高比能二次锂电池电极材料制备及电化学循环机理探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染和能源危机使得绿色能源技术得到了迅猛的发展,锂离子电池由于能量密度高、循环寿命长、环境污染小等优势受到广泛关注。除了在手机、数码相机、笔记本电脑等传统便携设备上的使用,近年来人们也开始广泛研发锂离子电池在电网储能和电动汽车方面的应用。不同于数码产品上的应用,电网储能和动力电池对锂离子电池的能量密度提出了更高的要求。本论文主要围绕高比能二次锂电池电极材料展开研究,涉及到V2O5、Fe-V复合氧化物、尖晶石Li1.05Mn1.95O4、5V高电压LiNi0.5Mn1.5O4等材料的制备,LiNi0.5Mn1.5O4材料的掺杂、表面包覆改性研究,以及LiNi0.5Mn1.5O4||Li4Ti5O123V全电池、LiNi0.42Mn0.42Co0.16O2||Li4Ti5O122.5V全电池性能优化探索等。
     第一章,我们介绍了锂离子电池的工作原理,对常见锂离子电池正负极材料做了简单介绍,然后介绍了目前锂离子电池常见电化学测试表征,重点对Dalhousie大学的高精度充放电测试仪进行了介绍,并总述了该测试手段的研究进展。
     第二章介绍了本论文涉及到的实验药品、实验方法以及实验设备,重点介绍了JeffDahn课题组进行扣式电池组装的流程。
     第三章以静电喷雾沉积的方法制备了三维多孔结构Fe掺杂的V205薄膜和Fe-V复合氧化物薄膜,这种三维多孔薄膜可以提高电解液与电极材料的浸润性,缩短材料中锂离子的传输距离。Fe掺杂的V205能够显著提高层状结构的稳定性,在2.0-4.0V电压范围内有着更好的循环容量保持率和倍率性能。Fe-V复合氧化物中,晶化的Fe2V4O13薄膜在1.0-4.0V之间表现出从结晶性向无定形变化的特征,但在2.5-4.0V之间结构非常稳定。无定形Fe2V4O12.29薄膜由于Fe和v混合价态带来的更高的电子导电性,在1.0-4.0V区间具有优异的循环及倍率性能。
     第四章以热醇解法制备得到纳米Mn3O4,将其与LiCH3COO·2H2O混合进行固相烧结制备了微米级别的Li1.05Mn1.95O4粉末。Li1.05Mn1.95O4||Li半电池具有非常优异的倍率性能和高温循环性能,室温下5C的放电容量为98.4mAh/g,55℃1C循环100次后容量能保持首次容量的90.5%。此外,该材料还具备非常优异的低温循环性能,-20℃时的放电容量可稳定在84.5mAh/g。循环伏安法测试锂离子的表观扩散速率得到扩散系数DLi+从25℃时的10-10cm2/s降低至-20℃时的10-12cm2/s。
     第五章先通过共沉淀法制备了Ni0.25Mn0.75(OH)2,再与Li2CO3固相烧结得到纯相的尖晶石LiNi0.5Mn1.5O4材料,利用高精度充放电电仪对LiNi0.5Mn1.5O4||Li半电池在不同倍率及温度下的库伦效率和充放电曲线滑移进行了研究。实验结果表明,LiNi0.5Mn1.5O4||Li半电池的库伦效率与测试温度、电极材料比表面积以及倍率大小相关。LiNi0.5Mn1.5O4||Li半电池一直存在较大的充放电曲线滑移,说明LiNi0.5Mn1.5O4表面电解液氧化等副反应在不断发生。此外,对比碳酸乙酯(EC)和碳酸二乙酯(DEC)溶剂,碳酸乙酯(EC)和碳酸二甲酯(DMC)作为电解液溶剂可以在一定程度上提高LiNi0.5Mn1.5O4||Li半电池的库伦效率,减少副反应的发生。库伦欠效率CIE/一次循环时间的研究结果显示副反应速率与倍率大小无关,只与反应温度、电极材料的比表面积相关。
     第六章对LiNi0.5Mn1.5O4材料分别进行了掺杂和包覆改性研究,以共沉淀法对LiNi0.5Mn1.5O4材料进行了Al、Co、Fe、Cr掺杂,利用羧甲基纤维素钠制备的浆料对LiNi0.5Mn1.5O4进行了ZnO、Al2O3包覆,并对以上改性措施在LiNi0.5Mn1.5O4||Li半电池中进行了研究。实验结果表明,Al、Co、Fe、Cr掺杂对半电池库伦效率没有明显改善,充放电曲线滑移现象与未掺杂样品相比没有缓解,但是半电池的循环稳定性得到很大提高。ZnO、Al2O3包覆LiNi0.5Mn1.5O4的样品SEM图片显示包覆效果非常均匀,但相比未包覆样品在LiNi0.5Mn1.5O4||Li半电池中未表现出优势,充放电曲线的滑移及库伦效率都与未包覆样品相近。此外,我们发现P4332相LiNi0.5Mn1.5O4中Mn3+的消除能够显著提高半电池在高温条件下的循环稳定性,但对库伦效率影响不大。
     第七章对LiNi0.5Mn1.5O4||Li4Ti5O123V全电池的衰减机理进行了研究。构建了LiNi0.5Mn1.5O4||Li4Ti5O12“背对背电池”,结合LiNi0.5Mn1.5O4||Li4Ti5O12全电池的电化学行为,成功验证了LiNi0.5Mn1.5O4和Li4Ti5O12电极之间的相互作用。LiNi0.5Mn1.5O4正极表面电解液氧化产生的产物会向Li4Ti5O12电极表面发生迁移,引起额外的电子得失从而造成Li4Ti5O12电极的滑移。LiNi0.5Mn1.5O4容量控制的LiNi0.5Mn1.5O4||Li4Ti5O12全电池随循环存在着容量衰减。Li4Ti5O12容量控制的LiNi0.5Mn1.5O4||Li4Ti5O12全电池在短时间内容量保持稳定,但是这种情况下依然存在电解液的氧化以及正负极间的相互作用,一旦电解液消耗完毕即会造成电池容量快速衰减。LiNi0.5Mn1.5O4容量控制的LiNi0.5Mn1.5O4||Li4Ti5O12全电池在C/20、C/2、1C和2C不同倍率下的库伦效率研究表明,库伦效率与充放电电流密度相关。LiNi0.5Mn1.5O4||ILi4Ti512O全电池中副反应主要是由于电解液在正极材料表面的氧化引起的,这种副反应产生的电流大约在C/2000左右。不同倍率下的测试结果表明该全电池体系更适合在大倍率条件下循环,2C时发挥80%以上容量可循环500次。
     第八章对LiNi0.5Mn1.5O4||Li4Ti5O123V全电池的性能优化进行了探索,包括对LiNi0.5Mn1.5O4的Al、Co、Fe、Cr掺杂,ZnO.Al2O3表面包覆,不同电解质盐,以及电解液添加剂的使用等等。Al,Co,Fe,Cr掺杂的LiNi0.5Mn1.5O4在LiNi0.5Mn1.5O4||Li4Ti5O123V全电池中没有对库伦效率、放电容量保持率、充放电曲线滑移起到改善作用,未能有效控制全电池中的副反应。ZnO、Al2O3包覆的LiNi0.5Mn1.5O4可以有效抑制正负极间的相互作用,减小充放电曲线的滑移,提高全电池的库伦效率。对比四种常用电解质盐在LiNi0.5Mn1.5O4||Li4Ti4Ti5O12全电池中的应用发现,LiPF6相比LiC104,LiBOB和LiBF4具有最高的库伦效率、最小的充放电曲线滑移,因此在这四种盐中最适合用于LiNi0.5Mn1.5O4||Li4Ti5O12体系。使用1wt%氟化叔丁醇锂(LiO-t-C4F9)添加剂能够显著提高LiNi0.5Mn1.5O4||Li4Ti5O123V全电池的循环稳定性,但是相对于空白电池而言,其库伦效率更低、充放电曲线滑移更快、自放电现象更严重,这些现象表明这种添加剂并没有减少LiNi0.5Mn1.5O4表面的副反应,因此并不是一种好的添加剂。相反,1wt%铝酸六氟三异丙酯(Al(HFiP)3)添加剂虽然没有能够提高全电池的循环容量保持率,但是在电池满充贮存实验中的自放电程度更小,说明它在一定程度上减少了LiNi0.5Mn1.5O4电极表面副反应的发生。
     第九章对LiNi0.42Mn0.42Co0.16O2||Li4Ti5O122.5V全电池的电化学性能优化措施进行了探索,发现该2.5V全电池中也存在正负电极之间的相互作用。在1.0-2.5V电压区间循环时Li4Ti5O12存在着滑移,将充电截止电压从2.5V降低至2.27V可以显著减小这种滑移,有效抑制全电池中副反应的发生。电池在高温下循环时会加速电池中副反应的发生,使Li4Ti5O12出现更大的滑移。在1.0-2.5V区间,Li4Ti5O12的滑移使得Li4Ti5O12电池容量随循环有-定增加,而1.0-2.27V区间L14T15O12不存在滑移使电池有着稳定的放电容量。此外,本章还发现在该全电池中使用2wt%碳酸亚乙烯酯(VC)作为添加剂时,Li4Ti5O12和Li4Ti5O12电极的滑移都有所加剧,意味着2wt%VC不适用于提高该体系的电化学性能。
     第十章对本论文的创新及不足之处做了简单总结,并对未来工作进行了展望。
     最后,本论文还涉及了负极MnO/C材料的制备与电化学性能表征,在附录-中给予介绍。
Recently, many green energy technologies have been regarded as a promising approach to address both energy crisis and environmental pollution. Due to their high energy density, long cycle life and environmental friendly, Li-ion batteries have been widely used in portable devices such as telephone, digital camera and laptop. Besides, researchers are also exploring the application of Li-ion batteries in energy storage systems and electrical vehicles, which have a higher requirement for energy density. This thesis focuses on high energy density cathode materials for Li-ion batteries, including the preparation of V2O5, Fe-V oxide thin films, spinel Li0.05Mn1.95O4and LiNi0.5Mn1.5O4powders. It also involves in the doping and surface coating of LiNi0.5Mn1.5O4, the study of LiNi0.5Mn1.5O4||Li4Ti5O123V full cells and LiNi0.42Mn0.42Co0.16O2||Li4Ti5O122.5V full cells.
