HIV Vpr蛋白应用于特异性肝癌基因治疗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on the Application of HIV Vpr to Specific Hepatoma Gene Therapy
  • 作者:魏强
  • 论文级别:博士
  • 学科专业名称:免疫学
  • 学位年度:2004
  • 导师:李凡
  • 学科代码:100102
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-06-01
摘要
原发性肝癌(primary carcinoma of liver)是指自肝细胞或胆管
    细胞发生的癌。原发性肝癌是世界上恶性程度极高,且预后极差的恶性肿
    瘤之一,每年全球约有 25 万人患病。在我国肝癌目前已处于恶性肿瘤死
    亡率的第二位,每年至少有 10 万名新发现病人,11 万名肝癌病人死亡,
    占全球肝癌死亡数的 45%。
    尽管目前肝癌的治疗方法有许多种,但治疗效果都十分有限。大部
    分肝癌病人对化疗和放疗均不敏感,因此寻找新的有效的治疗方式一直
    是研究者追求的目标。随着分子生物学和免疫学理论及技术的不断发展
    和对肿瘤发病机制认识的不断深入,利用基因工程手段对肝癌进行基因
    治疗已取得了很大成功,日益受到研究者的重视。基因治疗及有可能成
    为一种新的治疗方式应用于肿瘤的治疗之中。
    腺病毒载体因其具有安全性好、外源基因表达效率高、滴度高、既可感
    染分裂期细胞又可转染非分裂期细胞以及包装容量大等优点而成为当今
    使用最多的病毒载体之一。
    HIV vpr 基因是 I 型人类免疫缺陷病毒的非结构基因,编码一 14Kda
    大小分子量的蛋白。研究表明,该蛋白是 HIV 重要的调控蛋白,Vpr 蛋
    白不依赖于 HIV 其他蛋白的存在即可引起细胞的 G2 周期阻滞和诱导细
    胞凋亡,单独表达的 Vpr 蛋白也可引起细胞的 G2 周期阻滞和诱导细胞凋
    亡。文献报道 Vpr 蛋白可引起分裂细胞,包括肿瘤细胞发生凋亡。我们
     1
    
    
    的前期工作表明,HIV Vpr 对 Hela 细胞表现出明显的细胞周期阻滞作用。
    由此可见 Vpr 很有可能作为一种新的治疗性基因而应用于以抑制肿瘤生
    长为目的的基因治疗中。
     目前在多数原发性肝细胞中有甲胎蛋白的表达,将外源治疗基因置
    于 AFP 特异性启动子增强子下游,通过肝癌中 AFP 的特异性反式作用于
    该启动子,以激活转录,可实现目的基因的选择性表达,从而可实现有
    效的靶向性治疗,目前 AFP 启动子介导的肝癌特异性基因治疗已成为肝
    癌特异性基因治疗领域的主要方面。
     理想的基因治疗应具有目的基因高效性、靶向性转移和可控性表达
    的特点。鉴于以上认识,我们应用非复制型腺病毒载体制备了甲胎蛋白
    启动子控制下表达 HIV vpr 基因的重组腺病毒 rvAdAFP-vpr,实现其对肝
    癌的特异性基因治疗作用,并对其生物学特征及其体外体内的治疗效果
    进行研究,得到如下实验结果:
     1.通过重组非复制型 5 型腺病毒 pAdEasy 系统,利用 E.coliBJ5183
    的同源重组机制获得的甲胎蛋白启动子控制下表达 HIV vpr 基因重组非
    复制型腺病毒 rvAdAFP-vpr,经 PCR 及 Southern blot 检测证实在重组腺
    病毒基因组中整合有特异性的 HIV vpr 和 AFP 的上游调控序列。
     2.重组腺病毒 rvAdAFP-Vpr 感染两种肝癌细胞:AFP 蛋白表达阳性
    的 BEL-7402 细胞和 AFP 蛋白表达阴性的 SMMC-7721 细胞,实验结果表
    明:Vpr 蛋白在 AFP 蛋白表达阳性的肝癌细胞 BEL-7402 细胞中特异性表
    达,并且可引起 BEL-7402 细胞的细胞周期 G2 阻滞,G2 期细胞数目在病
    毒感染后的 96 小时达到最大值,表现出一定的时间依赖性。对于 AFP
    蛋白表达阴性的 SMMC-7721 细胞而言,却未能检测出 Vpr 蛋白的表达也
    未见细胞周期阻滞作用。
     3.通过荧光染色和和细胞线粒体膜电位改变等指标看到,重组腺病
     2
    
    
    毒 rvAdAFP-vpr 可诱导肝癌细胞凋亡。流式细胞术检测各个与细胞凋亡
    有关的蛋白 Bax、Caspase 9、Caspase 8、Capase 3、细胞色素 C 表达情况。
    结果显示,Bax 蛋白表达量明显升高,Caspase 9、Capase 3、细胞色素 C
    等表达较对照都升高;而 caspase 8 蛋白表达未见明显变化。提示 Vpr 蛋
    白可能通过线粒体途径引起细胞凋亡。
     4.我们在裸鼠建立 AFP 蛋白表达阳性的人肝癌模型,并进行了 1
    个月的分组治疗。免疫组化检测表明,rvAdAFP-vpr 可在肝癌组织中有效
    表达 Vpr 蛋白。治疗效果表明,CPA 治疗组、rvAdAFP-vpr 治疗组和
    rvAdAFP-vpr 联合 CPA 治疗组相对于空白对照组,都在不同程度上显著
    抑制肿瘤生长,特别是 rvAdAFP-vpr 联合 CPA 组抑制肿瘤增长的作用更
    为明显。CPA 治疗组、rvAdAFP-vpr 治疗组和 rvAdAFP-vpr 联合 CPA 治
    疗组的抑瘤率分别达到了 41%、31%、66.7%,表明单独注射 rvAdAFP-vpr
    组的抑瘤效果要好于 CPA 治疗组,说明单独注射 rvAdAFP-Vpr 即可一定
    程度上起到抑制肿瘤生长的作用;另一方面,两者联合治疗组的抑瘤率
    显著高于 rvAdAFP-vpr 组和 CPA 组的单独治疗,提示两者具有协同作用。
     5.空白对照组和 rvAd-null 对照组的 Ki-67 指数明显高于 CPA 治疗
    组、rvAdAFP-vpr 治疗组、rvAdAFP-vpr 联合 CPA 治疗组。其中对照组
    和 rvAd-null 组的 Ki-67 指数对比于 rvAdAFP-vpr 联合 CPA 组具有统计学
