关于太阳能电热综合利用中若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能是新能源领域中研究的重点,为了高效利用太阳能,近年来对太阳能电热综合利用(PV/T)进行了大量的研究。但目前对PV/T的研究都是从整体效率出发,论证PV/T的可行性。在PV/T研究过程中的一些关键的问题由于涉及到多个学科,往往被忽略,本文针对这几个关键问题进行了深入的研究。
     PV/T系统聚光多是采用中低倍聚光,由于聚光形式各异,其光学效率各不相同,因此很难对比不同聚光方式之间的区别,评价各自聚光方式的优劣。聚光的PV/T系统都采用对日追踪,追踪误差对效率有着明显的影响。本文通过分析比较追踪角度误差对这几种聚光系统的影响,得出接收器为管式的槽式抛物面反射聚光系统对追踪精度的要求最低,菲涅尔反射聚光在追踪误差小于±3°时与其相当,追踪误差对效率的影响小于15%,总的能量损失小于33%,透镜折射和平板接收器的槽式抛物面反射聚光对追踪误差较为敏感。综合比较不同的聚光方式和接收器光强分布特点,提出对PV/T系统而言菲涅尔反射聚光最为合适。
     聚光的太阳能系统都用到太阳追踪,从方式上分成主动追踪和被动跟踪,主动追踪精度相对较高,被动跟踪精度相对较低。追踪关键是追踪算法,如何实现高精度追踪和采用什么样的追踪算法,对追踪精度有何要求,目前对此研究相对较少。追踪系统缺乏了这些理论支持,PV/T系统只能作为一种实验装置,难以实际应用。本文对主动追踪的算法进行分析,用空间坐标系变换的方法推导了高度角、方位角关于儒略日时间的表达式,同时对赤经因素对太阳位置的影响进行分析。通过与现有公式进行比较,证明了推导的正确性,为主动追踪控制提供了重要的理论依据。通过数据计算对比,在考虑赤经因素影响下,高度角的最大误差小于0.5°,方位角的最大误差小于0.8°,提高了追踪算法的计算精度。
     温度对PV/T系统的电-热利用有着明显的影响,冷却和热交换系统至关重要。传统的研究实验只关注进出口温度和流速,对流道的布置、形式和导热工质并没有进行研究。实际上真正对PV/T系统综合效率影响最大的是流道的布置和流道的形式。太阳能电池串联时温度分布越均匀,电池散热越好,PV/T综合效率才越高。本文对电池的冷却、热交换系统进行了相应的分析设计,通过流道的布置使接收器温度分布均匀;通过流道形式的正交试验,得出流道间隙和波纹夹角对波纹流道的热交换效果影响最大,据此优化流道结构。同时制备了一类γ-Al_2O_3的纳米流体,对其热物性进行测试,得出了热交换的相关参数,为后续的仿真分析提供了依据。
     通过对PV/T系统在Trnsys软件中进行运行分析,得知在无冷却条件下聚光倍数过高,会造成太阳能电池的表面温过高,继而影响电池效率。当太阳能电池在有冷却条件下工作时,冷却系统应使太阳能电池的温度控制在80~100℃之间,以达到较为理想的电能、热能输出。
     研究表明,采用主动追踪的菲涅尔反射聚光的PV/T系统,可以节省电池芯片的使用,提高太阳能的综合利用率。通过对全年的运行效果分析可以看出,对于太阳能电池的聚光应用,在有冷却系统时发电效率基本不受影响,但聚光可以很大程度上节省电池芯片的使用,使单位面积发电量大大提高,同时还可以将一部分热能利用,使太阳能的综合利用率到达43.4%。
Solar energy has the potential to play an important role in renewable energy. Inrecent year many research has been done in photovaltic and themal (PV/T) toimprove usage efficience. At present most reseach are about total efficiency and thefeasibility of PV/T. Several key issues always ignored because of they are belong todifferent subject. This thesis discusses these issues and do further investigation.