     Chapter1gives a general introduction of the working mechanism of Li-ion batteries, some typical cathode and anode materials as well as some conventional electrochemical examinations. Then a detailed introduction of high precision charger (HPC) in Dalhousie University is presented. A summary of recent researches using the HPC for Li-ion batteries is conducted as well.
     In Chapter2, we introduce the experimental reagents, methods and equipments used in the project of this thesis. A detailed procedure of coin-cell fabrication in Dahn lab is presented as well as some electrochemical, structure and morphology analysis.
     In Chapter3, Fe doped V2O5and Fe-V oxides thin films are prepared by the electrostatic spray deposition technique. Such a three-dimensional structure allows the electrolyte to soak well into the active material and facilitate the kinetics of lithium-ion transport. After introducing Fe3+into the V2O5structure, the stability of the layered structure can be improved, leading to an improved cycling and rate performance in the voltage range of2.0-4.0V. The crystalline Fe2V4O13thin film performs a structural degradation in the voltage range of1.0-4.0V while it is very stable during2.5-4.0V. The amorphous Fe2V4O12.29thin film shows good cycling performance and rate capability during1.0-4.0V due to the enhanced electronic conductivity caused by the existence of mixed valence states of Fe and V.
     In Chapter4, nanometer-sized Mn3O4powder is prepared in an oil-bath synthesis process with diethylene glycol as the solvent. Then micrometer sized Li1.05Mn1.g5O4powders are synthesized by the mixture of Mn3O4and LiCH3COO·2H2O. The L1.05M1.95O4||Li cells exhibit a high rate performance with a specific capacity of98.4mAh/g at5C at room temperature. A stable cycling performance is observed at55℃that90.5%of its initial capacity can be obtained after100cycles at1C. Furthermore, the Li1.05Mn1.95O4sample also shows much stable cycling performance at low temperatures with a specific capacity of84.5mAh/g at-20℃. The diffusion coefficients of lithium ion measured by CV method show a drop from10-10cm2/s at25℃to10-12cm2/s at-20℃.
     In Chapter5, LiNi0.5Mn1.5O4is prepared by a solid state reaction from a mixture of Li2CO3and Nio.25Mno.75(OH)2, which is obtained by a co-precipitation method. An accurate coulombic efficiency (CE) study of LiNi0.5Mn1.5O4||Li cells by HPC using different surface area electrodes cycled at different temperatures and C-rates is performed. CE is found to be dependent on temperature, specific surface area and C-rate for LiNi0.5Mn1.5O4||Li cells. The charge and discharge profile of the LiNi0.5Mn1.5O4||Li cells slips to large relative capacities with continued cycling, indicating serious parasitic reactions inside the cells. EC/DMC as the electrolyte solvent increases the CE of LiNi0.5Mn1.5O4||HLi cells compared to EC/DEC. Measurements of the CIE/(time of a cycle) show that parasitic reactions continue at the same rate independent of the cycling current.
     In Chapter6, a study of doping and surface coating for LiNi0.5Mn1.5O4is performed. Al, Co, Fe and Cr substituted LiNi0.5Mn1.5O4samples are successfully synthesized from a hydroxide precursor.2wt%ZnO and2wt%Al2O3coated LiNi0.5Mn1.5O4is made from a carboxymethyl cellulose containing slurry. A study of the CE of LiNi0.5Mn1.5O4||Li using the substituted LiNi0.5Mn1.5O4shows that there is no "magic" improvement in the CE of cells using the transition metal substituted samples. The charge and discharge slippage increases with cycles, indicating serious parasitic reactions occurring inside all the cells. SEM results show that ZnO or Al2O3is uniformly coated on the surface of LiNi0.5Mn1.5O4. But both electrodes show the same capacity retention and close CE versus cycle number compared to uncoated LiNi0.5Mn1.5O4electrode. The capacity retention is improved while no improvement in CE is observed for the LiNi0.5Mn1.5O4||Li cells by comparing the ordered P4332phase LiNi0.5Mn1.5O4with or without Mn3+
     In Chapter7, the capacity degradation mechanism of LiNi0.5Mn1.5O4||Li4Ti5O12cell is investigated by a designed "back-to-back" cell. The electrode-electrode interactions that occur in LiNi0.5Mn1.5O4||Li4Ti5O12Li-ion cells are examined. Species created at the LiNi0.5Mn1.5O4electrode by electrolyte oxidation migrate to the Li4Ti5O12electrode, cause excess charge consumption and lead to the slippage of the Li4Ti5O12electrode. Therefore, LiNi0.5Mn1.5O4-limited LiNi0.5Mn1.5O4||Li4Ti5O12cells show rapid capacity fading while Li4Ti5O12-limited cells cycle without loss for a short while before the electrolyte is exhausted. Measurements of CE of LiNi0.5Mn1.5O4-limited LiNi0.5Mn1.5O4||Li4Ti5O12cells at C/20, C/2,1C and2C show that the CE is dependent on cycling current due to a significant parasitic current determined to be close to C/2000for these cells. Besides, it revealed that LiNi0.5Mn1.5O4||Li4Ti5O12cells prefer to cycle well at2C that500cycles could be obtained with80%of its initial capacity.
     In Chapter8, we apply some strategies to improve the CE of LiNi0.5Mn1.5O4||Li4T15O12cells, such as Al、Co、Fe and Cr substituted LiNi0.5Mn1.5O4, ZnO or Al2O3coated LiNi0.5Mn1.5O4, different electrolyte salts and the use of electrolyte additives. There is no improvement for Al, Co, Fe and Cr substituted LiNi0.5Mn1.5O4from the aspect of CE and charge/discharge slippage. ZnO or Al2O3coated LiNi0.5Mn1.5O4can effectively decrease the interactions between LiNi0.5Mn1.5O4and Li4Ti5O12electrodes and increase the CE of the LiNi0.5Mn1.5O4||Li4Ti5O12cells. Compared to LiClO4LiBOB and LiBF4, LiPF6gives the best CE and the least slippage for LiNi0.5Mn1.5O4||Li4Ti5O12cells. LiNi0.5Mn1.5O4||Li4Ti5O12cells with1wt%LiO-t-C4F9electrolyte additive show improved capacity retention versus cycle number compared to control cells. However their CE, capacity end point slippages and self-discharge are worse than control cells, indicating that this additive increased, not reduced, the rate of parasitic reactions occurring at the LiNi0.5Mn1.5O4electrode. Therefore, although this additive initially looks "good" it turns out to be poor when all factors are considered. By contrast,1wt%Al(HFiP)3does decrease the rate of parasitic reactions at the positive electrode based on the results of storage experiments.
     In Chapter9, the electrochemical performance of LiNi0.42Mn0.42Co0.16O2||Li4Ti5O12cells are studied, the electrode-electrode interactions between positive and negative electrodes are detected in such2.5V full cell. Li4Ti5O12electrode shows slippage in the voltage range of1.0-2.5V while no slippage is observed during1.0-2.27V, indicating the decreased parasitic reactions. Elevated temperature is found to accelerate the Li4Ti5O12slippage. The slippage of Li4Ti5O12electrode leads to a gradual capacity increase in the voltage range of1.0-2.5V while a constant capacity is obtained without Li4Ti5O12slippage at1.0-2.27V. Besides,2wt%Vinylene carbonate (VC) is shown to be negative for the LiNi0.42Mn0.42Co0.16O2||Li4Ti5O12cells due to the increased charge and discharge slippage from both LiNio.42Mn0.42Co0.16O2and Li4Ti5O12electrodes.
     In Chapter10, we give an overview of the innovation and deficiencies of this thesis. Some prospects and suggestions for the future work are presented as well.
     Finally, there is still some work of MnO/C as anode materials for Li-ion batteries involved in this thesis, which is given in the appendix1.
引文
[1]吴宇平,张汉平,吴峰,李朝辉.2007.聚合物锂离子电池[M],北京:化学工业出版社.4-5.
    [2]Smith Aaron,2012. A high precision study of Li-ion batteries [D]:[Ph.D.]. Canada:Dalhousie University,8.
    [3]Tarascon J.M., Armand M.,2001. Issues and challenges facing rechargeable lithium batteries. Nature 414:359-367.
    [4]Mitzushima K., Jones P.C., Wiseman P.J., et al.1980. LixCoO2(0    [5]Shao-Horn Y., Croguennec L., Delmas C., et al.2003. Atomic resolution of lithium ions in LiCoO2.Nature Materials 2:464-467.