    意义,P<0.05。表明 Vpr 蛋白细胞周期 G2 期阻滞的作用有效地减缓了细
    胞分裂增殖速度、抑制了肿瘤的快速增殖。CPA 治疗组、rvAdAFP-vpr
    治疗组、rvAdAFP-vpr 联合 CPA 治疗组的凋亡指数明显高于对照组和
    rvAd-null 组,其中 rvAdAFP-vpr 联合 CPA 组与对照组对比具有统计学意
    义,P<0.05。体内实验?
Hepatomacellular carcimoma (HCC) is one of the most common malignancies
    worldwide with an extremely poor prognosis. The major etiologic risk factors for HCC
    development include toxin, hepatitis B virus (HBV) and hepatitis C virus(HCV) infection
    as well as various inherited metabolic disorders. Surgical treatment is the most important
    treatment of HCC. However, clinical observation have shown that tumor recurrence rates
    are very high in patients with HCC who receive medical or surgical treatment. Thus new
    treatment modalities must be pursued. With the expectation of increasing therapeutic
    efficacy, gene therapy has been introduced as a new direction in treatment for HCC. Gene
    therapy strategies against HCC include suppressor gene therapy, anti-sene gene therapy,
    immunogene therapy, suicide gene therapy and combinanted-gene therapy. However, the
    overall results of the studies are still disappointing. How to search for tumor-specific
    agent of gene therapy? How to achieve appropriate spatial and temporal control of the
    expression of the therapeutic gene? How to construct tumor tissue-targeted vector? These
    questions are still critical problems in tumor gene therapy.
     Adenovirus is a medium-sized, icosahedral virus that contained a double-stranded
    linear DNA genome. Adenovirus has many advantages include broad tissue tropism,
    stability, safety, high lever expression and replication-defective(E1A and E1B deletion)
     5
    
    
    adenoviral vector can accommodate up to 7.5kb of foreign genes and can be amplified to
    high titers in 293 cells. HIV-1 vpr is a 96-a.a. 14kDa protein associated with the HIV
    virus particle. HIV-1 vpr has been shown to affect tumor cells in ways similar to that of
    p53 and other tumor suppressor gene. Several laboratories have reported that vpr induces
    apoptosis following induction of G2/M cell cycle arrest in some tumor lines. Pang et al.
    reported that the mice of which the primary tumor were completely regressed by the vpr
    were additionally protected from a secondary challenge of tumor cells. These results
    suggest that the unique biological properties of vpr shown in some tumor lines suggest
    that vpr may be a useful biological agent for anti-cancer therapy. Many cancers often
    reexpress fetal or embryonic genes, and AFP gene expression is reactivated in HCC cells.
    So we can use AFP promoter drive foreign gene expression to target AFP-producing
    hepatoma cells to achieve hepatoma-specific gene therapy.
