenge. J Virol, 2000,74(6): 2502-2509.
    [126] Seth, A., I. Ourmanov, MJ. Kuroda, et al., Recombinant modified vaccinia virus Ankara-simian immunodeficiency virus gag pol elicits cytotoxic T lymphocytes in rhesus monkeys detected by a major histocompatibility complex class I/peptide tetramer. Proc Natl Acad Sci U S A, 1998,95(17): 10112-10116.
    [127] Stolte-Leeb, N., K. Bieler, J. Kostler, et al., Better protective effects in rhesus macaques by combining systemic and mucosal application of a dual component vector vaccine after rectal SHIV89.6P challenge compared to systemic vaccination alone. Viral Immunol, 2008, 21(2):235-246.
    [128] Nelson, K., Thai HIV vaccine trial prompts angry exchanges. Lancet, 2004, 363(9405): 299.
    [129] Tartaglia, J., M.E. Perkus, J. Taylor, et al., NYVAC: a highly attenuated strain of vaccinia virus. Virology, 1992,188(1): 217-232.
    [130] Colinas, R.J., S.J. Goebel, S.W. Davis, et al., A DNA ligase gene in the Copenhagen strain of vaccinia virus is nonessential for viral replication and recombination. Virology, 1990, 179(1): 267-275.
    
    [131] Zheng, R., Technology evaluation: HIVAC-le. Curr Opin Mol Ther, 1999, 1(1): 121-125.
    [132] Perales, M.A., D.H. Schwartz, J.A. Fabry, et al., A vaccinia-gp160-based vaccine but not a gpl60 protein vaccine elicits anti-gp160 cytotoxic T lymphocytes in some HIV-1 seronegative vaccinees. J Acquir Immune Defic Syndr Hum Retrovirol, 1995,10(1): 27-35.
    [133] Desrosiers, R.C., M.S. Wyand, T. Kodama, et al., Vaccine protection against simian immunodeficiency virus infection. Proc Natl Acad Sci U S A, 1989, 86(16): 6353-6357.
    [134] Haga, T., T. Kuwata, M. Ui, et al., A new approach to AIDS research and prevention: the use of gene-mutated HIV-1/SIV chimeric viruses for anti-HIV-1 live-attenuated vaccines. Microbiol Immunol,1998,42(4):245-251.
    [135]McClure,H.M.,D.C.Anderson,A.A.Ansari,et al.,The simian immunodeficiency virus infected macaque:a model for pediatric AIDS.Pathol Biol(Paris),1992,40(7):694-700.
    [136]Sato,S.and W.Johnson,Antibody-mediated neutralization and simian immunodeficiency virus models ofHIV/AIDS.Curr HIV Res,2007,5(6):594-607.
    [137]Bogers,W.M.,R.Dubbes,P.ten Haaft,et al.,Comparison of in vitro and in vivo infectivity of different clade B HIV-1 envelope chimeric simian/human immtmodeficiency viruses in Macaca mulatta.Virology,1997,236(1):110-117.
    [138]Harouse,J.M.,A.Gettie,T.Eshetu,et al.,Mucosal transmission and induction of simian AIDS by CCR5-specific simian/human immunodeficiency virus SHIV(SF162P3).J Virol,2001,75(4):1990-1995.
    [139]Harouse,J.M.,A.Gettie,R.C.Tan,et al.,Pathogenic determinants of the mucosally transmissible CXCR4-specific SHIV(SF33A2) map to env region.J Acquir Immune Defic Syndr,2001,27(3):222-228.
    [140]Hsu,M.,S.H.Ho,P.Balfe,et al.,A CCR5-tropic simian-HIV molecular clone capable of inducing AIDS in rhesus macaques.J Acquir Immune Defic Syndr,2005,40(4):383-387.
    [141]Li,J.T.,M.Halloran,C.I.Lord,et al.,Persistent infection of macaques with simian-human immunodeficiency viruses.J Virol,1995,69(11):7061-7067.
    [142]Luciw,P.A.,E.Pratt-Lowe,K.E.Shaw,et al.,Persistent infection of rhesus macaques with T-cell-line-tropic and macrophage-tropic clones of simian/human immunodeficiency viruses (SHIV).Proc Natl Acad Sci U S A,1995,92(16):7490-7494.
    [143]Narayan,S.V.,S.Mukherjee,F.Jia,et al.,Characterization of a neutralization-escape variant of sHIVKU-1,a virus that causes acquired immune deficiency syndrome in pig-tailed macaques.Virology,1999,256(1):54-63.