     PV/T system always adopt low-concentration, different concentration type leadto different optical efficiency. So it’s difficult to find out which method is best. Allconcentrating PV/T system has sun tracking equipment. The tracking accurateinfluences the efficiency. In this thesis the author analysis and compare the influencewith different type concentration in tracking error. Get a conclusion that theparabolic trough reflecter with tube receiver has minimum influence by the trackingerror. Fresnel reflecter has the same influence when the tracking error less than±3°.The tracking error impact on the efficiency of less than15%, and the total energyloss is less than33%. Lens refracter and surface receiver are more sensitive to thetracking error. In a word, the Fresnel reflection system is suitable for PV/T system.
     Concentrating solar systems always has equipment tracking the sun. It can bedivided into active tracking and passive following. Active tracking is more accuratethan passive following. At present less scholar focus on tracking algorithm and howto realize.Without these theories support the tracking system for PV/T is just testequipment and hard for practical application. In this paper analysis the trackingalgorithm, and use space coordinate system transformation derived the expressionfor altitude angle and azimuth angle with Julian time of day. At the same timeconsidered the affect with right ascension to the solar position. Compared with theexisting formula proved the derivation is correct, and provides an important theoryfor solar position algorithm. From experiment and analysis the maximum error whenconsider the right ascension factors is less than0.5°, azimuth error is less than0.8°,improve the calculation accuracy.
     Temperature is a significant effect for PV/T system, so cooling and heatexchange systems are very inportant. Traditional researches only concerned with theinlet and outlet temperature and flow rate, never considered about the channel layoutand thermal conductivity. In fact, the channel layout and form always decide thePV/T system efficiency. Because in series PV the temperature distribution the moreuniform the better for PV/T efficiency. In this paper analysis the PV cooling and theheat exchange. Through the flow channel arrangement uniformed the PVtemperature distribution. Through the orthogonal test derived that the channel gapand the corrugated angle is the most obvious effect on heat exchange in corrugatedchannel. During these conclusions optimized the channel structure. Made a kind ofγ-Al_2O_3nano-fluid, test the thermal properties, get the character in heat exchange, and provide original data for later simulation analysis.
     From PV/T system running in analysis software Trnsys, get a result that the highconcentration without colling system will cause the PV cell temperature raise anddamage itself. But when cooling system work and controlled solar cell temperaturebetween80~100℃, will achieve ideal electrical and thermal energy output.
     Research shown that Fresnel reflection concentrator with active tracking PV/Tsystem can save PV cell use, and improve the solar energy utilization. Through thefull year analysis indicate that concentration PV/T system with colling system workin good condition and save PV cell use. The total solar energy utilization efficiencyreaches43.4%.
引文
[1] H.A.Zondag, D.W.Vries. Thermal and Electrical Yield of a Combi-panel [C]. Proceedingsof ISES Bi-annual Conference, Jerusalem,1999.
    [2] M.Brogren, B.Karlsson. Low-Concentrating Water-cooled PV-thermal Hybird Systems forHigh Latitudes [C].17thEUPVSEC,2001.
