连续与离散SG方程及相关孤子族的精确解析解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究几个可积的偏微分方程,包括连续和离散的sine-Gordon方程(SG),变形Korteweg-de Vries方程(mKdV)等。为计算这些可积模型的精确解析解,应用了代数曲线方法,并与特征值问题非线性化相结合,求解分为“分解,拉直,反演”三个步骤。
     首先,从与SG方程和mKdV方程相关的谱问题出发,借助基本恒等式和Lenard分析等强有力工具,得到三族可积模型(孤子族)及相应的零曲率表示。它们分别是:mKdV族,algebraic SG族和2+1 SG族。
     在Bargmann约束下,通过将两个谱问题非线性化,得到两个有限维Liouville可积系统。有趣的是这两个系统具有相同的Lax-Moser矩阵和相同的N-守恒积分系,这些守恒积分两两对合,在相空间的某开集上函数独立。孤子方程(可积的偏微分方程)被分解为几个Liouville可积的常微分方程,其相容解生成可积偏微分方程的特解。由Lax-Moser矩阵决定一条代数曲线,在其Jacobi簇上,这些常微分方程的Hamiliton相流被拉直,于是可以直接积出。最后通过Jacobi反演,借助多元theta函数,得到这些偏微分方程的精确解析解。
     Darboux变换(DT)是构造孤子方程精确解的十分有效的方法。本文除用此方法解决两个与Toda链相关的离散孤子方程的求解问题之外,还成功地从mKdV-SG族的Darboux变换中找到一个离散谱问题。从连续和离散谱问题组成的Lax对的相容条件出发,导出离散的SG方程。Lax对的离散部分由Darboux变换得到。文中找到相应的一个包含双叶黎曼面分支点的Bargmann约束。利用这个非常特殊的Bargmann约束,将由Darboux变换产生的离散谱问题非线性化,成功得到一个可积辛映射。利用类似连续系统的程序,先在Jacobi簇上将离散流拉直,然后算出离散SG方程的精确解析解。
In the present paper,some integrable partial differential equations(PDEs),including the continuous and the discrete sine-Gordon equations(SG),together with the modified Korteweg-de Vries equations(mKdV),are investigated.Algebraic curve methods,combined with the nonlinearization of the eigenvalue problems,are applied to calculate the exact analytic solutions of these integrable models.They are solved through three steps: decomposition,straightening out and inversion.
     Firstly,from two spectral problems associated with SG and mKdV,resorting to the powerful tools of the fundamental identities and the Lenard analysis,three families of integrable models(soliton equations),the mKdV,the algebraic SG and the(2+1)-dimensional SG hierarchies,together with their zero-curvature representations,are derived.
     Two finite-dimensional Liouville-integrable systems are obtained from the nonlinearization procedures of the two spectral problems under two Bargmann constraints.It is interesting that they share the same Lax-Moser matrix and the same N-set of integrals on motions,involutive with each other and functionally independent in an open set of the phase space.The soliton equations are decomposed into these Liouville integrable ODEs(ordinary differential equations),whose compatible solutions yield special solutions of the integrable PDEs.The Hamiltonian flows of these ODEs are straightened out in the Jacobi variety of an algebraic curve,determined by the Lax-Moser matrix.Thus they are integrated by quadrature and the final exact analytic solution for these PDEs are obtained through the Jacobi inversion,expressed by means of the multi-variable theta functions.
     Two discrete equations related to Toda lattice are studied with Darboux transformation(DT), in addition,a discrete spectral problem is obtained.The discrete SG equation is derived as a compatible condition of the Lax pair,composed of a continuous part and a discrete one.The discrete part is obtained from the DT of mKdV-SG hierarchy.It is succeeded in finding the associated Bargmann's constraint,and in nonlinearizing the DT into an integrable symplectic map,which is also straightened out in the same Jacobi variety.Exact analytic solution for the discrete SG is calculated in a similar procedure.