    [6]Amatucci G.G., Tarascon J.M., Klein L.C.,1996. CoO2, the end member of the LixCoO2 solid solution. Journal of The Electrochemical Society 143:1114-1123.
    [7]Dokko K., Mohamedi M., Fujita Y., et al.2001. Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. Journal of The Electrochemical Society 148:A422-A426.
    [8]Rho Y.H., Kanamura K.,2004. Li+ -ion diffusion in LiCoO2 thin film prepared by the poly(vinylpyrrolidone) sol-gel method. Journal of The Electrochemical Society 151: A1406-A1411.
    [9]Xia H., Lu L., Ceder G.,2006. Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. Journal of Power Sources 159:1422-1427.
    [10]Ohzuku T., Makimura Y,2001. Layered lithium insertion material of LiCo1/3CoNi1/3Mn1/3O2 for lithium-ion batteries. Chemistry Letters 30:642-643.
    [11]Jiang J., Eberman K., Krause L., et al.2005. Reactivity of Liy[NixCo1-2xMnx]O2 (x= 0.1,0.2, 0.35,0.45, and 0.5; y=0.3,0.5) with nonaqueous solvents and electrolytes studied by ARC. Journal of The Electrochemical Society 152:A566-A569.
    [12]MacNeil D., Lu Z., Dahn J.R.,2002. Structure and electrochemistry of Li[NixCo1-2xMnx]O2 (0    [13]Eberman K., Krause L.,2003. Diffusion coefficient of lithium in Lix(Coy(NiMn)(1-y)/2)O2 cathode powders. The 204th Meeting of ECS, Florida.
    [14]Sun Y., Ouyang C., Wang Z., et al.2004. Effect of Co content on rate performance of LiMn0.5-xCo2xNi0.5-xO2 cathode materials for Lithium-ion batteries. Journal of The Electrochemical Society 151:A504-A508.
    [15]Koyama Y., Tanaka I., Adachi H., et al.2003. Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2 (O≤x≤1). Journal of Power Sources 119-121: 644-648.
    [16]Koyama Y, Yabuuchi N., Tanak I., et al.2004. Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries I. first-principles calculation on the crystal and electronic structures. Journal of The Electrochemical Society 151:A1545-A1551.
    [17]Deb A., Bergmann U., Cramer S.P., et al.2005. In situ X-ray absorption spectroscopic study of the Li[Ni1/3Co1/3Mn1/3]O2 cathode material. Journal of Applied Physics 97:113523.
    [18]Lu Z.H., Dahn J.R.,2001. Cathode compositions for Lithium-ion batteries US 6964828 B2.
    [19]http://multimedia.3m.com/mws/mediawebserver?mwsId=SSSSSuH8gc7nZxtUo8mxN8_lev Uqel7zHvTSevTSeSSSSSS--&fn=3M_Battery_Cathode_Pres.pdf
    [20]Dahn J.R., Fuller E.W.,1994. Thermal stability of LixCoO2, LixNiO2 and X-MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics 69:265-270.
    [21]Xia Y.Y., Zhou Y.H., Yoshio M.,1997. Capacity fading on cycling of 4 V Li/LiMn2O4 Cells, Journal of The Electrochemical Society 144:2593-2600.
    [22]Liu Y.J., Li X.H., Guo H.J., et al.2009. Performance and capacity fading reason of LiMn2O4/graphite batteries after storing at high temperature. Rare Metals 28:322-327.
    [23]Amatucci G.G., Schmutz C.N., Blyr A., et al.1997. Materials effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries. Journal of Power Source 69:11-25.
    [24]Hunter J.C.,1981. Preparation of a new crystal form of manganese dioxide:λ-MnO2. Journal of Solid State Chemistry 39:142-147.
    [25]Cummow R.J., Kock A.d., Thackeray M.M.,1994. Improved capacity retention in rechargeable 4V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 69:59-67.
    [26]Amine K., Tukamoto H., Yasuda H., et al.1996. A new three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries. Journal of The Electrochemical Society 143:1607-1613.
    [27]Gao Y., Reimers J.N., Dahn J.R.,1996. Changes in the voltage profile of Li/Li1+xMn2-xO4 cells as a function of x. Physical Review B 54:3878-3883.
    [28]Zhong Q.M., Bonakdarpour A., Zhang M.J., et al.1997. Synthesis and electrochemistry of LiNixMn2-xO4. Journal of The Electrochemical Society 144:205-213.
    [29]Ohzuku T., Takeda S., Iwanaga M., et al.1999. Solid-state redox potentials for LiMe1/2Mn3/204 (Me:3d-transition metal) having spinel-framework structures:a series of 5 volt materials for advanced lithium-ion batteries. Journal of Power Sources 81:90-94.
    [30]Kim J.H., Myung S.T., Yoon C.S., et al.2004. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures:Fd3m and P4332. Chemistry of Materials 16:906-914.
    [31]Amdouni N., Zaghib K., Gendron F.K., et al.2006. Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry. Ionics 12: 117-126.
    [32]Rousse G., Rodriguez-Carvajal J., Patoux S., et al.2003. Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4. Chemistry of Materials 15:4082-4090.
    [33]Andersson A.S., Kalska B., Haggstrom L., et al.2000. Lithium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauer spectroscopy study. Solid State Ionics 130: 41-52.
    [34]Lemos V., Guerini S., Filho J.M., et al.2006. A new insight into the LiFePO4 delithiation process. Solid State Ionics 177:1021-1025.
    [35]Chen Z.H., Dahn J.R.,2002. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. Journal of The Electrochemical Society 149:A1184-A1189.
    [36]Chung S.Y., Bloking J.T., Chiang Y.M.,2002. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials 1:123-128.
    [37]http://www.a123systems.com/lithium-iron-phosphate-battery.htm
    [38]Thackeray M.M., Kang S.-H., Johnson C.S., et al.2007. Li2Mn03-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. Journal of Materials Chemistry 17:3112-3125.
    [39]Thackeray M.M., Johnson C.S., Vaughey J.T., et al.2005. Advances in manganese-oxide composite electrodes for lithium-ion batteries. Journal of Materials Chemistry 15:2257-2267.
    [40]Li Y., Bettge M., Polzin B., et al.2013. Understanding long-term cycling performance of Li1.2Ni0.15Mn0.55Co0.1O2-graphite lithium-ion cells. Journal of The Electrochemical Society 160:A3006-A3019.
    [41]Yu H., Shikawa R., So Y.-G., et al.2013. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angewandte Chemie International Edition 52:5969-5673.
    [42]Mohanty D., Huq A., Payzant E.A., et al.2013. Neutron diffraction and magnetic susceptibility studies on a high voltage Li1.2Mn0.55Ni0.15Co0.10O2 lithium ion battery cathode: insight into the crystal structure. Chemistry of Materials 25:4064-4070.
    [43]Xu B., Fell C.R., Chi M., et al.2011. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries:a joint experimental and theoretical study. Energy & Environmental Science 4:2223-2233.
    [44]Johnson C.S., Li N.C., Lefief C., et al.2007. Anomalous capacity and cycling stability of xLi2MnO3-(1-x)LiMO2 electrodes (M= Mn, Ni, Co) in lithium batteries at 50℃. Electrochemistry Communications 9:787-795.
    [45]Wu Y., Manthiram A.,2009. Effect of surface modifications on the layered solid solution cathodes (1-z)Li[Li1/3Mn2/3]O2-(z) Li[Mn0.5-yNi0.5-yCo2y]O2. Solid State Ionics 180:50-56.
    [46]Yabuuchi N., Yoshii K., Myung S.T., et al.2011. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. Journal of the American Chemical Society 133:4404-4419.
    [47]Lu Z., Chen Z., Dahn J.R.,2003. Lack of cation clustering in Li[NixLi1/3-2X/3Mn2/3-x/3]O2 (0    [48]Lu Z., Beaulieu L.Y., Donaberger R.A., et al.2002. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. Journal of The Electrochemical Society 149: A778-A791.
    [49]Carroll K.J., Qian D., Fell C, et al.2013. Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. Physical Chemistry Chemical Physics 15: 11128-11138.
    [50]Fell C.R., Qian D., Carroll K.J., et al.2013. Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle. Chemistry of Materials 25:1621-1629.
    [51]Mohanty D., Sefat A.S., Kalnaus S., et al.2013. Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5V) via magnetic, X-ray diffraction and electron microscopy studies. Journal of Materials Chemistry A 1:6249-6261.
    [52]Martha S.K., Nanda J., Veith G.M., et al.2012. Electrochemical and rate performance study of high-voltage lithium-rich composition:Li1.2Mn0.525Ni0.175Co0.1O2. Journal of Power Sources 199:220-226.
    [53]Croy J.R., Gallagher K.G., Balasubramanian M., et al.2013. Examining hysteresis in composite xLi2MnO3-(1-x)LiMO2 cathode structures. Journal of Physical Chemistry C 117: 6525-6536.
    [54]Gallagher K.G., Croy J.R., Balasubramanian M., et al.2013. Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. Electrochemistry Communications 33:96-98.
    [55]Mohanty D., Kalnaus S., Meisner R.A., et al.2013. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. Journal of Power Sources 229:239-248.
    [56]Li W., Dahn J.R., Wainwright D.S.,1994. Rechargeable lithium batteries with aqueous electrolytes. Science 264:1115-1118.