    [3] J.S.Coventry. Performance of a Concentrationg Photovaltaic/thermal Solar Collector [J].Solar Energy,78(2),2005, pp.211-222
    [4] H.C.Hottel, A.Willier. Evaluation of Flat-plate Solar Collector Performance [C].Transactions of the Conference on the Use of Solar Energy. Vol.2, University of ArizonaPress, Tucson, Arizona,1958
    [5] L.W.Florschuetz. Extension of the Hottel-Willier Model to the Analysis of CombinedPhotovoltaic/thermal Flat Plate Collector [J]. Solar Energy,22(4),1979, pp.361-366
    [6] H.A.Zondag, D.W.Vries, W.G.J.Van Hendel. The Yield of Different Combined PV-thermalCollector Designs [J]. Solar Energy74(3),2003,pp.253-269
    [7] T.Bergene, O.M.Lovvik. Model Calculations on a Flat Plate Solar Heat Collector withIntegranted Solar Cells [J]. Solar Energy,55(6),1995, pp.453-462
    [8] J.A.Duffle, W.A.Beckman. Solar Engineering of Thermal Processes [C].Second ed., JohnWiley and Sons Ins Inc., New York,1991
    [9] B.Sandnes, J.Rekstad. A Photovoltaic/thermal (PV/T) Collector with A Polymer AbsorberPlate Experiment Study and Analytical Model [J]. Solar Energy,72(1),2002, pp.63-73
    [10] K.S.Sopian, H.T.Yigit, H.T.Liu. Performance Analysis of Photovoltaic/thermal Air Heaters[J]. Energy Conversion and Management,37(11),1996, pp.1657-1670
    [11] S.A.kalogirou. Use of TRNSYS for Modeling and Simulation of A Hybird PV-thermalSolar System for Cyprus [J]. Renewable Energy,23(2),2001, pp.247-260
    [12] Y.Tripanagnostopoulos, Th.Nousia. Hybird Photovoltaic/thermal Solar System [J]. SolarEnergy,72(3),2002, pp.217-234
    [13] T.Fujisawa, T.Tani.Annual Exergy Evaluation on Photovoltaic-thermal Hybird Collector [J].Solar Energy Materials and Solar Cells.47(1-4),1997, pp.135-148
    [14] J.I.Rosell, et al. Design and Simulation of A Low Concentrating Photovoltaic/thermalSystem [J]. Energy Conversion and Management,46,2005, pp.3034-3046
    [15] Bergene T, Lovik O. Model Caculations on a Flatplate Solar Heat Collector with IntegratedSolar Cells [J]. Solar Energy.1995,55(6),pp.4539-4621
    [16] S.A.Omer, D.G.Infield. Design and Thermal Analysis of a Two Stage Solar Concentratorfor Combined Heat and Thermoelectric Power Generation [J]. Energy Conversion andManagement.2000,41,pp.737-756\
    [17] Huang B.J, et al. Solar Photovaltic/thermal generation collector [C].1Proceedings of theISES1999Solar World Congress Jerusalem, Israe,1999, pp.991
    [18]季杰,程洪波等.太阳能光伏光热一体化系统的实验研究[J],太阳能学报,2005,4,vol.26,pp170-173
    [19] Luque-Heredia I, Moreno JM, Magalhaes PH, Cervantes R, Quemere G, Laurent O.Inspira’s CPV Sun Tracking, Concentrator Photovoltaics. Berlin, HeidelbergSpringer-Verlag;2007[chapter11].
    [20] Tripanagnostopoulos Y. Building Integrated Concentrating PV and PV/T Systems [C].Proceedings of the Eurosun2008;2008.
    [21] Daniel C. Building Integrated Concentrating Photovoltaics: A review [J]. Renewable andSustainable Energy Reviews.2011(15), pp.603-611
    [22] Chellini S, Vallribera J, Pardell R. Technical Highlights of A Solar Simulator for PVConcentration Modules [C]. Proceedings of the4th international conference on solarconcentrators for the generation of electricity or hydrogen (ISCS-4);2007
    [23] Soliant SE500X Product Sheet [OL]. www.soliantenergy.com
    [24] Anstey BD, Bentley RW, Bonner T, et al. Progress with the Whitfield Solar PVConcentrator [C]. Proceedings of the4th international conference on solar concentrators forthe generation ofelectricity or hydrogen (ISCS-4);2007.
    [25] Kaminar N, McEntee J, Stark P, Curchod D. SEA10x Concentrator Development Progress[C]. Proc.22nd IEEE Photovoltaic Specialists Conference;1991.
    [26] O`Neill MJ, Walters RR. Fabrication Installation and Initial Operation of the2000m2.Linear Fresnel Lens Photovoltaic Concentrator System at3M/Austin (Texas)[C]. Proc.21th IEEE Photovoltaic Specialists Conference;1990.