     Targeting of tumor cells is crucial for gene therapy of malignant diseases. This can
    be achieved by tumor-targeted gene transfer or tumor-specific gene expression. Base on
    above consideration and theory, we use Ad5 pAdEasy system to generate recombinant
    adenovirus by exploiting E.coli BJ5183 homologous recombination machinery. We
    constructed a replication-defective adenoviral vector expressing vpr gene drived by AFP
    promoter to achieve HCC-targeted gene therapy, named by rvAdAFP-vpr. We confirmed
    that vpr gene and AFP promoter gene have been integrated into adenoviral genome by
    PCR and Southern Blot methods.
     In the present our study, non-AFP-producing hepatoma cell SMMC-7721 and
    AFP-producing hepatoma cell BEL-7402 infected with rvAdAFP-vpr and the expression
    of vpr protein in the infected cells was examined at 96h post infection. By flow
    cytometer analysis, we found that vpr protein special expressed in the AFP-producing
    hepatoma cell BEL-7402 and arrested BEL-7402 cell cycle at G2 phase, and we didn’t
     6
    
    
    find that expression of vpr protein and G2 cell cycle arrest in non-AFP-producing
    hepatoma cell SMMC-7721. At the same time, we found that vpr protein could induce
    BEL-7402 cell apoptosis by confocal microscopy. We made use of flow cytometer to
    analysis activation of apoptosis-associated protein Bax, Caspase 3, Caspase 9, Caspase 8
    and cytochrome c. Our results showed that high level Bax expression and activation of
    Caspase 3, Caspase 9 and cytochro
引文
1.内科学(第五版).人民卫生出版社. 原发性肝癌..
    2. Ray RB, Steele R, Meyer K, Ray R. et al. Transcriptional repression of p53 promoter
     by hepatitis C virus core protein. J Biol Chem,1997, 272(17):10983-6.
    3. Zhang HS, Postigo AA, Dean DC, et al. Active transcriptional repression by the
     Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact
     inhibition. Cell, 1999, 2, 97(1):53-61.
    4. Yakicier MC, Irmak MB, Romano A, et al. Smad2 and Smad4 gene mutations in
     hepatocellular carcinoma. Oncogene, 1999 , 26,18(34):4879-83.
    5. Kanai Y, Ushijima S, Hui AM, et al. The E-cadherin gene is silenced by CpG
     methylation in human hepatocellular carcinomas. Int J Cancer, 1997, 2, 71(3):355-9.
    6.黄建富等. 肝癌的综合治疗.
    7.黄建钊等.人类基因治疗的背景与肝癌基因治疗的研究概况.中国普外基础与临床
     杂志,2003,10,1:83-85
    8.陈诗书,待冰冰等.基因治疗的研究现状与评价.中华肿瘤杂志,2002,24,4:313-315
    9. http://www.sibiono.com/docc/pro.html
    10.童荣生等.基因治疗概况.中华医学丛刊杂志,2002,2,10:23-26
    11.丁庆,吴在得等.肝癌基因治疗策略研究进展.中华实验外科杂志,2001,18,1:
     94-95
    12. Huang XM, Wei SG,, Wang LF, et al. Reversal of malignant phenotype of human
     hepatoma cells by antisense cet-s-2,c-myc,and N-ras, Chin J Oncol, 1994,16, 243-246
    13. Drazan KE, Shen XD, Csete ME, et al. In vivo adenoviral-mediated human p53
     tumor suppressor gene transfer and expression in rat liver after resection. Surgery,
     1994, 116:197-203.
    14. Xu GW, Sun ZT, Forrester K, et al. Tissue-specific growth suppression and
     chemosensitivity promotion in human hepatocellular carcinoma cells by
     retroviral-mediated transfer of the wild-type p53 gene. Hepatology, 1996,
     24:1264-1268.
    15.Ido A, Nakata K, Kato Y,et al. Gene therapy for hepatoma cells using a retrovirus
     vector carrying herpes simplex virus thymidine kinase gene under the control of
     human alpha-fetoprotein gene promoter. Cancer Res. 1995 ,55(14):3105-9.
    16.Huber BE, Austin EA, Richards CA,et al. Metabolism of 5-fluorocytosine to
     5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase
     gene: significant antitumor effects when only a small percentage of tumor cells express
     cytosine deaminase. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8302-6.
    17. 刘军,赵斌等.肝癌自杀基因治疗研究进展.国外医学肿瘤学分册,2000,27,4:
     248-250.
    18. Drozdzik M, Qian C, Xie X, et al. Combined gene therapy with suicide gene and
     interleukin-12 is more efficient than therapy with one gene alone in a murine model
     102
    
    
    of hepatocellula carcinoma. J Hepatol, 2000,32,2:279-286.
    19. 李树平等.肝癌基因治疗给药途径的研究进展.国外医学肿瘤学分册,2002,29,
     2:34-37.
    20.Topf N, Worgall S, Hackett NR, et al. “Pro-drug” gene therapy:intravenous
     administration of an adenoviral vector expressing the E.coli cytosine deaminase gene
     and systemic administration of 5-fluorocytosine suppresses growth hepatic metastasis
     of colon carcinoma. Gene Ther, 1998, 5, 4: 507-513.