    [57]Tsang C., Manthiram A.,1997. Synthesis of nanocrystalline VO2 and its electrochemical behavior in lithium batteries. Journal of The Electrochemical Society 144:520-524.
    [58]Li H.Q., He P., Wang Y.G., et al.2011. High-surface vanadium oxides with large capacities for lithium-ion batteries:from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. Journal of Materials Chemistry 21:10999-11009.
    [59]Zhang J.G., McGraw J.M., Turner J., et al.1997. Charging capacity and cycling stability of VOX films prepared by pulsed laser deposition. Journal of The Electrochemical Society 144: 1630-1634.
    [60]Baddour R., Pereira-Ramos J.P., Messina R., et al.1991. A thermodynamic, structural and kinetic study of the electrochemical lithium intercalation into the xerogel V2O5·1.6 H2O in a propylene. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 314: 81-101.
    [61]Chen C.G., Liu Y.P., Li L.,2004. Development of vanadium oxide in lithium ion batteries. Journal of Inorganic Materials 19:1225-1230.
    [62]Qiao H., Zhu X.J., Zheng Z., et al.2006. Synthesis of V3O7-H2O nanobelts as cathode materials for lithium-ion batteries. Electrochemistry Communications 8:21-26.
    [63]Kuwahara T., Tagaya H., Kadokawa J.,2001. Intercalation of organic dyes in the layered host lattice V2O5. Inorganic Chemistry Communications 4:63-65.
    [64]Zhu D., Liu H., Lv L., et al.2008. Hollow microspheres of V2O5 and Cu-doped V2O5 as cathode materials for lithium-ion batteries. Scripta Materialia 59:642-645.
    [65]Chan C.K., Peng H., Twesten R.D., et al.2007. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Letters 7:490-495.
    [66]Cocciantelli J.M., Menetrier M., Delmas C, et al.1995. On the δ→γ irreversible transformation in Li//V2O5 secondary batteries. Solid State Ionics 78:143-150.
    [67]O'Dwyer C., Lavayen V., Tanner D.A., et al.2009. Reduced surfactant uptake in three dimensional assemblies of VOx nanotubes improves reversible Li+ intercalation and charge capacity. Advanced Functional Materials 19:1736-1745.
    [68]Dahn J.R., Zheng T., Liu Y., et al.1995. Mechanisms for lithium insertion in carbonaceous materials. Science 270:590-593.
    [69]Sekai K., Azuma H., Omaru A., et al.1993. Lithium-ion rechargeable cells with LiCoO2 and carbon electrodes. Journal of Power Sources 43:241-244.
    [70]Mochida I., Ku C.H., Korai Z.,2001. Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches. Carbon 39:399-410.
    [71]Buiel E., Dahn J.R.,1999. Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochimica Acta 45:121-130.
    [72]Wilkening M., Iwaniak W., Heine J., et al.2007. Microscopic Li self-diffusion parameters in the lithiated anode material Li4+xTi5O12 (0≤x≤3) measured by 7Li solid state NMR. Physical Chemistry Chemical Physics 9:6199-6202.
    [73]Wagemaker M., van Eck E.R.H., Kentgens A.P.M., et al.2009. Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. Journal of Physical Chemistry B 113: 224-230.
    [74]Ohzuku T., Ueda A., Yamamoto N.,1995. Zero-strain insertion material of Li(Li1/3Ti5/3)O4 for rechargeable lithium cells. Journal of The Electrochemical Society 142:1431-1435.
    [75]Jiang J., Dahn J.R.,2006. Dependence of the heat of reaction of Li0.81C6(0.1V), Li7Ti5O12 (1.55 V), and Li0.5VO2(2.45 V) reacting with nonaqueous solvents or electrolytes on the average potential of the electrode material. Journal of The Electrochemical Society 153: A310-A315.
    [76]Jiang J., Chen J., Dahn J.R.,2004. Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using accelerating rate calorimetry. Journal of The Electrochemical Society 151:A2082-A2087.
    [77]Wu K., Yang J., Zhang Y., et al.2012. Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle. Journal of Applied Electrochemistry 42:989-995.
    [78]He Y.B., Li B.H., Liu M., et al.2012. Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports 2:913.
    [79]Wu K., Yang J., Liu Y., et al.2013. Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature. Journal of Power Sources 237: 285-290.
    [80]He Y.B., Liu M., Huang Z.D., et al.2013. Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. Journal of Power Sources 239: 269-276.
    [81]Song M.S., Kim R.H., Baek S.W., et al.2014. Is Li4Ti5O2 a solid-electrolyte-interphase-free electrode material in Li-ion batteries? Reactivity between the Li4Ti5O12 electrode and electrolyte. Journal of Materials Chemistry A 2:631-636.
    [82]Poizot P., Laruelle S., Gruqeon S., et al.2000. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496-499.
    [83]Gao X.P., Yang H.X.,2010. Multi-electron reaction materials for high energy density batteries. Energy & Environmental Science 3:174-189.
    [84]Poizot P., Laruelle S., Grugeon S.,et al.2002. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. Journal of The Electrochemical Society 149:A1212-A1217.
    [85]Larcher D., Sudant G., Leriche J.B., et al.2002. The electrochemical reduction of CO3O4 in a lithium cell. Journal of The Electrochemical Society 149:A234-A241.
    [86]Vinal G.W.,1954. Storage batteries:A general treatise on the physics and chemistry of secondary batteries and their engineering application. John Wiley & Sons, Inc., New York.
    [87]Matsuda Y.,1993. Behavior of lithium electrolyte interface in organic solutions. Journal of Power Source 43:1-7.
    [88]Ohzuku T., Ueda A., Yamamoto N., et al.1995. Factor affecting the capacity retention of lithium-ion cells. Journal of Power Source 54:99-102.
    [89]Barker J., Pynenburg R., Koksbang R., et al.1996. An electrochemical investigation into the lithium insertion properties of LixCoO2.Electrochimica Acta 41:2481-2488.
    [90]Smith A.J., Burns J.C., Trussler S., et al.2010. Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries. Journal of The Electrochemical Society 157:A196-A202.
    [91]Smith A.J., Dahn H.M., Burns J.C.,2012. Long-term low-rate cycling of LiCoO2/graphite Li-ion cells at 55℃. Journal of The Electrochemical Society 159:A705-A710.
    [92]Smith A.J., Sinha N.N., Dahn J.R.,2013. Narrow range cycling and storage of commercial Li ion cells. Journal of The Electrochemical Society 160:A235-A242.
    [93]Nakura K., Ohsugi Y., Imazaki M., et al.2011. Extending cycle life of lithium-ion batteries consisting of lithium insertion electrodes:cycle efficiency versus Ah-efficiency. Journal of The Electrochemical Society 158:A1243-A1249.
    [94]Broussely M., Biensan Ph., Bonhomme F., et al.2005. Main aging mechanisms in Li ion batteries. Journal of Power Sources 146:90-96.
    [95]Xu K.,2004. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews 104:4303-4417.
    [96]Yamane H., Inoue T., Fujita M., et al.2001. A causal study of the capacity fading of Li1.01Mn1.99O4 cathode at 80℃, and the suppressing substances of its fading. Journal of Power Sources 99:60-65.
    [97]Abe K., Ushigoe Y., Yoshitake H., et al.2006. Functional electrolytes:novel type additives for cathode materials, providing high cycleability performance. Journal of Power Sources 153:328-335.
    [98]Li Y., Zhang R., Liu J., et al.2009. Effect of heptamethyldisilazane as an additive on the stability performance of LiMn2O4 cathode for lithium-ion battery. Journal of Power Sources 189:685-688.
    [99]Patoux S., Daniel L., Bourbon C., et al.2009. High voltage spinel oxides for Li-ion batteries: from the material research to the application. Journal of Power Sources 189:344-352.
    [100]Zhang S.S.,2006. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources 162:1379-1394.
    [101]El-Ouatani L., Dedryvere R., Siret C., et al.2009. Effect of vinylene carbonate additive in Li-ion batteries:comparison of LiCoO2/C, LiFePO4/C, and LiCo02/Li4Ti5O12 systems. Journal of The Electrochemical Society 156:A468-A477.
    [102]Abe K., Miyoshi K., Hattori T., et al.2008. Functional electrolytes:synergetic effect of electrolyte additives for lithium-ion battery. Journal of Power Sources 184:449-455.
    [103]Wrodnigg G.H., Besenhard J.O., Winter M.,1999. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. Journal of The Electrochemical Society 146: 470-472.
    [104]Lee K.-S., Myung S.-T., Amine K., et al.2009. Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]04 for lithium batteries. Journal of Materials Chemistry 19:1995-2005.
    [105]Sun Y.-K., Myung S.-T., Yoon C.-S., et al.2009. Improvement of high voltage cycling performances of Li[Ni1/3Co1/3Mn1/3]O2 at 55℃ by a (NH4)3AlF6 coating. Electrochemical and Solid-State Letters 12:A163-A166.
    [106]Sun Y.-K., Cho S.-W., Lee S.-W., et al.2007. AlF3-coating to improve high voltage cycling performance of Li[Ni1/3Co1/3Mn1/3]O2 cathode materials for lithium secondary batteries. Journal of The Electrochemical Society 154:A168-A172.
    [107]Sun Y.-K., Myung S.-T., Park B.C., et al.2009. High-energy cathode material for long-life and safe lithium batteries. Nature Materials 8:320-324.