    [27] L.Ralf, A.Suzuki. Design of a Nonimagine Fresnel Len for Solar Concentrators [J]. SolarEnergy.1999,65(6), pp.39-45
    [28] Chemisana D. Comparison of Fresnel Concentrators for Building Integrated Photovoltaics
    [C]. Energy Conversion and Management2009,50, pp.1079-1084.
    [29] www.power-spar.com/Power-Spar/products/Power-Spar%20(2-page)%20(R14-Jan-09).pdf.
    [30] Vasylyev S. Non-imaging System for Radiant Energy Flux Transformation, U.S. Patent#6620995,2003.
    [31] Vasylyev V. Expected Optical Performances of Novel Type Multielement High-heat SolarConcentrators [C]. Solar2002conference. American Solar Energy Society;2002.
    [32] Gordon JM, Feuermann D. Optical Performance at the Thermodynamic Limit with TailoredImaging Designs. Applied Optics2005,44, pp.2327-31.
    [33] Bernardo LR. Evaluation of a Parabolic Concentrating PVT System [C]. Proceedings ofEurosun2008;2008.
    [34] Luque A, Sala G, Arboiro JC, Bruton T, Cunningham D, Mason N. Some Results of theEUCLIDES Photovoltaic Concentrator Prototype [J]. Progress in Photovoltaics Researchand Application1997(5), pp.195-212.
    [35] Coventry J.S. Performance of a Concentrating Photovoltaic/thermal Collector [J]. SolarEnergy,2005(78), pp.211-222.
    [36] Rosell J.I, Vallverdu X, Lechon M.A, Ibanez M. Design and Simulation of a LowConcentrating Photovoltaic/thermal System [J]. Energy Conversion and Management2005(46), pp.3034-3046.
    [37] Helio Dynamics. HD211product sheet;2004. Available from: www.heliodynamics.com/HD10specsheet2.pdf.
    [38] Chemisana D, Rosell J.I. Design and Optical Performance of a Nonimaging FresnelReflective Concentrator for Building Integration Applications [J]. Energy Conversion andManagement, Submitted for Publication.
    [39] G.R.Whitfield, R.W.Bentley. The Development and Testing of Small Concentrator PVSystem [J]. Solar Energy,1999,67(1-3), pp.23-34
    [40] S.D.Odeh, G.L.Morrison. Modelling of Parabolic Trough Direct Steam Generation SolarCollector [J]. Solar Energy,1998,62(6), pp.395-406
    [41] M.Eck, E.Zarza, M.Eickhoff. Applied Research Concerning the Steam Generation inParabolic Troughs [J]. Solar Energy,2003,74,pp.341-351
    [42] M.Eck, W.D.Steinmann. Maximum Temperature Difference in Horizontal and TiltedAbsorber Pipes with Direct Steam Generation [J]. Energy,2004,29, pp.665-676
    [43] E.Zarza, L.Valenzuela. Direct Steam Generation in Parabolic Toughs [J]. Final Results andConclusions of the DISS Project. Energy.2004,29, pp.635-644
    [44] Manuel B.M, Diego C.A, Computing the Solar Vector [J], Soar Energy Vol.70,No.5,2001,pp.431-441
    [45] Copper P.I. The absortion of radiation in solar stills [J]. Solar Energy12,333-346
    [46] Spencer J.W. Fourier series representation of the position of the sun [J]. Search2,1971, No.5.
    [47] Spencer J.W. Comments on ‘The astronomaical almanac’s algorithm for approximate solarposition (1950-2050)’[J]. Solar Energy42(4),1989, pp.353.
    [48] Swift L.W.Algorithm for solar radiation on mountain slopes [J]. Water Resour. Res.12,1976, pp.108-112.
    [49] Pitman C.L, Vant-Hull L.L. Errors in location the Sun and their effect on solar intensitypredictions [C]. Meeting of the American Section of the International Solar Energy Society,Denver,28Aug1978, pp.701-706
    [50] Walraven R. Calculating the position of the Sun [J]. Solar Energy20,1978, pp.393–397.