引文
[1]J.S.Russell,Report on waves,Rept.Fourteenth Meeting of the British Association for the Advancement of Science,(1844) 311-390
    [2]D.J.Korteweg and G.de Vries,On the change of form of long waves advancing in a rectangular canal,and on a new type of long stationary waves,Philosophical Magazine,39(1895) 422-443
    [3]E.Fermi,J.Pasta and S.Ulam,Studies of nonlinear problems,Los Alamos Report No.LA-1940,1955(unpublished)
    [4]M.Toda,Vibration of chain with Nonlinear Interaction,J.Phys.Soc.Jpn.22(1967)431-436
    [5]J.K.Perring,T.H.R.Skyrme,A model unified field equation,Nucl.Phys.31(1962)550-555
    [6]N.J.Zabusky and M.D.Kruskal,Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States,Phys.Rev.Lett.15(1965) 240 - 243
    [7]李政道著,阮同泽,汤拒非译,粒子物理和场论简引,科学出版社,北京,1984年
    [8]C.Neumann,.De problemate quodam mechanico,quod ad primam integralium ultraellipticorum classem revocatur,J.Reine Angew.Math.56(1859) 48-50
    [9]C.Jacobi,Vorlesumgem uber Dynamik,Gesammelte,Werke,Supphementbasand,Berlin,(1884)
    [10]S.Kovalevski,Sur le probl(?)me de la rotation d'un corps solide autour d'un point fixe,Acta.Math.12(1889)177-232
    [11]E.H.Brun,On the integrals of the many body problem,Acta Math.Ⅺ.(1887) 25-96
    [12]C.Garder,J.Greene,M.Kruskal,R.Muira,Method for Solving the KortewegdeVries Equation,Phys.Rev.Lett.19(1967)1095-1097
    [13]V.I.Arnold,Mathematical Methods in Classical Mechanics,Springer,Berlin,1978
    [14]A.R.Its,V.B.Matveev,A class of solutions of the Korteweg-de Vries equation,Problem Mat.Fiz.(in Russian) 8(1976) 70-92
    [15]H.P.McKean,E.Trubowitz,Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points,Comm.Pur.Appl.Math.29(1976)143
    [16]S.P.Novikov,S.V.Manakov,L.P.Pitaevskii,V.E.Zakharov,Theory of Solitons.The Inverse Scattering Method,Nauka,Moscow 1980
    [17]E.D.Belokolos,A.I.Bobenko,V.Z.Enolskii,A.R.Its,V.B.Matveev,Algebraic-Geometric Approach to Nonlinear Integrable Equations,Springer,Berlin 1994
    [18]曹策问,代数曲线方法,孤立子理论和可积系统专题讲座,北京,2006
    [19]C.W.Cao,Non]inearization of the Lax system for AKNS hierarchy,Science China A 33(1990)538
    [20]C.W.Cao,Stationary Harry-Dym's equation and its relation with geodesics on ellipsoid,Acta.Math.Sinica,New Series 6(1990)35
    [21]C.W.Cao,X.G.Geng,Classical completely integrable systems generated through the nonlinearization of eigenvalue problems,in:Reports in Physics,Nonlinear Physics,eds.C.Gu,Y.Li,G.Tu(Springer,Berlin),(1990)68-78
    [22]C.W.Cao,X.G.Geng,C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy,J.Phys.A:Math.Gen 23(1990)4117
    [23]C.W.Cao,A classical integrable system and the involutive representation of solutions of the KdV equation,Acta.Math.Sinica,New Series,7(1991)216
    [24]C.W.Cao,X.G.Geng,A nonconfocal generator of involutive systems and three associated soliton hierarchies J.Math.Phys.32(1991)2323
    [25]C.W.Cao,Parametric representation of the finite-band solution of the Heisenberg equation,Phys.Lett.A 184(1994)333-338
    [26]R.G.Zhou,The finite-band solution of the Jaulent - Miodek equation,J.Math.Phys.38(1997)2535
    [27]C.W.Cao,Y.T.Wu,X.G,Geng,Relation between the Kadomtsev-Petviashvili equartion and the confocal involutive system,J.Math.Phys.40(1999)3948
    [28]X.G.Geng,Y.T.Wu,Finite-band solutions of the classical Boussinesq-Burgers equations,J.Math.Phys 40(1999)2971
    [29]X.G.Geng,Discrete Bargmann and Neumann systems and finite-dimensional integrable systems,Physica A 212(1994)132