    [144]Kumar,A.,J.D.Lifson,Z.Li,et al.,Sequential immunization of macaques with two differentially attenuated vaccines induced long-term virus-specific immune responses and conferred protection against AIDS caused by heterologous simian human immunodeficiency Virus(SHIV(89.6)P).Virology,2001,279(1):241-256.
    [145]Ui,M.,T.Kuwata,T.Igarashi,et al.,Protection of macaques against a SHIV with a homologous HIV-1 Env and a pathogenic SHIV-89.6P with a heterologous Env by vaccination with multiple gene-deleted SHIVs.Virology,1999,265(2):252-263.
    [146] Shibata, R., T. Miura, M. Hayami, et al., Mutational analysis of the human immunodeficiency virus type 2 (HIV-2) genome in relation to HIV-1 and simian immunodeficiency virus SIV (AGM). J Virol, 1990, 64(2): 742-747.
    [147] Sakuragi, J., M. Fukasawa, R. Shibata, et al., Functional analysis of long terminal repeats derived from four strains of simian immunodeficiency virus SIVAGM in relation to other primate lentiviruses. Virology, 1991, 185(1): 455-459.
    [148] Sakuragi, J., H. Sakai, and A. Adachi, [Exchangeability of HIV/SIV regulatory genes]. Uirusu, 1992,42(2): 133-143.
    [149] Li, J., C.I. Lord, W. Haseltine, et al., Infection of cynomolgus monkeys with a chimeric HIV-1/SIVmac virus that expresses the HIV-1 envelope glycoproteins. J Acquir Immune Defic Syndr, 1992, 5(7): 639-646.
    [150] Dunn, C.S., C. Beyer, M.P. Kieny, et al., High viral load and CD4 lymphopenia in rhesus and cynomolgus macaques infected by a chimeric primate lentivirus constructed using the env, rev, tat, and vpu genes from HIV-1 Lai. Virology, 1996,223(2): 351-361.
    [151] Ranjbar, S., S. Jones, E.J. Stott, et al., The construction and evaluation of SIV/HIV chimeras that express the envelope of European HIV type 1 isolates. AIDS Res Hum Retroviruses, 1997,13(9): 797-800.
    [152] Reimann, K.A., J.T. Li, R. Veazey, et al., A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an AIDS-like disease after in vivo passage in rhesus monkeys. J Virol, 1996, 70(10): 6922-6928.
    [153] Iida, T., H. Ichimura, T. Shimada, et al., Role of apoptosis induction in both peripheral lymph nodes and thymus in progressive loss of CD4+ cells in SHIV-infected macaques. AIDS Res Hum Retroviruses, 2000,16(1): 9-18.
    [154] Shinohara, K., K. Sakai, S. Ando, et al., A highly pathogenic simian/human immunodeficiency virus with genetic changes in cynomolgus monkey. J Gen Virol, 1999, 80 (Pt 5): 1231-1240.
    [155] Joag, S.V., Z. Li, L. Foresman, et al., Chimeric simian/human immunodeficiency virus that causes progressive loss of CD4+ T cells and AIDS in pig-tailed macaques. J Virol, 1996,70(5): 3189-3197.
    [156] Joag, S.V., I. Adany, Z. Li, et al., Animal model of mucosally transmitted human immunodeficiency virus type 1 disease: intravaginal and oral deposition of simian/human immunodeficiency virus in macaques results in systemic infection, elimination of CD4+ T cells, and AIDS. J Virol, 1997, 71(5): 4016-4023.
    
    [157] Puren, A.J., The HIV-1 epidemic in South Africa. Oral Dis, 2002, 8 Suppl 2: 27-31.
    [158] Cayabyab, M., D. Rohne, G. Pollakis, et al., Rapid CD4+ T-lymphocyte depletion in rhesus monkeys infected with a simian-human immunodeficiency virus expressing the envelope glycoproteins of a primary dual-tropic Ethiopian Clade C HIV type 1 isolate. AIDS Res Hum Retroviruses, 2004, 20(1): 27-40.
    [159] Chen, Z., Y. Huang, X. Zhao, et al., Enhanced infectivity of an R5-tropic simian/human immunodeficiency virus carrying human immunodeficiency virus type 1 subtype C envelope after serial passages in pig-tailed macaques (Macaca nemestrina). J Virol, 2000, 74(14): 6501-6510.
    [160] Ndung'u, T., Y. Lu, B. Renjifo, et al., Infectious simian/human immunodeficiency virus with human immunodeficiency virus type 1 subtype C from an African isolate: rhesus macaque model. J Virol, 2001,75(23): 11417-11425.