    [108]Li G., Yang Z., Yang W.,2008. Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries. Journal of Power Sources 183:741-748.
    [109]Chen Z.H., Dahn J.R.,2004. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5V. Electrochimica Acta49:1079-1090.
    [110]Wang J., Bai Y., Wu M., et al.2009. Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries. Journal of Power Sources 191: 614-618.
    [111]Yi T.-T., Li C.-Y., Zhu Y.-R., et al.2009. Comparison of structure and electrochemical properties for 5 V LiNio.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials. Journal of Solid State Electrochemistry 13:913-919.
    [112]Li M.Q., Qu M.Z., He X.Y., et al.2009. Electrochemical performance of Si/graphite/carbon composite electrode in mixed electrolytes containing LiBOB and LiPF6. Journal of The Electrochemical Society 156:A294-A298.
    [113]Liu Y., Hanai K., Yang J., et al.2004. Morphology-stable silicon-based composite for Li-intercalation. Solid State Ionics 168:61-68.
    [114]Obrovac M.N., Krause L.J.,2007. Reversible cycling of crystalline silicon powder. Journal of The Electrochemical Society 154:A103-A108.
    [115]Smith Aaron.2012. A high precision study of Li-ion batteries [D]:[Ph.D.]. Canada: Dalhousie University,41.
    [116]Bond T.M., Burns J.C., Stevens D.A., et al.2013. Improving precision and accuracy in coulombic efficiency measurements of Li-ion batteries. Journal of The Electrochemical Society 160:A521-A527.
    [117]Smith A.J., Burns J.C., Xiong D., et al.2011. Interpreting high precision coulometry results on Li-ion cells. Journal of The Electrochemical Society 158:A1136-A1142.
    [118]Harlow J.E., Stevens D.A., Burns J.C., et al.2013. Ultra high precision study on high capacity cells for large scale automotive application. Journal of The Electrochemical Society 160:A2306-A2310.
    [119]Smith A.J., Burns J.C., Zhao X., et al.2011. A high precision coulometry study of the SEI growth in Li/graphite cells. Journal of The Electrochemical Society 158:A447-A452.
    [120]Xiong D., Burns J.C., Smith A.J., et al.2011. A high precision study of the effect of vinylene carbonate (VC) additive in Li/graphite cells. Journal of The Electrochemical Society 158:A1431-A4135.
    [121]Xia J., Sinha N.N., Chen L.P., et al.2014. A comparative study of a family of sulfate electrolyte additives. Journal of The Electrochemical Society 161:A264-A274.
    [122]Xia J., Sinha N.N., Chen L.P., et al.2014. Study of methylene methanedisulfonate as an additive for Li-ion cells. Journal of The Electrochemical Society 161:A84-A88.
    [123]Xia J., Harlow J.E., Petibon R., et al.2014. Comparative study on methylene methyl disulfonate (MMDS) and 1,3-propane sultone (PS) as electrolyte additives for Li-ion batteries. Journal of The Electrochemical Society 161:A547-A553.
    [124]Wang D.Y., Sinha N.N., Petibon R., et al.2014. A systematic study of well-known electrolyte additives in LiCoO2/graphite pouch cells. Journal of Power Sources 251:311-318.
    [125]Burns J.C., Petibon R., Nelson K.J., et al.2013. Studies of the effect of varying vinylene carbonate (VC) content in lithium ion cells on cycling performance and cell impedance. Journal of The Electrochemical Society 160:A1668-A1674.
    [126]Burns J.C., Sinha N.N., Jain G., et al.2012. Impedance reducing additives and their effect on cell performance:Ⅰ. LiN(CF3SO2)2·Journal of The Electrochemical Society 159: A1095-A1104.
    [127]Burns J.C., Kassam A., Sinha N.N., et al.2013. Predicting and extending the lifetime of Li-ion batteries. Journal of The Electrochemical Society 160:A1451-A1456.
    [128]Burns J.C., Sinha N.N., Jain G., et al.2013. The impact of intentionally addedwater to the electrolyte of Li-ion cells I. cells with graphite negative electrodes. Journal of The Electrochemical Society 160:A2281-A2287.
    [129]Dahn H.M., Smith A.J., Burns J.C., et al.2012. User-friendly differential voltage analysis freeware for the analysis of degradation mechanisms in Li-ion batteries. Journal of The Electrochemical Society 159:A1405-A1409.
    [130]http://www.teslamotors.com/cn/models
    [131]http://auto.163.com/13/1231/09/9HDPF2RE000854CH.html
    [132]Doughty D., Roth E.P., Summer 2012. A general discussion of Li ion battery safety. The Electrochemical Society Interface 37-44.
    [133]Cho J., Kim G.,1999. Enhancement of thermal stability of LiCo02 by LiMn2O4 coating. Electrochemical and Solid-State Letters 2:253-255.
    [134]Li G., Yang Z., Yang W.,2008. Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries. Journal of Power Sources 183:741-748.
    [135]Cho J., Kim T.J., Kim J., et al.2004. Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell. Journal of The Electrochemical Society 151:A1899-A1904.
    [136]Aono H., Sugimoto E., Sadaoka Y., et al.1990. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. Journal of The Electrochemical Society 137: 1023-1027.
    [137]Leo C.J., Chowdari B.V.R., Subba Rao G.V., et al.2002. Lithium conducting glass ceramic with nasicon structure. Materials Research Bulletin 37:1419-1430.
    [138]Ishikawa M., Sugimoto T., Kikuta M., et al.2006. Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. Journal of Power Sources 162:658-662.
    [139]Croce F., Appetecchi G.B., Persi L., et al.1998. Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456-458.
    [140]Hyung Y.E., Vissers D.R., Amine K.,2003. Flame-retardant additives for lithium-ion batteries. Journal of Power Source 119-121:383-387.
    [141]Xiang H.F., Xu H.Y., Wang Z.Z., et al.2007. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes. Journal of Power Sources.173:562-564.
    [142]Xia X., Ping P., Dahn J.R.,2012. The reactivity of charged electrode materials with electrolytes containing the flame retardant, triphenyl phosphate. Journal of The Electrochemical Society 159:A1834-A1837.
    [1]Rayleigh L.,1882. Further observations upon liquid jets, in continuation of those recorded in the royal society's'proceedings' for March and May,1879. Proceedings of the Royal Society of London 34:130-145.
    [2]陈效鹏,董绍彤,程久生,尹协振.2000.电雾化装置及雾化模型研究[J].实验力学15:97.
    [3]Chen C.H., Kelder E.M., Schoonman J.,1996. Unique porous LiCoO2 thin layers prepared by electrostatic spray deposition. Journal of Materials Science 31:5437-5442.
    [4]Jouanneau S., Dahn J.R.,2003. Preparation, structure, and thermal stability of new NixCo1-2xMnx(OH)2 (O≤x≤1/2) phases. Chemistry of Materials 15:495-499.
    [5]Lee D.-K., Park S.-H., Amine K., et al.2006. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. Journal of Power Sources 162:1346-1350.
    [6]Zhou F., Zhao X., Bommel A. van, et al.2010. Coprecipitation synthesis of NixMn1-x(OH)2 mixed hydroxides. Chemistry of Materials 22:1015-1021.
    [7]Luo W., Dahn J.R.,2009. Preparation of Co1-zAl2(OH)2(NO3)z layered double hydroxides and Li(Co1-zAlz)O2. Chemistry of Materials 21:56-62.
    [8]丁宁.2009.锂离子电池材料的相关研究——电极合成、性能改善、新材料探索及其充放电机理[D]:[博士].合肥:中国科学技术大学,31.
    [9]汪龙.2010.高性能锂离子电池电极材料的静电喷雾沉积和静电纺丝技术制备[D]:[博士].合肥:中国科学技术大学,26.
    [10]王素清.2010.具有纳米结构的铜、铁、钒氧化物的合成及电化学性能表征[D]:[博士].合肥:中国科学技术大学,32.
    [11]汪达.2011.嵌入型含锂金属氧化物锂离子电池负极材料的研究[D]:[博士].合肥:中国科学技术大学材料学,24.
    [12]钟国斌.2012.锂离子电池尖晶石型5V正极材料LiNi0.5Mn1.5O4的研究[D]:[博士].合肥:中国科学技术大学材料学,30.
    [13]Smith Aaron,2012. A high precision study of Li-ion batteries [D]:[Ph.D.]. Canada: Dalhousie University,41.
    [14]Sinha N.N., Smith A.J., Burns J.C., et al.2011. The use of elevated temperature storage experiments to learn about parasitic reactions in wound LiCoO2/graphite cells. Journal of The Electrochemical Society 158:A1194-A1201.
    [1]Amine K., Yasuda K., Yamachi M.,2000. Olivine LiCoPO4 as 4.8V electrode material for lithium batteries. Electrochemical Solid-State Letters 3:178-179.
    [2]Zhong Q.M., Bonakclarpour A., Zhang M.J., et al.1997. Synthesis and electrochemistry of LiNixMn2-xO4. Journal of The Electrochemical Society 144:205-213.
    [3]Thackeray M.M., Kang S.H., Johnson C.S., et al.2007. Li2Mn03-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. Journal of Materials Chemistry 17:3112-3125.