    [30]C.W.Ca.o,X.G.Geng,Y.T.Wu,From the special 2+ 1 Toda lattice to the Kadomtsev-Petviashvili equation,J.Phys.A:Math.Gen.32(1999)8059
    [31]C.W.Ca.o,X.G.Geng,H.Y.Wang,Algebraic-geometric solution of the 2+1 dimensional Burgers equatiion with a discrete variable,J.Math.Phys.43(2002)621
    [32]X.G.Geng and H.H.Dai,Quasi-periodic solutions for some 2+1-dimensional discrete models,Physica A 319(2003)270
    [33]X.G.Geng and H.H.Dai,A hierarchy of new nonlinear differential-difference equations J.Phys.Soc.Japan 75(2006)013002
    [34]C.W.Cao,J.L.Cao,An integrable (2+1)-dimensional Toda equation with two discrete variables,Phys.Lett.A 365(2007)301
    [35]X.G.Geng,S.Ting,Discrete coupled derivative nonlinear Schrodinger equations and their quasi-periodic solutions,J.Phys.A:Math.Theor.40(2007)433
    [36]C.W.Cao,X.Yang,A (2+1)-dimensional derivative Toda equation in the context of the Kaup-Newell spectral problem,J.Phys.A:Math.Theor.41 (2008) 025203
    [37]D.L.Du,C.W.Cao,The Lie-poisson representation of the nonlinearized eigenvalue problem of the Kac-van Moerbeke hierarchy,Phys.Lett.A 278(2001)209
    [38]D.L.Du,Complex form,reduction and Lie-Poisson structure for the nonlinearized spectral problem of the Heisenberg hierarchy,Physics A 303(2002)439
    [39]Y.T.Wu,D.L.Du,On the Lie-poissons tructure of the nonlinearized discrete eigenvalue problem,J.Math.Phys.41(2000)5832
    [40]Y.H.Hao,D.L.Du,Two (2 + l)-dimensional soliton equations and their quasi-periodic solutions,Chaos,Solitons and Fractals 26(2005)979
    [41]Y.T.Wu,J.S.Zhang,Quasi-periodic solution of a new (2+1)-dimensional coupled soliton equation,J.Phys.A:Math.Gen.34(2001)193
    [42]J.S.Zhang,Y.T.Wu and X.M.Li,Quasi-periodic solution of a 2+1 dimensional Bossinesq-Burgers soliton equation,Physics A 319(2003)213
    [43]X.M.Li,X.G.Geng,Lax matrix and a generalized coupled KdV hierarchy,Physica A 327 (2003) 357
    [44]X.M.Li and J.S,Zhang,A generalized TD hierarchy through the Lax matrix and their explicit solutions,Phys.Lett.A 321(2004)14
    [45]J.S.Zhang,The explicit solution of the (2+1)-dimensional modified BroerKaup-Kupershmidt soliton equation,Phys.Lett.A 343(2005)359
    [46]M.J.Ablowitz,D.J.Kaup,A.C.Newell and H.Segur,The inverse scattering transform-Fourier analysis for nolinear problems,Stud.Appl.Math.53(1974)249
    [47]M.J.Ablowitz,P.A.Clarkson,Solitons,nonlinear evolution equations and Inverse Scattering,Cambridge University Press,Cambridge,1991
    [48]P.D.Lax,Integrals of nonlinear equations of evolution and solitary waves,Commun.Pure Appl.Math.21(1968)467
    [49]M.G.Konopelchenko,Solitons in Multidimensions.Inverse Spectral Transform Method,World Scientific,Singapore,1993
    [50]J.Y.Zhu,X.G..Geng,The generalized dressing method with applications to variablecoefficient coupled Kadomtsev- Petviashvili equations,Chaos,Solitons and Fractals 31(2007)1143
    [51]C.H.Gu,etc,Soliton Theory and its Application,Zhejiang Publishing House of Science and Technology,Hangzhou China,1990
    [52]V.B.Matveev and M.A.Salle,Darboux transformations and solitons,Springer,Berlin,1991
    [53]谷超豪,胡和生,周子翔,孤立子理论中的达布变换及其几何应用,上海科学技术出版社,上海,1999
    [54]C.Rogers,W.K.Schief,B(a|¨)cklund and Darboux Transformations Geometry and Modern Applcations in Soliton theory,Cambridge University Press,Cambridge,2002
    [55]X.G.Geng and H.W.Tam,Darboux transformation and soliton solutions for generalized nonlinear Schrodinger equations,J.Phys.Soc.3apan 68(1999)1508-1542