    21. Anderson SC, Johnson DE, Harris MP, et al. P53 gene therapy in a rat model of
     hepatocellular carcinoma: intra-arterial delivery of are combinant adenoviraus.
     Clin Cancer Res, 1998,4,7 :1649- 1659.
    22. Pietersen AM, Rademaker HJ, et al. Specific tumor cell killing with adenoviraus
     vectors containing the apoptin gene.Gene Ther, 1999,6,5:882- 892.
    23. Qian C, Idoate M, Bilbao R, et al.Gene transfer and therapy with adenoviral vector in
     rats with diethlnitrosamine-induced hepatocellular carcinoma. Hum Gene Ther,
     1997,8,3:349 358.
    24. Hurford RK, Dranoff G, Mulligan RC, et al. Gene therapy of metastatic cancer by
     invivo retroviral gene targeting. Nat Genet, 1995,10,4:430- 435.
    25. Xie X, Forsmark CE, Lau JY,et al. Effect of bile and pancreatic juice on adenoviral
     mediated gene delivery: implications on the feasibility of gene delivery through
     ERCP. Dig Dis Sci,2000,45,2:230- 236.
    26.赵亚刚,曹亚等.肿瘤的靶向基因治疗.国外医学肿瘤学分册,1999,26,1:24-26。
    27. 贾林涛,王成济等 . 肿瘤基因治疗的靶向性策略. 中国癌症杂志 , 2003,
     13,2 :174-176.
    28. Hiyama E, Gollahon L, Kataoka T, et al. Telomerase activity in human breast tumors.
     J Natl Cancer Inst, 1996, 17;88(2):116-22.
    29. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase
     activity with immortal cells and cancer. Science,23;266(5193):2011-5.
    30. Kyo S, Kanaya T, Ishikawa H, et al. Telomerase activity in gynecological tumors.
     Clin Cancer Res, 1996 ,2 (12):2023-8.
    31. Xie B, Tam NN, Tsao SW,et al. Co-expression of vascular endothelial growth factor
     (VEGF) and its receptors (flk-1 and flt-1) in hormone-induced mammary cancer in
     the Noble rat.Br J Cancer,1999,81(8):1335-1343.
    32. Jaggar RT, Chan HY, Harris AL,et al. Endothelial cell-specific expression of tumor
     necrosis factor-alpha from the KDR or E-selectin promoters following retroviral
     delivery.Hum Gene Ther,1997, 10;8(18):2239-47
    33. O'Rourke JF, Dachs GU, Gleadle JM,et al. Hypoxia response elements.Oncol
     Res,1997, 9(6-7):327-32.
    34. Walton T, Wang JL, Ribas A,et al. Endothelium-specific expression of an E-selectin
     103
    
    
    promoter recombinant adenoviral vector.Anticancer Res,1998, 18(3A):1357-60.
    35. Morishita R, Gibbons GH, Horiuchi M,et al. A gene therapy strategy using a
     transcription factor decoy of the E2F binding site inhibits smooth muscle
     proliferation in vivo.Proc Natl Acad Sci USA, 1995, 20;92(13):5855-9.
    36. Bosco G, Du W, Orr-Weaver TL,et al. DNA replication control through interaction of
     E2F-RB and the origin recognition complex.Nat Cell Biol,2001, 3(3):289-95.
    37.Maxwell PH, Dachs GU, Gleadle JM,et al. Hypoxia-inducible factor-1 modulates
     gene expression in solid tumors and influences both angiogenesis and tumor growth.
     Proc Natl Acad Sci USA, 1997, 22;94(15):8104-9.
    38.Harris JD, Gutierrez AA, Hurst HC,et al. Gene therapy for cancer using
     tumour-specific prodrug activation.Gene Ther,1994, 1(3):170-5.
    39. Chung I, Schwartz PE, Crystal RG,et al. Use of L-plastin promoter to develop an
     adenoviral system that confers transgene expression in ovarian cancer cells but not in
     normal mesothelial cells.Cancer Gene Ther,1999, 6(2):99-106.
    40. Sakamoto KM, Bardeleben C, Yates KE, et al. 5' upstream sequence and genomic
     structure of the human primary response gene, EGR-1/TIS8. Oncogene,
     1991,6(5):867-71.
    41. Lindquist S, Craig EA,et al. The heat-shock proteins.Ann Rev Genet, 1988, 22:
     631-677.
    42. Cotto JJ, Morimoto RI,et al. Stress-induced activation of the heat-shock response:
     cell and molecular biology of heat-shock factors. Biochem Soc. Symp, 1999,64:
     105-118.
    43. Morimoto RI. Cells in stress: transcriptional activation of heat shock genes.Science,
     1993, 5; 259(5100):1409-10.