    [4]Kang S.-H., Thackeray M.M.,2009. Enhancing the rate capability of high capacity xLi2Mn03-(1-x)LiM02 (M=Mn, Ni, Co) electrodes by LiNiPO4 treatment. Electrochemistry Communications 11:748-751.
    [5]Zhou L., Yang L.C., Yuan P., et al.2010. α-MoO3 nanobelts:a high performance cathode material for lithium ion batteries. Journal of Physical Chemistry C 114:21868-21872.
    [6]Wang S.Q., Li S.R., Sun Y., et al.2011. Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy & Environmental Science 4:2854-2857.
    [7]Huang Y.H., Goodenough J.B.,2008. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chemistry of Materials 20:7237-7241.
    [8]Sakunthala A., Reddy M.V., Selvasekarapandian S., et al.2011. Energy storage studies of bare and doped vanadium pentoxide, (V1.95M0.05)O5, M=Nb, Ta, for lithium ion batteries. Energy & Environmental Science 4:1712-1725.
    [9]Cheah Y.L., Gupta N., Pramana S.S., et al.2011. Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. Journal of Power Sources 196:6465-6472.
    [10]Rui X., Zhu J., Liu W., et al.2011. Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. RSC Advances 1:117-122.
    [11]Yu D.M., Zhang S.T., Liu D.W., et al.2010. Effect of manganese doping on Li-ion intercalation properties of V2O5 films. Journal of Materials Chemistry 20:10841-10846.
    [12]Pan A., Zhang J., Nie Z., et al.2010. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. Journal of Materials Chemistry 20:9193-9199.
    [13]Huang W., Gao S., Ding X., et al.2010. Crystalline MnV2O6 nanobelts:synthesis and electrochemical properties. Journal of Alloys and Compounds 495:185-188.
    [14]Cai C.A., Guan D.S., Wang Y.,2011. Solution processing of V2O5-WO3 composite films for enhanced Li-ion intercalation properties. Journal of Alloys and Compounds 509:909-915.
    [15]Ni S., He D., Yang X., et al.2011. Hydrothermal synthesis of Cu3(OH)2V2O7·nH2O nanoparticles and its application in lithium ion battery. Journal of Alloys and Compounds 509: L142-L144.
    [16]Huang Z., Zeng H., Xue L., et al.2011. Synthesis of vanadium oxide, V6O13 hollow-flowers materials and their application in electrochemical supercapacitors. Journal of Alloys and Compounds 509:10080-10085.
    [17]Chan C.K., Peng H., Twesten R.D., et al.2007. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Letters 7:490-495.
    [18]Cocciantelli J.M., Menetrier M., Delmas C., et al.1995. On the δ→γ irreversible transformation in Li//V2O5 secondary batteries. Solid State Ionics 78:143-150.
    [19]O'Dwyer C, Lavayen V., Tanner D.A., et al.2009. Reduced surfactant uptake in three dimensional assemblies of VOX nanotubes improves reversible Li+intercalation and charge capacity. Advanced Functional Materials 19:1736-1745.
    [20]Farcy J., Maingot S., Soudan P., et al.1997. Electrochemical properties of the mixed oxide Fe0.11V2O5.16 as a Li intercalation compound. Solid State Ionics 99:61-69.
    [21]Poizot P., Laruelle S., Touboul M., et al.2003. Wet-chemical synthesis of various iron(Ⅲ) vanadates(V) by co-precipitation route. Comptes Rendus Chimie 6:125-134.
    [22]Denis S., Baudrin E., Orsini F., et al.1999. Synthesis and electrochemical properties of numerous classes of vanadates. Journal of Power Sources 81-82:79-84.
    [23]Denis S., Dedryvere R., Baudrin E., et al.2000. Chemistry of Materials 12:3733-3739.
    [24]Poizot P., Baudrin E., Laruelle S., et al.2000. Low temperature synthesis and electrochemical performance of crystallized FeVO4·1.1H2O. Solid State Ionics 138:31-40.
    [25]Surca A., Orel B., Krasovec U.O., et al.2000. Electrochromic and structural studies of nanocrystalline Fe/V (1:2) oxide and crystalline Fe2V4O13 films. Journal of The Electrochemical Society 147:2358-2370.
    [26]Patoux S., Richardson T.J.,2007. Lithium insertion chemistry of some iron vanadates. Electrochemistry Communications 9:485-491.
    [27]Yu Y, Chen C.H., Shui J.L., et al.2005. Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. Angewandte Chemie (International ed. in English) 44:7085-7089.
    [28]Yu Y., Chen C.H., Shi Y.,2007. A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Advanced Materials 19:993-997.
    [29]Yu Y, Shi Y, Chen C.H.,2007. Nanoporous cuprous oxide/lithia composite anode with capacity increasing characteristic and high rate capability. Nanotechnology 18:055706.
    [30]Zhan S., Wei Y., Bie X., et al.2010. Structural and electrochemical properties of Al3+ doped V2O5 nanoparticles prepared by an oxalic acid assisted soft-chemical method. Journal of Alloys and Compounds 502:92-96.
    [31]Bliznakov G., Pesheva Y., Klissurski D., et al.1987. Methanol oxidation on V2O5-MoO3-TeO3 catalysts. Applied Catalysis 29:211-218.
    [32]Mills P., Sullivan J.L.,1983. A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. Journal of Physics D:Applied Physics 16: 723-732.
    [33]Wei Y.J., Ryu C.W., Kim K.B.,2007. Improvement in electrochemical performance of V2O5 by Cu doping. Journal of Power Sources 165:386-392.
    [34]Murugan A.V., Kwon C.W., Campet G., et al.2002. Electrochemical lithium insertion into a poly(3,4-ethylenedioxythiophene)PEDOT/V2O5 nanocomposite. Journal of Power Sources 105:1-5.
    [35]Maingot S., Deniard Ph., Baffler N., et al.1995. Origin of the improved cycling capability of sol-gel prepared Fe0.12V2O5.16 compared with V2O5. Journal of Power Sources 54:342-345.
    [36]Chou S.-L., Wang J.-Z., Sun J.-Z., et al.2009. High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte. Chemistry of Materials 20:7044-7051.
    [37]Zhan S.Y, Wang C.Z., Nikolowski K., et al.2009. Electrochemical properties of Cr doped V2O5 between 3.8 V and 2.0 V. Solid State Ionics 180:1198-1203.
    [38]Rui X.H., Ding N., Liu J., et al.2010. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochimica Acta 55:2384-2390.
    [39]Hua N., Wang C., Kang X., et al.2010. Studies of V doping for the LiFePO4-based Li ion batteries. Journal of Alloys and Compounds 503:204-208.
    [40]Liu Y., Mi C., Yuan C., et al.2009. Improvement of electrochemical and thermal stability of LiFePO4 cathode modified by CeO2.Journal of Electroanalytical Chemistry 628:73-80.
    [41]Jin Y., Yang C.P., Rui X.H., et al.2011. V2O3 modified LiFePO4/C composite with improved electrochemical performance. Journal of Power Sources 196:5623-5630.
    [42]Fu L.J., Zhang T., Cao Q., et al.2007. Preparation and characterization of three-dimensionally ordered mesoporous titania microparticles as anode material for lithium ion battery. Electrochemistry Communications 9:2140-2144.
    [43]Qu Q.T., Fu L.J., Zhan X.Y., et al.2011. Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy & Environmental Science 4:3985-3990.
    [44]Ding N., Liu S., Chen C, et al.2008. An electron microscopic investigation of structural variation of V2O5 fibers after working as ethanol sensors. Applied Physics Letters 93: 173510-173510-2.
    [45]Colton R.J., Guzman A.M., Rabalais J.W.,1978. Electrochromism in some thin-film transition-metal oxides characterized by x-ray electron spectroscopy. Journal of Applied Physics 49:409-416.
    [46]Fierro J.L.G., Arrua L.A., Nieto J.M.L., et al.1988. Surface properties of Co-precipitated V-Ti-O catalysts and their relation to the selectiveoxidation of isobutene. Applied Catalysis 37:323-338.
    [47]Takamura T., Ohara S., Uehara M., et al.2004. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. Journal of Power Sources 129: 96-100.
    [48]Hatchard T.D., Dahn J.R.,2004. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. Journal of The Electrochemical Society 151:A838-A842.
    [49]Li J., Dahn J.R.,2007. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. Journal of The Electrochemical Society 154:A156-A161.
    [50]Qu Q., Zhang P., Wang B., et al.2009. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. Journal of Physical Chemistry. C 113:14020-14027.
    [1]Park O.K., Cho Y., Lee S., et al.2011. Who will drive electric vehicles, olivine or spinel? Energy & Environmental Science 4:1621-1633.
    [2]Ding Y.L., Xie J., Cao G.S., et al.2011. Enhanced elevated-temperature performance of Al-doped single-crystalline LiMn2O4 nanotubes as cathodes for lithium ion batteries. Journal of Physical Chemistry C 115:9821-9825.
    [3]Jayaprakash N., Kalaiselvi N., Gangulibabu, et al.2011. Effect of mono-(Cr) and bication (Cr, V) substitution on LiMn2O4 spinel cathodes. Journal of Solid State Electrochemistry 15: 1243-1251.
    [4]Xiong L., Xu Y., Zhang C., et al.2011. Electrochemical properties of tetravalent Ti-doped spinel LiMn2O4. Journal of Solid State Electrochemistry 15:1263-1269.
    [5]Qing C.B., Bai Y, Yang J.M., et al.2011. Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating. Electrochimica Acta 56:6612-6618.