    [161] Song, R.J., A.L. Chenine, R.A. Rasmussen, et al., Molecularly cloned SHIV-1157ipd3N4: a highly replication- competent, mucosally transmissible R5 simian-human immunodeficiency virus encoding HIV clade C Env. J Virol, 2006, 80(17): 8729-8738.
    [162] Allen, T.M., T.U. Vogel, D.H. Fuller, et al., Induction of AIDS virus-specific CTL activity in fresh, unstimulated peripheral blood lymphocytes from rhesus macaques vaccinated with a DNA prime/modified vaccinia virus Ankara boost regimea J Immunol, 2000, 164(9): 4968-4978.
    [163] Kuwata, T., T. Takemura, J. Takehisa, et al., Infection of macaques with chimeric simian and human immunodeficiency viruses containing Env from subtype F. Arch Virol, 2002, 147(6): 1121-1132.
    [164] Wu, Y, K. Hong, A.L. Chenine, et al., Molecular cloning and in vitro evaluation of an infectious simian-human immunodeficiency virus containing env of a primary Chinese HIV-1 subtype C isolate. J Med Primatol, 2005, 34(2): 101-107.
    [165] Reimann, K.A., J.T. Li, G. Voss, et al., An env gene derived from a primary human immunodeficiency virus type 1 isolate confers high in vivo replicative capacity to a chimeric simian/human immunodeficiency virus in rhesus monkeys. J Virol, 1996, 70(5): 3198-3206.
    [166] Karlsson, G.B., M. Halloran, J. Li, et al., Characterization of molecularly cloned simian-human immunodeficiency viruses causing rapid CD4+ lymphocyte depletion in rhesus monkeys. J Virol, 1997, 71(6): 4218-4225.
    [167] Liu, Q., J. Li, G.B. Yang, et al., [Establishment of a real-time RT-PCR to detect plasma viral load of simian/human immunodeficiency virus CN97001 during its in vivo passage in rhesus monkeys]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi, 2007, 21(2): 174-176.
    [168] Reitter, J.N., R.E. Means, and R.C. Desrosiers, A role for carbohydrates in immune evasion in AIDS. Nat Med, 1998,4(6): 679-684.
    [169] Wolk, T. and M. Schreiber, N-Glycans in the gp120 V1/V2 domain of the HIV-1 strain NL4-3 are indispensable for viral infectivity and resistance against antibody neutralization. Med Microbiol Immunol, 2006,195(3): 165-172.
    [170] Himathongkham, S., G.C. Douglas, A. Fang, et al., Species tropism of chimeric SHIV clones containing HIV-1 subtype-A and subtype-E envelope genes. Virology, 2002,298(2): 189-199.
    [171] Crawford, J.M., RL. Earl, B. Moss, et al., Characterization of primary isolate-like variants of simian-human immunodeficiency virus. J Virol, 1999, 73(12): 10199-10207.
    [172] Ambrose, Z., V. Boltz, S. Palmer, et al., In vitro characterization of a simian immunodeficiency virus-human immunodeficiency virus (HIV) chimera expressing HIV type 1 reverse transcriptase to study antiviral resistance in pigtail macaques. J Virol, 2004, 78(24): 13553-13561.
    [173] Akiyama, H., M. Ishimatsu, T. Miura, et al., Construction and infection of a new simian/human immunodeficiency chimeric virus (SHIV) containing the integrase gene of the human immunodeficiency virus type 1 genome and analysis of its adaptation to monkey cells. Microbes Infect, 2008,10(5): 531-539.
    [174] Mackay, G.A., Y Niu, Z.Q. Liu, et al., Presence of Intact vpu and nef genes in nonpathogenic SHIV is essential for acquisition of pathogenicity of this virus by serial passage in macaques. Virology, 2002,295(1): 133-146.
    [175] Si, Z., M. Cayabyab, and J. Sodroski, Envelope glycoprotein determinants of neutralization resistance in a simian-human immunodeficiency virus (SHIV-HXBc2P 3.2) derived by passage in monkeys. J Virol, 2001, 75(9): 4208-4218.
    [176] Reimann, K.A., R.A. Parker, M.S. Seaman, et al., Pathogenicity of simian-human immunodeficiency virus SHIV-89.6P and SIVmac is attenuated in cynomolgus macaques and associated with early T-lymphocyte responses. J Virol, 2005, 79(14): 8878-8885.