    [51] Walraven R. Erratum [J]. Solar Energy22,1979, pp.195.
    [52] Lamm L. O. A new analytic expression for the equation of time [J]. Solar Energy26,1981,pp.465.
    [53] Michalsky J. J.The astronomical almanac’s algorithm for approximate solar position(1950–2050). Solar Energy,40(3),1988, pp.227–235.
    [54] Sunden B, Skoldheden T, Heat Transfer and Pressure Drop in A New Type of CorrugatedChannels [J], Heat Mass Transfer,1985, vol.12, pp.559-566
    [55] Sunden B, Skoldheden T, Periodic laminar flow and heat transfer in a corrugatedtwo-dimensional channel [J], International Communications in Heat and Mass Transfer,No.16,1989,pp.215-225
    [56] Goldstein L, Sparrow EM. Heat/mass Transfer Characteristics for Flow in a CorrugatedWall Channel [J]. Transaction of the ASME, Journal of Heat Transfer,1997(99), pp.187–95
    [57] Ali M, Ramadhyani S. Experiments on Convective Heat Transfer in Corrugated Channels[J]. Experimental Heat Transfer,1992(5), pp.175–193
    [58] Masuda H, Ebata A, Teramae K, et.al. Alternation of thermal conduetivity and v1seosity ofliquid by dispersing ultra-fine partieles (dispersion of γ-Al2O3,SiO2and TiO2ultra-finepartieles)[J]. Netsu Bussei (Japan), Vol.4,1993,227~233
    [59] Lee S, Choi S U S, Li S, et.al. Measuring thermal conduetivity of fluids containing oxidenanopartieles [J]. Journal of Heat Transfer, Vol.121,1999, pp.280~289
    [60] Lee S, Choi S U S. Applieation of Metallic Nanoparticle Suspensions in Advaneed CoolingSystems [J]. ASME, PVP,1996,342:227~234
    [61] Naphon P, Heat transfer characterisitics and pressure drop in channel with V corrugatedupper and lower plates, Energy Convers Manag,2007,48:1516-1524
    [62] P.Hugonnot, Etude locale de lecoulement et performances thermohydrauliques a faiblenombre de Reynolds d’un canal plan corrugue-Application aux echangeurs de chaleur aplaques, PhD thesis, University Nancy I,1989
    [63] Manglik RM, Zhang J, Muley A, Low Reynolds number forced converction inthree-dimensional wavy-plate-fin compact channels: fin density effects. InternationalJournal of Heat and Mass Transfer,2005,48(8):1439-1449.
    [64] Shah RK. Compact heat exchangers.1st ed. Tayior&Francis,1990.