    [6]Yu L., Qiu X., Xi J., et al.2006. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery. Electrochimica Acta 51: 6406-6411.
    [7]Gnanaraj J.S., Pol V.G., Gedanken A., et al.2003. Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method. Electrochemistry Communications 5:940-945.
    [8]Hu G., Wang X., Chen F., et al.2005. Study of the electrochemical performance of spinel LiMn2O4 at high temperature based on the polymer modified electrode. Electrochemistry Communications 7:383-388.
    [9]Amine K., Liu J., Kang S., et al.2004. Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications. Journal of Power Sources 129:14-19.
    [10]Amine K., Liu J., Belharouak I., et al.2005. Advanced cathode materials for high-power applications. Journal of Power Sources 146:111-115.
    [11]Bellitto C., DiMarco M.G., Branford W.R., et al.2001. Cation distribution in Ga-doped Li1.02Mn2O4. Solid State Ionics 140:77-81.
    [12]Ein-Eli Y., Urian R.C., Wen W., et al.2005. Low temperature performance of copper/nickel modified LiMn2O4 spinels. Electrochimica Acta 50:1931-1937.
    [13]Li S.R., Sun Y, Ge S.Y., et al.2012. A facile route to synthesize nano-MnO/C composites and their application in lithium ion batteries. Chemical Engineering Journal 192:226-231.
    [14]Rui X.H., Jin Y., Feng X.Y., et al.2011. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries. Journal of Power Sources 196:2109-2114.
    [15]Li S.R., Ge S.Y., Qiao Y., et al.2012. Three-dimensional porous Fe0.1V2O5.15 thin film as a cathode material for lithium ion batteries. Electrochimica Acta 64:81-86.
    [16]Rui X.H., Ding N., Liu J., et al.2010. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochimica Acta 55:2384-2390.
    [17]Wang K., Cai R., Yuan T., et al.2009. Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source. Electrochimica Acta 54:2861-2868.
    [18]Rho Y.H., Dokko K., Kanamura K.,2006. Li+ ion diffusion in LiMn2O4 thin film prepared by PVP sol-gel method. Journal of Power Sources 157:471-476.
    [19]Chung M.D., Seo J.H., Zhang X.C., et al.2011. Implementing realistic geometry and measured diffusion coefficients into single particle electrode modeling based on experiments with single LiMn2O4 spinel particles. Journal of The Electrochemical Society 158: A371-A378.
    [1]Zhong G.B., Wang Y.Y., Zhang Z.C., et al.2011. Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochimica Acta 56:6554-6561.
    [2]Lu Z., Dahn J.R.,2002. Understanding the anomalous capacity of Li/Li[NixLi1/3-2x/3Mn2/3-x/3]O2 cells using in situ X-ray diffraction and electrochemical studies. Journal of The Electrochemical Society 149:A815-A822.
    [3]Lu Z., Beaulieu L.Y., Donaberger R.A., et al.2002. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. Journal of The Electrochemical Society 149: A778-A791.
    [4]Bommel A. van, Dahn J.R.,2010. Kinetics study of the high potential range of lithium-rich transition-metal oxides for lithium-ion batteries by electrochemical methods. Journal of The Electrochemical Society 13:A62-A64.
    [5]Robertson A.D., Bruce P.G.,2003. Mechanism of electrochemical activity in Li2MnO3. Chemistry of Materials 15:1984-1992.
    [6]Thackeray M.M., Johnson C.S., Vaughey J.T., et al.2005. Advances in manganese-oxide 'composite'electrodes for lithium-ion batteries. Journal of Materials Chemistry 15: 2257-2267.
    [7]Bommel A. van, Krause L.J., Dahn J.R.,2011. Investigation of the irreversible capacity loss in the lithium-rich oxide Li[Li1/5Ni1/5Mn3/5]O2. Journal of The Electrochemical Society 158: A731-A735.
    [8]Zhong Q., Bonakdarpour A., Zhang M., et al.1997. Synthesis and electrochemistry of LiNixMn2-xO4. Journal of The Electrochemical Society 144:205-213.
    [9]Ohzuku T., Takeda S., Iwanaga M.,1999. Solid-state redox potentials for Li[Me1/2Mn3,2]O4 (Me:3d-transition metal) having spinel-framework structures:a series of 5 volt materials for advanced lithium-ion batteries. Journal of Power Source 81-82:90-94.
    [10]McCalla E., Rowe A.W., Shunmugasundaram R., et al.2013. Structural study of the Li-Mn-Ni oxide pseudoternary system of interest for positive electrodes of Li-ion batteries. Chemistry of Materials 25:989-999.
    [11]Bettge M., Li Y., Gallagher, K. et al.2013. Voltage fade of layered oxides:its measurement and impact on energy density. Journal of The Electrochemical Society 160:A2046-A2055.
    [12]Fang H., Wang Z., Li X., et al.2006. Low temperature synthesis of LiNi0.5Mn1.5O4 spinel. Materials Letters 60:1273-1275.
    [13]Lee Y.S., Sun Y.K., Ota S., et al.2002. Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 for 5V cathode material by composite carbonate process. Electrochemistry Communications 4:989-994.
    [14]Sun Y.-K., Oh S.W., Yoon C.S., et al.2006. Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4-xSx spinel material in 3-V region. Journal of Power Sources 161:19-26.
    [15]Kovacheva D., Markovsky B., Salitra G., et al.2005. Electrochemical behavior of electrodes comprising micro- and nano-sized particles of LiNio.5Mn1.5O4:a comparative study. Electrochimica Acta 50:5553-5560.
    [16]Kunduraci M., Amatucci G.G.,2008. The effect of particle size and morphology on the rate capability of 4.7V LiMn1.5+δNi0.5-δO4 spinel lithium-ion battery cathodes. Electrochimica Acta 53:4193-4199.
    [17]Zhang L., Lv X., Wen Y., et al.2009. Carbon combustion synthesis of LiNi0.5Mn1.5O4 and its use as a cathode material for lithium ion batteries. Journal of Alloys and Compounds 480: 802-805.
    [18]Arrebola J.C., Caballero A., Hernan L., et al.2008. Polymer-mediated growth of highly crystalline nano-and micro-sized LiNi0.5Mn1.5O4 spinels. European Journal of Inorganic Chemistry 21:3295-3302.
    [19]Ohzuku T., Makimura Y.,2001. Layered lithium insertion material of LiNi1/2Mn1/2O2:a possible alternative to LiCoO2 for advanced lithium-ion batteries. Chemistry Letters 8: 744-745.
    [20]Leea M.-H., Kanga Y.-J., Myung S.-T., et al.2004. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta 50:939-948.
    [21]Shaju K.M., Subba Rao G.V., Chowdari B.V.R.,2002. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochimica Acta 48:145-151.
    [22]Zhou F., Zhao X., Bommel A. van, et al.2010. Coprecipitation synthesis of NixMn1-x(OH)2 mixed hydroxides. Chemistry of Materials 22:1015-1021.
    [23]Zhou F., Zhao X., Bommel A. van, et al.2011. Comparison of Li[Li1/9Ni1/3Mn5,9]O2, Li[Li1/5Ni1/5Mn3/5]O2, LiNi0.5Mn1.5O4, and LiNi2/3Mn1/3O2 as high voltage positive electrode materials. Journal of The Electrochemical Society 158:A187-A191.
    [24]Luo W., Dahn J.R.,2009. Preparation of Co1-zAlz(OH)2(NO3)z layered double hydroxides and Li(Co1-zAl2)O2. Chemistry of Materials 21:56-62.
    [25]Vinal G.W., Storage batteries:a general treatise on the physics and chemistry of secondary batteries and their engineering application, John Wiley & Sons, Inc., New York,1954.
    [26]Matsuda Y.,1993. Behavior of lithium electrolyte interface in organic solutions. Journal of Power Source 43:1-7.
    [27]Ohzuku T., Ueda A., Yamamoto N., et al.1995. Factor affecting the capacity retention of lithium-ion cells. Journal of Power Source 54:99-102.
    [28]Barker J., Pynenburg R., Koksbang R., et al.1996. An electrochemical investigation into the lithium insertion properties of LixCoO2. Electrochimica Acta 41:2481-2488.
    [29]Smith A.J., Burns J.C., Xiong D., et al.2011. Interpreting high precision coulometry results on Li-ion cells. Journal of The Electrochemical Society 158:A1136-A1142.
    [30]Hunter B.A., Howard C.J., http://www.ccp14.ac.uk/-last accessed Feb,27,2013.
    [31]Kunduraci M., Al-Sharab J.F., Amatucci G.G.,2006. High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials:electrochemical impact of electronic conductivity and morphology. Chemistry of Materials 18:3585-3592.
    [32]Kunduraci M., Amatucci G.G.,2006. Synthesis and characterization of nanostructured 4.7V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. Journal of The Electrochemical Society 153:A1345-A1352.
    [33]Smith A.J., Burns J.C., Dahn J.R.,2010. A high precision study of the coulombic efficiency of Li-ion batteries. Electrochemical and Solid-State Letters,13:A177-A179.
    [34]Burns J.C., Jain G., Smith A.J., et al.2011. Evaluation of effects of additives in wound Li-ion cells through high precision coulometry. Journal of The Electrochemical Society 158: A255-A261.