    44. Madio DP, van Gelderen P, DesPres D,et al.On the feasibility of MRI-guided focused
     ultrasound for local induction of gene expression. J Magn Reson
     Imaging.,1998 ,8(1):101-4.
    45. Gazit G, Kane SE, Nichols P, et al. Use of the stress-inducible grp78/BiP promoter in
     targeting high level gene expression in fibrosarcoma in vivo.Cancer Res, 1995,
     15;55(8):1660-3.
    46.Patierno SR, Tuscano JM, Kim KS,et al. Increased expression of the
     glucose-regulated gene encoding the Mr 78,000 glucose-regulated protein in
     chemically and radiation-transformed C3H 10T1/2 mouse embryo cells.Cancer Res,
     1987, 1;47(23):6220-4.
    47. Li WW, Alexandre S, Cao X,et al. Transactivation of the grp78 promoter by Ca2+
     depletion. A comparative analysis with A23187 and the endoplasmic reticulum
     Ca(2+)-ATPase inhibitor thapsigargin. J Biol Chem, 1993, 5; 268(16):12003-9.
     104
    
    
    48. Volm M, Kastel M, Mattern J,et al. Expression of resistance factors (P-glycoprotein,
     glutathione S-transferase-pi, and topoisomerase II) and their interrelationship to
     proto-oncogene products in renal cell carcinomas. Cancer, 1993, 15;71(12):3981-7.
    49. Paillard F. Tumor-specific transgene expression: an application for hepatocarcinoma
     gene therapy. Hum Gene Ther, 1997,10;8(18):2169-70.
    50. Kitten O, Cosset FL, Ferry N, et al. Highly efficient retrovirus-mediated gene transfer
     into rat hepatocytes in vivo. Hum Gene Ther,1997,10;8(12):1491-4.
    51.李孟森等.甲胎蛋白对细胞增殖的调节作用.国外医学肿瘤学分册,2000,27,5:
     286-288.
    52.Mawatari F, Tsuruta S, Ido A,et al. Retrovirus-mediated gene therapy for
     hepatocellular carcinoma: selective and enhanced suicide gene expression regulated
     by alpha-fetoprotein enhancer directly linked to its promoter.Cancer Gene Ther,
     1998,5: 301-306.
    53.Kanai F, Lan KH, Shiratori Y,et al. In vivo gene therapy for
     alpha-fetoprotein-producing hepatocellular carcinoma by adenovirus-mediated
     transfer of cytosine deaminase gene, Cancer Res, 1997, 57: 461-465.
    54.Bui LA, Butterfield LH, Kim JY, et al. In vivo therapy of hepatocellular carcinoma
     with a tumor-specific adenoviral vector expressing interleukin-2. Human Gene Ther,
     1997, 8: 2173-2182.
    55.Ohguchi s, Nakatsubassa H, Higashi T, et al.Expression of a-fetoprotein and albumin
     genes in human hepatocellular carcinoma:Limitation in the application of the genes
     for targeting human hepatocellular carcinoma in gene therapy.Hepatology, 1998,
     27,2:599-607.
    56.王征旭,王红阳等.肝癌基因治疗研究进展.中华肝胆外科杂志,2001,7,1:55-57.
    57. Balliet JW, Kolson DL, Eiger G, et al. Distinct effects in primary macrophages and
     lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu,
     and nef: mutational analysis of a primary HIV-1 isolate. Virology,
     1994 ,1;200(2):623-31.
    58. Cullen BR. Human immunodeficiency virus as a prototypic complex retrovirus. J
     Virol, 1991 , 65(3):1053-6.
    59. Zhu Y, Gelbard HA, Roshal M, et al. Comparison of cell cycle arrest, transactivation,
     and apoptosis induced by the simian immunodeficiency virus SIVagm and human
     immunodeficiency virus type 1 vpr genes. J Virol, 2001,75(8):3791-801.
    60. Jowett JB, Planelles V, Poon B, et al. The human immunodeficiency virus type 1 vpr
     gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol, 1995,
     69(10):6304-13.
    61. Zhao Y, Cao J, O'Gorman MR, et al. Effect of human immunodeficiency virus type 1
     protein R (vpr) gene expression on basic cellular function of fission yeast
     105
    
    
    Schizosaccharomyces pombe. J Virol, 1996,70(9):5821-6.
    62. Goh WC, Rogel ME, Kinsey CM, et al. HIV-1 Vpr increases viral expression by
     manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med,
     1998 ,4(1):65-71.
    63. O'Connell MJ, Raleigh JM, Verkade HM, et al. Chk1 is a wee1 kinase in the G2 DNA
     damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J,
     1997,3;16(3):545-54.
    64. Walworth N, Davey S, Beach D. Fission yeast chk1 protein kinase links the rad
     checkpoint pathway to cdc2. Nature, 1993,27;363(6427):368-71.