    [56]E.G.Fan,Darboux Transformation for Soliton-like Solutions for the Gerdjikov-Ivanov Equatiion,J.Phys.A:Math.Gen 33(2000)6925-6933
    [57]Q.P.Liu,Darboux Transformation for Supersymmetric Korteweg-de Vries Equations,Lett.Math.Phys.35(1995)115-122
    [58]Q.P.Liu and M.Maias,Vectorial Darboux Transformations for the Kadomtsev-Petviashvili Hierarchy,J.Nonlinear Sci.9(1999) 213-232
    [59]Y.S.Li,J.E.Zhang,Darboux Transformations of Classical Boussonesq Syetem and its new solutions,Phys.Lett.A.284(2001) 253-258
    [60]Z.Y.Wang and A.H.Chen,Chin.Phys.16(2007)1233-1238
    [61]Z.Y.Wang,X.Yang,Commun.Theor.Phys.48(2007)667-670
    [62]Z.Y.Wang,Phys.Lett.A 372(2008)1435-1439
    [63]Z.Y.Wang and J.S.Zhang,Commun.Theor.Phys.49(2008)396-400
    [64]R.Hirota,The Direct Method in Soliton Theory,Cambridge Univ.Press,2004
    [65]X.B.Hu,Nonlinear superposition formula of the KdV equation with a source,J.Phys.A 24(1991)5489- 5497
    [66]X.B.Hu,Nonliear superposition formulate for the differential-difference analogue of the KdV equation and two-dimensional Toda equation,J.Phys.A:Math.Gen.27(1994)201
    [67]X.B.Hu,The higher-order KdV equation with a source and nonlinear superposition formula,Chaos Solitons Fractals 7(1996)211-215
    [68]X.B.Hu,H.Y.Wang,Construction of dKP and BKP equations with self-consistent sources,Inverse Problems 22 (2006) 1903-1920
    [69]S.Y.Lou and J.Lin,The generalized symmetry algebraic of the bilinear Kadomtsev-Petviashvili equation,Phys.Lett.A 185(1994)29-34
    [70]S.Y.Lou and Q.X.Wu,Painleve integrability of two sets of nonlinear evolution equations with nonlinear dispersions,Phys.Lett.A 262(1999)344-349
    [71]S.L.Zhang,B.Wu and S.Y.Lou,Painleve analysis and special solutions of generalized Broer-Kaup equations,Phys.Lett.A 300(2002)40-48
    [72]S.Y.Lou,X.B.Hu,Infinitely many Lax pairs and symmetry constraints of the KP equation,J.Math.Phys.38(1997)6401
    [73]C.Z.Qu and Niu P.C.Peng,Generalized lie symmetries and the integrability of generalized Holmes-Rand non-linear oscillator,Int.J.Non-Linear Mechanics,32(1997)1187-1192
    [74]C.Z.Qu,Classification and reduction of some systems of quasilinear partial differential equations,Nonlinear Analysis,42(2000)301-327
    [75]C.Z.Qu,L.N.Ji and J.H.Dou,Exact solutions and generalized conditional symmetries to (n+1)-dimensional nonlinear diffusion equations with source term,Phys.Lett.A 343(2005)139-147
    [76]C.Z.Qu,Symmetries and solutions to the thin film equations,J.Math.Anal.Appl.317(2006)381-397
    [77]C.Z.Qu,S.L.Zhang and R.C.Liu,Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source,Physica D,144(2000)97-123
    [78]P.G.Estevez,C.Z.Qu and S.L.Zhang,Separation of variables of a generalized porous medium equation with nonlinear source,J.Math.Anal.Appli.275(2002) 44-59
    [79]J.Y.Hu and C.Z.Qu,Functionally separable solutions to nonlinear wave equations by group foliation method,J.Math.Anal.Appli.330(2007)298-31
    [80]Y.Chen,Y.S.Li,The constraint of the Kadometsev-Petviashvili equation and its special solutions,Phys.Lett.A 157(1991)22
    [81]Y.Chen,Y.S.Li,Constraints of the (2+l)-dimensional integrable soilton systems, J.Phys.A 25(1992)419
    [82]Y.B.Zeng,Y.S.Li,The deduction of the Lax representation for constrained flows from the adjoint representation,J.Phys.A:Math.Gen.26(1993)L273
    [83]Z.J.Qiao,W.Stramppb,On different integrable systems sharing the same nondy- namical r-matrix,J.Math.Phys.39(1998)3271