    [35]Smith A.J., Sinha N.N., Dahn J.R.,2013. Narrow range cycling and storage of commercial Li ion cells. Journal of The Electrochemical Society 160:A235-A242.
    [36]Bond T.M., Burns J.C., Stevens D.A., et al.2013. Improving precision and accuracy in coulombic efficiency measurements of Li-ion batteries. Journal of The Electrochemical Society 160:A521-A527.
    [37]Smith A.J., Burns J.C., Trussler S., et al.2010. Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries. Journal of The Electrochemical Society 157:A196-A202.
    [1]Smith A.J., Burns J.C., Trussler S., et al.2010. Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries. Journal of The Electrochemical Society 157:A196-A202.
    [2]Burns J.C., Sinha N.N., Jain G., et al.2012. Impedance reducing additives and their effect on cell performance Ⅱ. C3H9B3O6. Journal of The Electrochemical Society 159:A1105-A1113.
    [3]Smith A.J., Sinha N.N., Dahn J.R.,2013. Narrow range cycling and storage of commercial Li ion cells. Journal of The Electrochemical Society 160:A235-A242.
    [4]Park S.B., Eom W.S., Cho W.Ⅱ, et al.2006. Electrochemical properties of LiNi0.5Mn1.5O4 cathode after Cr doping. Journal of Power Sources 159:679-684.
    [5]Aklalouch M., Amarilla J.M., Rojas R.M., et al.2008. Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi0.5Mn1.5O4-based positive electrode. Journal of Power Sources 185:501-511.
    [6]Oh S.H., Jeon S.H., Cho W. Ⅱ, et al.2008. Synthesis and characterization of the metal-doped high-voltage spinel LiNi0.5Mn1.5O4 by mechanochemical process. Journal of Alloys and Compounds 452:389-396.
    [7]Wang H., Xia H., Lai M.O., et al.2009. Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping. Electrochemistry Communications 11:1539-1542.
    [8]Zhong G.B., Wang Y.Y., Yu Y.Q., et al.2012. Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5V cathode materials for lithium ion batteries. Journal of Power Sources 205:385-393.
    [9]Zhong G.B., Wang Y.Y., Zhang Z.C., et al.2011. Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochimica Acta 56:6554-6561.
    [10]Oh S.H., Chung K.Y., Jeon S.H., et al.2009. Structural and electrochemical investigations on the LiNi0.5-xMn1.5-yMx+yO4 (M=Cr, Al, Zr) compound for 5V cathode material. Journal of Alloys and Compounds 469:244-250.
    [11]Wang Z., Wu C., Liu L., et al.2002. Electrochemical evaluation and structural characterization of commercial LiCo02 surfaces modified with MgO for lithium-ion batteries. Journal of The Electrochemical Society 149:A466-A471.
    [12]Kim J.S., Johnson C.S., Vaughey J.T., et al.2004. The electrochemical stability of spinel electrodes coated with ZrO2, A12O3, and SiO2 from colloidal suspensions. Journal of The Electrochemical Society 151:A1755-A1761.
    [13]Sun Y.K., Lee M.J., Yoon C.S., et al.2012. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Advanced Materials 24:1192-1196.
    [14]Sun Y.K., Hong K.J., Prakash J., et al.2002. Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5V materials at elevated temperatures. Electrochemistry Communications 4:344-348.
    [15]Fan Y., Wang J., Tang Z., et al.2007. Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochimica Acta 52:3870-3875.
    [16]Wang Q.Y., Liu J., Murugan A.V., et al.2009. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]02 cathode with improved rate capability. Journal of Materials Chemistry 19:4965-4972.
    [17]Liu J., Manthiram A.,2009. Improved electrochemical performance of the 5 V spinel cathode LiMn1.5Ni0.42Zn0.08O4 by surface modification. Journal of The Electrochemical Society 156: A66-A72.
    [18]Wu H.M., Belharouak I., Abouimrane A., et al.2009. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. Journal of Power Source 195:2909-2913.
    [19]Kim M.C., Kim S.H., Aravindan V., et al.2013. Ultrathin polyimide coating for a spinel LiNi0.5Mn1.5O4 cathode and its superior lithium storage properties under elevated temperature conditions. Journal of The Electrochemical Society 160:A1003-A1008.
    [20]Hunter B.A., Howard C.J., http://www.ccp14.ac.uk/-last accessed May,31,2013.
    [21]Bond T.M., Burns J.C., Stevens D.A., et al.2013. Improving precision and accuracy in coulombic efficiency measurements of Li-ion batteries. Journal of The Electrochemical Society 160:A521-A527.
    [22]Wojdyr M.,2010. Fityk:a general-purpose peak fitting program. Journal of Applied Crystallography 43:1126-1128.
    [23]Zhou F., Zhao X., Bommel A. van, et al.2010. Coprecipitation synthesis of NixMn1-x(OH)2 mixed hydroxides. Chemistry of Materials 22:1015-1021.
    [24]Bommel A.V., Dahn J.R.,2009. Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia. Chemistry of Materials 21:1500-1503.
    [25]Luo W., Dahn J.R.,2009. Preparation of Co1-zAlz(OH)2(NO3)z layered double hydroxides and Li(Co1-zAlz)O2. Chemistry of Materials 21:56-62.
    [26]Kunduraci M., Al-Sharab J.F., Amatucci G.G.,2006. High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials:electrochemical impact of electronic conductivity and morphology. Chemistry of Materials 18:3585-3592.
    [27]Park S.H., Oh S.-W., Kang S.H., et al.2007. Comparative study of different crystallographic structure of LiNi0.5Mn1.5O4-δ cathodes with wide operation voltage (2.0-5.0V). Electrochimica Acta 52:7226-7230.
    [28]McCalla E., Rowe A.W., Shunmugasundaram R., et al.2013. Structural study of the Li-Mn-Ni oxide pseudoternary system of interest for positive electrodes of Li-ion batteries. Chemistry of Materials 25:989-999.
    [29]Zhong Q., Bonakdarpour A., Zhang M., et al.1997. Synthesis and electrochemistry of LiNixMn2-xO4. Journal of The Electrochemical Society 144:205-213.
    [30]Ariyoshi K., Yamato R., Makimura Y., et al.2001. Three-volt lithium-ion battery consisting of Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4: improvement of positive-electrode material for long-life medium-power applications. Electrochemistry 1:46-54.
    [1]Jiang J., Dahn J.R.,2006. Dependence of the heat of reaction of Lio.8iC6 (0.1V), Li7Ti5O12 (1.55V) and Li0.5VO2 (2.45V) reacting with nonaqueous solvents or electrolytes on the average potential of the electrode material. Journal of The Electrochemical Society 153: A310-A315.
    [2]Jiang J., Chen J., Dahn J.R.,2004. Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using accelerating rate calorimetry. Journal of The Electrochemical Society 151:A2082-A2087.
    [3]http://techon.nikkeibp.co.jp/english/NEWS_EN/20130219/266673/last accessed Feb.27, 2014.
    [4]http://multimedia.3m.com/mws/mediawebserver?mwsId=SSSSSuH8gc7nZxtUo8mxN8_1evU qel7zHvTSevTSeSSSSSS--&fh=3M_Battery_Cathode_Pres.pdf
    [5]Burns J.C., Sinha N.N., Jain G., et al.2012. Impedance reducing additives and their effect on cell performance Ⅱ. C3H9B3O6. Journal of The Electrochemical Society 159:A1105-A1113.
    [6]Ohzuku T., Makimura Y.,2001. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chemistry Letters 30:642-643.
    [7]Jiang J., Eberman K., Krause L., et al.2005. Reactivity of Liy[NixCo1-2xMnx]O2 (x= 0.1,0.2, 0.35,0.45, and 0.5; y=0.3,0.5) with nonaqueous solvents and electrolytes studied by ARC. Journal of The Electrochemical Society 152:A566-A569.
    [8]MacNeil D., Lu Z., Dahn J.R.,2002. Structure and electrochemistry of Li[NixCo1-2xMnx]O2 (0    [9]Eberman K., Krause L.,2003. Diffusion coefficient of lithium in Lix(Coy(NiMn)(1-y)/2)O2 cathode powders. The 204th Meeting of ECS, Florida.
    [10]Sun Y., Ouyang C., Wang Z., et al.2004. Effect of Co content on rate performance of LiMn0.5-xCo2XNi0.5-xO2 cathode materials for Lithium-ion batteries. Journal of The Electrochemical Society 151:A504-A508.
    [11]Koyama Y, Tanaka I., Adachi H., et al.2003. Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2 (O≤x≤1). Journal of Power Sources 119-121: 644-648.
    [12]Koyama Y., Yabuuchi N., Tanak I., et al.2004. Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries I. first-principles calculation on the crystal and electronic structures. Journal of The Electrochemical Society 151:A1545-A1551.
    [13]Wu K., Yang J., Zhang Y., et al.2012. Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle. Journal of Applied Electrochemistry 42:989-995.
    [14]He Y., Li B., Liu M., et al.2012. Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports 2:913.
    [15]Wu K.., Yang J., Liu Y, et al.2013. Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated Temperature. Journal of Power Sources 237: 285-290.
    [16]Burn J.C., Kassam A., Sinha N.N., et al.2013. Predicting and extending the lifetime of Li-ion batteries. Journal of The Electrochemical Society 160:A1451-A 1456.
    [17]Sloop S.E., Kerr J.B., Kinoshita K.,2003. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge. Journal of Power Sources 119-121:330-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700