    [65] B.Sunden, T.Skoldheden,“heat transfer and pressure drop in a new type of corrugatedchannels,” Heat Mass Transfer,1985, vol.12, pp.559-566
    [66] J.Zhang, J.Kundu, RM. Manglik,“Effect of fin waviness and spacing on the lateral vortexstructure and laminar heat transfer in wavy-plate-fin cores,” International Journal of Heatand Mass Transfer,2004, vol.47(17), pp.1719-1730
    [67] Y.Islamoglu, C.Parmaksizoglu,“Numerical investigation of convective heat transfer andpressure drop in a corrugated heat exchanger channel,” Applied Thermal Engineering,2004,vol.24, pp.141-147
    [68] J.H.Lin, C.Y.Huang, C.C.Su,“Dimensional analysis for the heat transfer characteristics inthe corrugated channels of plate heat exchangers,” International Communications in Heatand Mass Transfer,2007, vol.34, pp.304-312
    [69] Y.T.Yang, P.J.Chen,“Numerical simulation of fluid flow and heat transfer characteristicsin channel with V corrugated plates,” Heat Mass Transfer,2010, vol.46, pp.437-445
    [70] R.M.Manglik, J.Zhang, A.Muley,“Low Reynolds number forced convection inthree-dimensional wavy-plate-fin compact channels: fin density effects,” InternationalJournal of Heat and Mass Transfer,2005, vol.48, pp.1439-1449
    [71] R.L.Webb,“Principle of enhanced heat transfer,” John Wiley&Sons Inc.,New York,1994
    [72] P.Naphon, K.Kornkumjayrit,“Numerical analysis on the fluid flow and heat transfer in thechannel with V-shaped wavy lower plate,” International Communications in Heat and MassTransfer,2008, vol.35, pp.839-843
    [73] M.Gradeck, B.Hoareau, M.Lebouche,“Local analysis of heat transfer inside corrugatedchannel,” International Journal of Heat and Mass Transfer,2005, vol.48, pp.1909-1915
    [74] C.C.Wang, C.K,Chen,“Forced convection in a wavy-wall channel,” Heat and MassTransfer,2002, vol.45, pp.2587-2595
    [75] I.Taymaz, I.Koc, Y.Islamoglu,“Experimental study on forced convection heat transfercharacteristics in a converging diverging heat exchanger channe,” Heat Mass Transfer,2008,vol.44, pp.1257-1262
    [76] Y.Islamoglu, C.Parmaksizoglu,“The effect of channnel height on the enhanced heattransfer characteristics in a corrugated heat exchanger channel,” Applied ThermalEngineering,2003, vol.23, pp.979-987
    [77] P.Naphon,“Effect of corrugated plates in an in-phase arrangement on the heat transfer andflow developments.” International Journal of Heat and Mass Transfer,2008, vol.51,pp.3963-3971
    [78] E.A.M. Elshafei, M.M.Awad, E.EL-Negiry,“Heat transfer and pressure drop in corrugatedchannels,” Energy, Vol.35,2010, pp.101-110
    [79] K.Emery, M.Meusel, R.Beckert, et al. Procedures for evaluating multijunctionconcentrators[C]. Proc28th IEEE Photovoltaic Specialists Conference. Anchorage, Alaska,2000,1126-1130
    [80] King R.R, Law D.C, Edmondson K.M, et al.40%efficient metamorphic GaInP/GaInAs/Gemultijunction solar cells[J]. Appl Phys Lett,2007,90:183516.
    [81] Sharps P R, Myers D, Olson J.M, Projected performance of three and four junction devicesusing GaAs and GaInP[J]. Proceedings of26th IEEE PVSC,1997:875-878.
    [82] I.Luque-Heredia, R. Cervantes, G. Quemere. A sun tracking error monitor for photovoltaicconcentrators[C]. Proc3rd world Conference on Photovoltaic Energy Conversion, Hawaii,2006.
    [83] A.Marti, L.Guadra, A.Luque. Intermediate-band solar cells in next generation photovoltaicshigh efficiency through full spectrum utilization[J]. Institute of Physics Publishing,2004,140-164.
    [84] Kwangsun Ryu, Jin-Geun Rhee, Kang-Ming Park, et al. Concept and design of modularFresnel Lenses for Concentration Solar PV system[J]. Solar Energy,2006,1580-1587.
    [85] Roberto Grena. An algorithm for the computation of the solar position[J]. Solar Energy,2008,462-470.
    [86] Larbi A.B, Godin, M. Lucas. Analysis of two models of3D Fresnel collectors operating inthe fixed-aperture mode with a tracking absorber[J]. Solar Energy,2000,1-14.
    [87]贺晓雷,于贺军,李建英,等.太阳方位角的公式求解及其应用[J].太阳能学报,2008.1,69-73.
    [88]窦伟,许洪华,李晶.跟踪式光伏发电系统研究[J].太阳能学报,2007.2,169-173.
    [89]邹永刚,李林,刘国军,等. GaAs太阳能电池的研究进展[J].长春理工大学学报(自然科
    学版),2010.1,44-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700