    [84]Z.J.Qiao and R.G.Zhou,Discrete and continuous integrable systems possessing the same non-dynamical r-matrix,Phys.Lett.A 235(1997)35
    [85]W.X.Ma,Lax representations and Lax operator algebras of isospectral and nonisospectral hierarchies of evolution equations,J.Math.Phys.33(1992)2464
    [86]Z.X.Zhou,Nonlinear constraints and soliton solutions of 1+2-dimensional three-wave equation,J.Math.Phys.39(1998)986
    [87]W.X.Ma and X.G.Geng,New completely integrable Neumann systems related to the perturbati on KdV hierarchy,Phys.Lett.B 475(2000)56
    [88]W.X.Ma and B.Fuchssteiner,Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations,J.Math.Phys.40(1999)2400
    [89]W.X.Ma,X.G.Geng,New completely integrable Neumann systems related to the perturbation KdV hierarchy,Phys.Lett.B 475(2000)56
    [90]M.L.Wang and Y.M.Wang,A new Backhand transformayion and multi-solutions to the KdV equation with general variable coefficients,J.Phys.Lett.A.287(2001) 211-216
    [91]M.L.Wang,Exact solutions of a compound KdV-Burgers equation,J.Phys.Lett.A.199(1995) 169-172
    [92]]R.M.Miura,KdV Equation and Generalizations.Ⅱ.Existence of Conservation Laws and Constants of Motion,J.Math.Phys.9(1968)1204-1209
    [93]M.J.Ablowitz,D.J.Kaup,A.C.Newell,H.Segur,Method for Solving the sine-Gordon Equation,Phys.Rev.Lett.30(1973)1262-1264
    [94]R Hirota,Exact solution of the KdV equation for multiple collisions of solitons.Phys.Rev.Lett.27(1971)1192-1194
    [95]R Hirota,Exact solution of the sine-Gordon equation for multiple collisions of soli-tons,J.Phys.Soc.Japan,33(1972)1459-1463
    [96]J.J.C.Nimmo,N.C.Freeman,Rational solutions of the KdV equation in Wronskian form,Phys.Lett.A 96(1983)443-446
    [97]C.H.Gu,On the Backlund trandformations for the generalized hierarchies of compound mKdV-SG equation,Lett.Math.Phys.11(1986)31
    [98]C.H.Gu,H.S.Hu,Explicit solutions to the intrinsic generalization for the wave and sine-G0rdon equations,Lett.Math.Phys.29(1993)1-11
    [99]V.A.Andreeu.Yu.V.Brehec,Darboux transformation,positons and general superposition formula for the sine-Gordon equation,Phys.Lett.A 207(1995)58-66
    [100]M.J.Ablowitz,B.M.Herbst,C.Schober,On the Numerical Solution of the sine-Gordon Equation,J.Comput.Phys.126(1996)299-314
    [101]N.Burroughs,The disappearing soliton component of a perturbed sine-Gordon breather,Physica D 101(1997)95-115
    [102]张大军,邓淑芳,陈登远,mKdV-SineGordon方程的多孤子解,数学物理学报:A辑,24A:3(2004)257-264
    [103]吴勇旗,若干(2+1)维孤子方程的有限参数解,博士论文,2005
    [104]Q.F.Wang,Numerical solution for series sine-Gordon equations using variational method and finite element approximation,Appl.Math.Comput.168(2005)567-599
    [105]Gegenhasi,X.B.Hu and H.Y.Wang,A(2+1)-dimensional sinh-Gordon equation and its Pfaffian generalization,Phys.Lett.A 360(2007)439- 447
    [106]B.G.Zonopelchenko,C.Rogers,On(2+1)-dimensional nonlinear systems of Loewner-type,Phys.Lett.A 158(1991)391
    [107]B.G.Konopelchenko,C.Rogers,On generalized Loewner systems:Novel integrable equations in 2+1 dimensions,J.Math.Phys.34(1992)214
    [108]S.Y.Lou,Symmetry analysis and exact solutions of the 2+1-dimensional sine- Gordon system,J.Math.Phys.41(2000)6509
    [109]D.J.Zhang,D.Y.Chen,The N-soliton solutions of the sine-Gordon equation with self-consistent sources,Physica A.321(2003) 467-481
    [110]Y.X.Geng,T.L.He,J.B.Li,Exact travelling wave solutions for the(n + 1)-dimensional double sine- and sinh-Gordon equations,Appl.Math.Comput.188(2007)1513-1534