    65. Ford JC, al-Khodairy F, Fotou E, et al. 14-3-3 protein homologs required for the
     DNA damage checkpoint in fission yeast. Science, 1994,22;265(5171):533-5.
    66. He J, Choe S, Walker R, et al. Human immunodeficiency virus type 1 viral protein R
     (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J
     Virol, 1995, 69(11):6705-11.
    67. Re F, Braaten D, Franke EK, et al. Human immunodeficiency virus type 1 Vpr arrests
     the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B. J Virol, 1995,
     69(11):6859-64.
    68. Chen M, Elder RT, Yu M, et al. Mutational analysis of Vpr-induced G2 arrest, nuclear
     localization, and cell death in fission yeast. J Virol, 1999, 73(4):3236-45.
    69. Kinoshita N, Yamano H, Niwa H, et al. Negative regulation of mitosis by the fission
     yeast protein phosphatase ppa2. Genes Dev, 1993, 7(6):1059-71.
    70. Masuda M, Nagai Y, Oshima N, et al. Genetic studies with the fission yeast
     Schizosaccharomyces pombe suggest involvement of wee1, ppa2, and rad24 in
     induction of cell cycle arrest by human immunodeficiency virus type 1 Vpr. J Virol,
     2000, 74(6):2636-46.
    71. Zhu Y, Gelbard HA, Roshal M, et al. Comparison of cell cycle arrest, transactivation,
     and apoptosis induced by the simian immunodeficiency virus SIVagm and human
     immunodeficiency virus type 1 vpr genes. J Virol, 2001,75(8):3791-801.
    72. Poon B, Jowett JB, Stewart SA, et al. Human immunodeficiency virus type 1 vpr
     gene induces phenotypic effects similar to those of the DNA alkylating agent,
     nitrogen mustard. J Virol, 1997, 71(5):3961-71.
    73. O'Connell MJ, Raleigh JM, Verkade HM, et al. Chk1 is a wee1 kinase in the G2 DNA
     damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J. 1997 Feb
     3;16(3):545-54.
    74. Walworth N, Davey S, Beach D. Fission yeast chk1 protein kinase links the rad
     checkpoint pathway to cdc2. Nature, 1993,27;363(6427):368-71.
    75. Hunter T. Protein kinases and phosphatases: the yin and yang of protein
     phosphorylation and signaling. Cell, 1995 ,27;80(2):225-36.
     106
    
    
    76. Mumby MC, Walter G. Protein serine/threonine phosphatases: structure, regulation,
     and functions in cell growth. Physiol Rev, 1993, 73(4):673-99.
    77. Hrimech M, Yao XJ, Branton PE, et al. Human immunodeficiency virus type 1
     Vpr-mediated G(2) cell cycle arrest: Vpr interferes with cell cycle signaling cascades
     by interacting with the B subunit of serine/threonine protein phosphatase 2A. EMBO
     J, 2000 Aug , 1;19(15):3956-67.
    78. Withers-Ward ES, Jowett JB, Stewart SA, et al. Human immunodeficiency virus type
     1 Vpr interacts with HHR23A, a cellular protein implicated in nucleotide excision
     DNA repair. J Virol. 1997 Dec;71(12):9732-42.
    79. Ramanathan MP, Curley E 3rd, Su M, et al. Carboxyl terminus of hVIP/mov34 is
     critical for HIV-1-Vpr interaction and glucocorticoid-mediated signaling. J Biol
     Chem. 2002 Dec 6;277(49):47854-60.
    80. Chowdhury IH, Wang XF, Landau NR, et al. HIV-1 Vpr activates cell cycle inhibitor
     p21/Waf1/Cip1: a potential mechanism of G2/M cell cycle arrest. Virology,
     2003,20;305(2):371-7.
    81. Subbramaanian, R A, Yao X J, Dilhuydy H, et al. Human immunodeficiency virus
     type 1 Vpr localization :nuclear transport of a viral protein modulated by a putative
     amphipathic helical structure and its relevance to biological activity. J Mol Biol, 1998,
     278: 13-30.
    82. Balliet J W, Kolson D L, Eiger G, et al. Distinct effect in primary macrophages and
     lymphocytes of the human immunodeficiency virus type 1 accessory gene vpr, vpu,
     and nef: mutation analysis of a primary HIV-1 isolate. Virology, 1994, 200:
     623-631.
    83. Westervelt P, Trowbridge D B, Epstein L G, et al. Macrophage tropism determinants
     of human immunodeficiency virus 1 in vivo. J Virol, 1992, 66: 2577-2582.
    84 Westervelt P, Henkel T, Trowbridge D B, et al. Dual regulation of silient and
     productive infection in monocytes by distinct human immunodeficiency virus type 1
     determinants. J Virol, 1992, 66: 3925-3931.
