反向遗传技术研究新城疫病毒P基因功能及其对病毒毒力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫(Newcastle disease,ND)是一种严重的传染性疾病,能够感染多种禽类,给世界养禽业造成了巨大的损失。该病的病原新城疫病毒(Newcastle disease virus,NDV)属于副粘病毒科(Paramyxoviridae),副粘病毒亚科(Paramyxovirinae),禽腮腺炎病毒属(Avulavirus)。NDV的基因组由单负股RNA构成,目前已知的基因组长度有三种,15,186 nt、15,192 nt以及15,198 nt。基因组按照3′-NP-P-M-F-HN-L-5′的顺序编码6种病毒结构蛋白,分别是核蛋白(nucleoprotein,NP),磷蛋白(phosphoprotein,P),基质蛋白(matrix protein,M),融合蛋白(fusion protein,F),血凝素-神经氨酸酶蛋白(haemagglutinin-neuraminidase,HN),以及大分子蛋白(largeprotein,L)。除此之外,P基因还能够通过RNA编辑(RNA editing)机制在转录产物特定位点(UUUUUCCC)插入1个或2个非模板G,从而编码额外的两种非结构蛋白V和W。P基因编码的P蛋白能够辅助NP蛋白单体正确折叠,同时是RNA聚合酶的亚单位之一,在病毒基因组RNA的转录和复制中起着重要作用;V蛋白能够拮抗宿主细胞干扰素系统,对病毒的免疫逃避起着重要的作用。尽管如此,目前对NDVP基因的研究才刚刚开始,大部分数据来自于其它副粘病毒的研究结果,对于各种毒力NDV毒株P基因功能差异的研究尚未开始。本室测定了鹅源NDV强毒株ZJ1的全基因组序列,并在此基础上构建了该基因组cDNA的全长克隆以及分别表达该毒株NP、P以及L蛋白的3个真核表达质粒,通过病毒的体外包装技术,拯救出了具有感染性的病毒粒子,成功建立了鹅源NDV的反向遗传操作技术平台,这也为从病毒生物学特性的角度研究P基因提供了技术支持。
     1.基因Ⅲ型和Ⅳ型新城疫病毒全基因组测序及其在新城疫进化史中的重要地位分析
     根据EMBL/GenBank中已发表的基因Ⅲ型NDV全基因和基因Ⅸ型NDV基因片段设计一套全基因引物,将NDV全基因分为10个相互重叠的片段进行RT-PCR扩增。PCR产物连入pGEM-T easy载体测序后应用DNAStar软件进行遗传进化分析。我们测定了5株基因Ⅸ型NDV和2株基因Ⅲ型全基因组序列并进行遗传进化分析。实验数据显示,虽然两种基因型毒株同源性较高,但是基因Ⅸ型NDV NP基因内确实存在6 nt插入片段,基因全长为15,192nt,是与基因Ⅲ型NDV不同的毒株。鉴于基因Ⅸ型代表株F48E8的分离时间,可以确定早在上世纪三、四十年代就已经存在全长15,192nt的毒株。值得注意的是,常用的遗传进化分析以及限制性内切酶位点(RE)分析并不能有效的区分这两种基因型以及Ⅳ型,NP基因5'端非编码区核苷酸长度才是最可靠的遗传标志。最后,根据两个基因型毒株相近的分离时间和高度的同源性,我们推测最早有一群NDV毒株在遗传进化过程中分化为两支,保持15,186nt基因组长度的一支演变为基因Ⅲ型、Ⅳ型及相关毒株;而另外一支,在NP基因5′-NCR插入6个核苷酸,产生了15,192nt基因组长度的毒株,可能即为最早的基因Ⅸ型毒株,再逐步进化演变为后来的基因Ⅴ~Ⅷ型。
     2.新城疫病毒P/V/W基因编码产物的结构域分析及针对V蛋白C端结构域的抗体制备
     根据EMBL/GenBank上发布的NDV基因序列,分别设计针对基因Ⅱ、Ⅲ、Ⅵ和Ⅶ型以及class I NDV毒株P基因的引物。RT-PCR扩增后测序,从而获得5种基因型NDV P基因的正确序列。通过核苷酸序列预测P基因表达产物的氨基酸序列,并进行二级结构预测和三级结构模拟。实验结果发现,腮腺炎病毒属的猴副流感病毒V型(Simian virus 5,SV5)的V蛋白与NDV V蛋白的氨基酸序列同源性以及二级结构的相似性均较高,可以将其空间结构作为模板模拟NDV V蛋白以及P蛋白N端的空间结构。综合各种分析数据,可以确定P蛋白辅助N蛋白折叠的结构域位于N端前50aa内,其中20 aa-29 aa预测为一个潜在的疏水性α-螺旋;50 aa-131 aa结构紊乱;预测P蛋白螺旋卷曲结构位于221 aa-290 aa范围内,可能介导了P蛋白四聚体的形成以及与L蛋白的相互作用;预测NDV的X结构域位于291 aa-392 aa范围内,其中350 aa-392 aa区域内存在3个相连的α-螺旋,其二级结构与副粘病毒X结构域的C端亚单位结构相似,可能介导了P蛋白与衣壳化基因组的相互作用。V蛋白的C端结构域(C-terminal domain,CTD)的编码区域位于P蛋白132 aa-239 aa区域内,与螺旋卷曲结构部分重叠。最后,根据分析结果将基因Ⅶ型NDV毒株ZJ1 V蛋白CTD的序列插入pGEX-6p-1表达载体中诱导表达。表达产物通过切胶免疫的方法多次免疫小鼠,结果获得抗V蛋白CTD的多抗血清。利用间接免疫荧光鉴定多抗血清与病毒蛋白的反应情况,证明制备的抗CTD血清能够与NDV感染vero细胞作用,与正常Vero细胞不反应,为后续的研究工作奠定了基础。