    [111]R.Hirota,Nonlinear Partial Difference Equations Ⅲ;Discrete sine-Gordon Equation,J.Phys.Soc.Jpn.43(1977).2079-2086
    [112]J.A.D.Wattis,Variational approximations to breather modes in the discrete sine-Gordon equation,Physica D 82(1995)333-339
    [113]F.Pedit,H.Wu,Discretizing constant curvature surfaces via loop group factorizations:The discrete sine-and sinh-Gordon equations,J.Geome.Phys.17(1995)245-260
    [114]C.Emmrich,N.Kutz,Doubly discrete Lagrangian systems related to the Hirota and sine-Gordon equation,Phys.Lett.A 201(1995)156-160
    [115]S.Watanabe et al.,Dynamics of circular arrays of Josephson junctions and the discrete sine-Gordon equation,Physica D 97(1996)429-470
    [116]J.J.C.Nimmo and W.K.Schief,Superposition principles associated with the Moutard transformation:an integrable discretization of a (2+l)-dimensional sine-Gordon system,Proc.R.Soc.Lond.A 453(1997)255-279
    [117]J.Zagrodzi(?)ski,Solitions and Perodic Processes as Solutions of Functional Equations,Reports Math.Phys.46(2000)311-315
    [118]P.G.Kevrekidis,C.K.R.T.Jones,T.Kapitula,Exponentially small splitting of heterocrinc orbits:from the rapidly forced pendulum to discrete solitons,Phys.Lett.A269(2000)120-129
    [119]P.G.Kevrekidis,M.I.Weinstein,Breathers on a background:periodic and quasiperi-odic solutions of extended discrete nonlinear wave systems,Math.Comput.Simu.62(2003)65-78
    [120]Z.Y.Yan,Discrete exact solutions of modified Volterra and Volterra lattice equations via the new discrete sine-Gordon expansion algorithm,Nonlinear Analysis 64(2006)1798-1811
    [121]F.D.Xie,M.Jia,H.Zhao,Some solutions of discrete sine-Gordon equation,Chaos,Solitons and Fractals 33(2007)1791-1795
    [122]Z.N.Zhu,X.N.Wu,W.M.Xue and Z.M.Zhu,Infinitely many conservation laws for the Blaszak-Marciniak four-field integrable lattice hierarchy,Phys.Lett.A 296(2002)280-288
    [123]Z.N.Zhu,H.W.Tam and Q.Ding.Infinitely many conservation laws for two integrable lattice hierarchies associated with a new discrete Schrodinger spectral problem.Phys.Lett.A 310(2003) 281-294
    [124]Z.N.Zhu and W.M.Xue,Two new integrable lattice hierarchies associated with a discrete Schr(o|¨)dinger nonisospectral problem and their infinitely many conservation laws,Phys.Lett.A 320(2004)396-407
    [125]P.R.Gordoa,A.Picketing,Z.N.Zhu,A nonisospectral extension of the Volterra hierarchy to 2+1 dimensions,J.Math.Phys.46(2005)103509
    [126]P.R.Gordoa,A.Pickering,Z.N.Zhu,A 2 + 1 non-isospectral integrable lattice hierarchy related to a generalized discrete second Painlev(?)hierarchy,Chaos,Solitons and Fractals,29(2006) 862-870
    [127]Z.N.Zhu,Comment on:"A 2+1 non-isospectral discrete integrable system and its discrete integrable coupling system",Phys.Lett.A 367(2007)501-506
    [128]Q.P.Liu,Q.Y.Wang,A Note on a Discrete SchrSdinger Spectral Problem and Associated Evolution Equations,Acta Math.Scientia 26A 5(2006)773-777
    [129]H.Y.Wang,X.B.Hu and Gegenhasi,2D Toda lattice equation with self-consistent sources:Casoratian type solutions,bilinear B(a|¨)cklund transformation and Lax pair,J.Comput.Appl.Math.202(2007)133-143
    [130]W.M.Boothby,An Introduction to Differential Manifolds and Riemannian Geometry,Academic Press,New York,1975
    [131]P.Griffith and J.Harris,Principles of Algebraic Geometry,Wiley,New York,1978
    [132]钟玉泉编,复变函数论(第2版),高等教育出版社,1988
    [133]H.M.Farkas,I.Kra,Riemann Surfaces,Springer-Verlag,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700