    85. Heinzinger N, et al. The Vpr protein of human immunodeficiency virus type 1
     influences nuclear location of viral nucleic acid in nondividing host cell. Proc Natl
     Acad Sci USA,1994, 91: 7311-7315.
    86. 杨军,Steve Yi, 王健伟,等. HIV-1 vpr 基因在肿瘤细胞中诱导 G2 期停滞、细
     胞致死效应及其核定位功能研究. 中华实验和临床病毒学杂志,2000,14:
     223-226.
    87. Chen M, et al. Mutational analysis of Vpr-induced G2 arrest, nuclear location and cell
     death in fission yeast. J Virol, 1999, 73: 3236-3245.
    88. Zhao Y, Yu M, et al. Pleiotropic effect of HIV protein R(vpr) on morphogensis and
     cell survival in fission yeast and antagonism by pentoxifylline. Virology, 1998, 246:
     107
    
    
    266-276.
    89. Adam S A and Gerace L. Cytosolic protein that specifically bind nuclear location
     signal are receptors for nuclear import. Cell, 1991, 66: 837-847.
    90. Gorlich D, Kaft R, et al. Two different subunits of importin cooperate to recognize
     nuclear location signals and bind them to the nuclear envelope. Curr Biol, 1995, 5:
     5383-5392.
    91. Imamoto N, Shimamoto T, Kose S, et al. The nuclear pore-tareting complex binds to
     nuclear pores after association with a karyophile. FEBS Lett, 1995, 368: 415-419.
    92. Enenkel C, Blobel G and Rexach M. Identification of a yeast Karyopherin
     heterodimer that targets import substrate to mammalian nuclear pore complex. J Biol
     Chem, 1995, 270: 16499-16502.
    93. Gallay P, Stitt V, Mundy C, et al. Role of the karyopherin pathway in human
     immunodeficiency virus type 1 nuclear import. J Virol, 1996, 70: 1027-1032.
    94. Vodicka M A, Koepp D M, Silver, P A, et al. HIV-1 Vpr interacts With the nuclear
     transport pathway to promote macrophage infection. Gene Dev, 1998, 12: 175-185.
    95. Popov S, Rexach M, Ratner L, et al. Viral proteiln R regulates docking of the HIV-1
     preintegration complex to the nuclear pore complex. Biochimie, 1998, 273:
     13347-13352.
    96.Fukumori T, Akari h, Yoshida A, et al. Regulation of cell cycle and apoptosis by
     human immunodeficiency virus type 1 Vpr. Microbes Infect, 2000, 2(9): 1011-1017.
    97.Yuan HD, Xie YM, Chen SY, et al. Depletion of Wee-1 kinase is necessary for both
     human immunodeficiency virus type 1 vpr- and gamma irradiation-induced apoptosis.
     J Virol, 2003, 77,3: 2063-2077.
    98.Jacotot E, Ravagnan L, Loeffler M, et al. HIV-1 viral protein R induces apoptosis via
     a direct effect on the mitochondrial permeability transition pore. J Exp Med, 2000,
     191:33~46
    99.Cullen B R. HIV-1 auxiliary proteins: making connections in a dying cell. Cell, 1998,
     93: 685~692.
    100. Piller S C, Jans P, Gage P W, et al. Extracellular HIV-1 virus protein R causes a
     large inward current and cell death in cultured hippocampal neurons: implications
     for AIDS pathology.Proc Natl Acad Sci U S A, 1998, 95: 4595~4600
    101. Macreadie I G, Thorburn D R, Kirby D M, et al. HIV-1 protein Vpr causes gross
     mitochondrial dysfunction in the yeast Saccharomyces cerevisiae. FEBS Lett,
     1997,410: 145~149
    102.Jacotot E, Ferri K F, Hamel C, et al. Control of mitochondrial membrane
     permeabilization by adenine nucleotide translocator interacting with HIV-1 viral
     protein rR and Bcl-2. J Exp Med, 2001, 193:509~519
    103. Roumier T, Vieira H L, Castedo M, et al. The C-terminal moiety of HIV-1 Vpr
     108
    
    
    induces cell death via a caspase-independent mitochondrial pathway. Cell Death
     Differ, 2002, 9:1212~1219
    104. Stewart S A, Poon B, Song J Y, et al. Human immunodeficiency virus type 1 vpr
     induces apoptosis through caspase activation. J Virol, 2000, 74: 3105~3111
    105. Muthumani K, Hwang D S, Desai B M, et al. HIV-1 Vpr induces apoptosis through
     caspase 9 in T cells and peripheral blood mononuclear cells. J Biol Chem, 2002, 277:
     37820~37831
    106. Yasuda J, Miyao T, Kamata M, et al. T cell apoptosis causes peripheral T cell
     depletion in mice transgenic for the HIV-1 vpr gene. Virology, 2001, 285: 181~192
    107. Levy D N, Refaeli Y, Weiner D B. Extracellular Vpr protein increases cellular
     permissiveness to human immunodeficiency virus replication and reactivates virus
     from latency. J Virol, 1995, 69: 1243~1252
    108. Cun-Yu Wang, Marty W, Albert S, et al. TNF- and Cancer Therapy-Induced
     Apoptosis: Potentiation by Inhibition of NF- B. Science, 1996, 274: 784~787
    109. Refaeli Y, Levy D N, Weiner D B. The glucocorticoid receptor type II complex is a
     target of the HIV-1 vpr gene product. Proc Natl Acad Sci U S A, 1995, 92:
     3621~3625
    110. Mahalingam S, Ramalingam R, Kudchodkar S, et al. HIV-1 Vpr suppresses immune
     activation and apoptosis through regulation of nuclear factor kappa B. Nat Med,
     1997,3: 1117~1123
    111. Chang L J, Chen C H, Urlacher V, et al. Differential apoptosis effects of primate
     lentiviral Vpr and Vpx in mammalian cells. J Biomed Sci, 2000, 7:322~333
    112. Mahalingam S, MacKonald B, Ugen KE, et al. In vitro and in vivo tumor growth
     suppression by HIV-1 Vpr. DNA Cell Biol, 1997, 16(2): 137-142.