    [177] Humbert, M., R.A. Rasmussen, R. Song, et al., SHIV-1157i and passaged progeny viruses encoding R5 HIV-1 clade C env cause AIDS in rhesus monkeys. Retrovirology, 2008, 5: 94.
    [178] Barnett, S.W., I.K. Srivastava, E. Kan, et al., Protection of macaques against vaginal SHIV challenge by systemic or mucosal and systemic vaccinations with HIV-envelope. Aids, 2008, 22(3): 339-348.
    [179] Chenine, A.L., K.A. Buckley, P.L. Li, et al., Schistosoma mansoni infection promotes SHIV clade C replication in rhesus macaques. Aids, 2005, 19(16): 1793-1797.
    [180] Horiuchi, R., W. Akahata, T. Kuwata, et al., DNA vaccination of macaques by a full-genome SHIV plasmid that has an IL-2 gene and produces non-infectious virus particles. Vaccine, 2006,24(17): 3677-3685.
    
    [181] Joag, S.V., Primate models of AIDS. Microbes Infect, 2000, 2(2): 223-229.
    [182] Heeney, J.L., Primate models for AIDS vaccine development Aids, 1996, 10 Suppl A: S115-122.
    [183] Cohen, J., AIDS research. Vaccine studies stymied by shortage of animals. Science, 2000, 287(5455): 959-960.
    [184] Kanthaswamy, S. and D.G Smith, Effects of geographic origin on captive Macaca mulatta mitochondrial DNA variation. Comp Med, 2004, 54(2): 193-201.
    [185] Lifson, J.D., J.L. Rossio, M. Piatak, Jr., et al., Role of CD8(+) lymphocytes in control of simian immunodeficiency virus infection and resistance to rechallenge after transient early antiretroviral treatment J Virol, 2001, 75(21): 10187-10199.
    [186] Ling, B., R.S. Veazey, A. Luckay, et al., SlV(mac) pathogenesis in rhesus macaques of Chinese and Indian origin compared with primary HIV infections in humans. Aids, 2002,16(11): 1489-1496.
    [187] Trichel, A.M., P.A. Rajakumar, and M. Murphey-Corb, Species-specific variation in SIV disease progression between Chinese and Indian subspecies of rhesus macaque. J Med Primatol, 2002, 31(4-5): 171-178.
    [188] Kyes, R.C., L. Jones-Engel, M.K. Chalise, et al., Genetic characterization of rhesus macaques (Macaca mulatta) in Nepal. Am J Primatol, 2006, 68(5): 445-455.
    
    [189] Pal, R., D. Venzon, N.L. Letvin, et al., ALVAC-SIV-gag-pol-env-based vaccination and macaque major histocompatibility complex class I (A*01) delay simian immunodeficiency virus SIVmac-induced immunodeficiency. J Virol, 2002, 76(1): 292-302.
    [190] Muhl, T., M. Krawczak, P. Ten Haaft, et al., MHC class I alleles influence set-point viral load and survival time in simian immunodeficiency virus-infected rhesus monkeys. J Immunol, 2002, 169(6): 3438-3446.
    [191] Vogel, T., S. Norley, B. Beer, et al., Rapid screening for Mamu-A1-positive rhesus macaques using a SIVmac Gag peptide-specific cytotoxic T-lymphocyte assay. Immunology, 1995, 84(3): 482-487.
    [192] Mellors, J.W., C.R. Rinaldo, Jr., P. Gupta, et al., Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science, 1996,272(5265): 1167-1170.
    [193] Ruprecht, R.M., T.W. Baba, R. Rasmussen, et al., Murine and simian retrovirus models: the threshold hypothesis. Aids, 1996, 10 Suppl A: S33-40.
    [194] Balfe, P., S. Shapiro, M. Hsu, et al., Expansion of quasispecies diversity but no evidence for adaptive evolution of SHIV during rapid serial transfers among seronegative macaques. Virology, 2004, 318(1): 267-279.
    [195] Bergstrom, C.T., P. McElhany, and L.A. Real, Transmission bottlenecks as determinants of virulence in rapidly evolving pathogens. Proc Natl Acad Sci U S A, 1999,96(9): 5095-5100.
    [196] Nowak, M.A., R.M. Anderson, A.R. McLean, et al., Antigenic diversity thresholds and the development of AIDS. Science, 1991, 254(5034): 963-969.
    [197] Liu, S.L., A.G. Rodrigo, R. Shankarappa, et al., HIV quasispecies and resampling. Science, 1996, 273(5274): 415-416.
    [198] Shankarappa, R., J.B. Margolick, S.J. Gange, et al., Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol, 1999, 73(12): 10489-10502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700