    113. Stewart SA, Poon B, Jowett JB, et al. Lentiviral delivery of HIV-1 Vpr protein
     induces apoptosis in transformed cells. Proc Natl Acad Sci U S A,
     1999,12;96(21):12039-43.
    114. Pang S, Kang MK, Kung S, et al. Anticancer effect of a lentiviral vector capable of
     expressing HIV-1 Vpr. Clin Cancer Res, 2001, 7(11): 3567-2573.
    115. Patel CA, Mukhtar M, Harley S, et al. Lentiviral expression of HIV-1 Vpr induces
     apoptosis in human neurons. J Neuroviro, 2002, 8(2): 86-99.
    116. Ido A, Uto H, Moriuchi A, et al. Gene therapy targeting for hepatocellular carcinoma:
     selective and enhanced suicide gene expression regulated by a hypoxia-inducible
     enhancer linked to a human alpha-fetoprotein promoter. Cancer Res. 2001 Apr
     1;61(7):3016-21.
    117.He TC, Zhou SB, et al. A simplified system for generating recombinant
     adenoviruses,Proc Natl Acad Sci USA,1998,95,2509-2514.
    118. Castell JV, Hernandez D, Gomez-Foix AM, et al. Adenovirus-mediated gene transfer
     109
    
    
    into human hepatocytes: analysis of the biochemical functionality of transduced
     cells. Gene Ther. 1997 May;4(5):455-64.
    119. Bao JJ, Zhang WW, Kuo MT. Adenoviral delivery of recombinant DNA into
     transgenic mice bearing hepatocellular carcinomas. Hum Gene Ther. 1996 Feb
     10;7(3):355-65.
    120. Ido A , Nakata K , Kato Y, et al. Gene therapy for hepatoma cells using a retrovirus
     vector carrying herpes simplex virus thymidine kinase gene under the control of
     human a-fetoprotein gene promoter[J]. Cancer Res, 1995,55:3105.
    121. 常青等. 细胞色素 C、线粒体与凋亡.中国药理学通报,2003,19,3:241-244.
    122. Stewart SA, Poon B, Jowett JB, et al. Human immunodeficiency virus type 1 Vpr
     induces apoptosis following cell cycle arrest. J Virol. 1997 Jul;71(7):5579-92.
    123. Nishizawa M, Kamata M, Mojin T, et al. Induction of apoptosis by the Vpr protein
     of human immunodeficiency virus type 1 occurs independently of G(2) arrest of the
     cell cycle. Virology,2000,10;276(1):16-26.
    124. He P, Tang ZY, Liu BB, et al. The targeted expression of the human
     interleukin-2/interferon alpha2b fused gene in alpha-fetoprotein-expressing
     hepatocellular carcinoma cells. J Cancer Res Clin Oncol. 1999;125(2):77-82.
    125. Jerome V, Muller R. Tissue-specific, cell cycle-regulated chimeric transcription
     factors for the targeting of gene expression to tumor cells. Hum Gene Ther. 1998
     Dec 10;9(18):2653-9.
    126.徐叔云主编. 药理实验方法学. 第三版. 人民卫生出版社. 2002, 1767-1770.
    127.陈书明, 聂向庭等. 鹿茸醇提取对用环磷酰胺处理的小白鼠红细胞免疫功能的
     影响. 经济动物学报,2000,4(1):23-25.
    128.Gerdes J, Scwab U, Lemke H, et al. Production of amouse monoclonal antibody
     reactive with a human nuclear antigen associated with cell proliferation. Int J
     Cancer,1983,31(1):13~20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700