     3.不同基因型新城疫病毒P基因对病毒毒力的影响
     利用BglⅡ酶切全长质粒pNDV/ZJ1,成功构建含有TVT载体、NP基因、P基因以及很少部分M基因和L基因片段的中间质粒pTX37。PCR分别分别扩增NDV基因Ⅱ型疫苗株LaSota、基因Ⅲ型中等毒力株JS/05/9/Go和基因Ⅶ型强毒株JS/05/5/Go的P基因,上游引物突变引入SmaⅠ的酶切位点,下游引物突变出ApaⅠ酶切位点。通过SmaⅠ和ApaⅠ将3株病毒的P基因替换进入中间载体pTX37,再利用BstZ17Ⅰ和XbaⅠ将重组质粒连入NDV基因组全长转录载体质粒。重组的3种NDV基因组全长转录载体质粒与3个辅助表达质粒pCI-L、pCI-NP和pCI-P共转染BSR-T7/5细胞,成功拯救出了P基因替换株RZJ-LP,RZJ-4P,RZJ-IP。通过MDT、ICPI、IVPI、细胞致病力以及生长曲线的检测,发现3株P基因替换株的毒力变现明显的差异:RZJ-LP和RZJ-4P在细胞上的生长滞后于亲本病毒ZJ1,细胞上清中的病毒含量比ZJ1低10倍左右;RZJ-4P和RZJ-LP的ICPI从ZJ1的2.54下降至2.33和1.51;RZJ-IP表现出了比ZJ1更强的感染力,感染细胞后最早出现病变的时间和完全破坏单层细胞的时间比ZJ1还要早12 h-24 h。3株P基因替换株的毒力强弱排序与其P基因来源毒株的毒力强弱排序相同,表明P基因是影响NDV毒力的因素之一。
     4.新城疫病毒P基因编码产物的结构域对病毒生物学活性的影响
     通过SmaⅠ和ApaⅠ的酶切位点,将基因Ⅱ型疫苗株LaSota P基因RNA编辑位点上游部分和下游部分分别替换进入基因Ⅶ型NDV ZJ1,成功拯救了具有嵌合P基因的两株重组病毒RZJ-LaN和RZJ-LaC。通过PCR在中间质粒pTX37的P基因RNA编辑位点后进行点突变引入终止密码子TAG,拯救V蛋白C端结构域缺失株RZJ-VS和荧光标记的RZJ-VS/GFP,重组病毒P蛋白的正常表达不受影响,而由+1G mRNA编码的V蛋白翻译到RNA编辑位点后即终止。通过MDT、ICPI、IVPI、细胞致病力以及生长曲线的检测,发现RZJ-LaN和RZJ-LaC的毒力比亲本病毒稍弱,但明显强于P基因替换株RZJ-LP,表明上一章中发现的RZJ-LP毒力大幅度下降是由P蛋白和V蛋白的多个结构域协同作用的结果,并非是单个结构域导致。在没有干扰素系统的Vero细胞上RZJ-LP、RZJ-LaN和RZJ-LaC生长曲线基本重合,而在原代细胞CEF、GEF上RZJ-LaN的增殖能力最强,RZJ-LaC最弱,RZJ-LaN感染细胞中病毒的最高含量比RZJ-LP高5~10倍,RZJ-LP比RZJ-LaC高5~10倍,表明ZJ1 V蛋白CTD的干扰素拮抗能力强于LaSota。V蛋白缺失株的生物学活性与相关报道完全相反,在细胞和鸡胚中的生长不受影响,接种Vero、CEF和GEF细胞以后,细胞病变以圆缩脱落为主,单层细胞完全破环的时间超过72 h。这种细胞病变过程与亲本病毒完全不同,暗示V蛋白的CTD结构域应该具有未知的功能。检测荧光发现,RZJ-VS/GFP和RZJ/GFP在以0.01MOI接种细胞后12 h都出现了很强的荧光,24 h后绝大多数单层细胞出现荧光,这表明ZJ1株的复制和传播能力非常的强,感染速度超过了细胞抗病毒免疫启动的速度,推测基因Ⅶ型NDV高效的增殖和传播能力也是其免疫逃避的机制之一。
     全文小结:
     (1)测定了2株基因Ⅲ型和5株基因Ⅸ型NDV的全基因组序列,证实两种基因型毒株虽然同源性较高,但是基因Ⅸ型NDV确实有6nt插入片段,基因全长为15,192 nt,是最早出现的15,192 nt基因组长度毒株。分析后推测,NDV毒株在遗传进化过程中分化为两支,保持15,186nt基因组长度的一支演变为基因Ⅲ型、Ⅳ型及相关毒株;而另外一支,在NP基因中插入6个核苷酸,产生了15,192nt基因组长度的毒株,可能即为最早的基因Ⅸ型毒株,再逐步进化演变为后来的基因Ⅴ~Ⅷ型。
     (2)通过对P基因表达产物的生物信息学分析,确定P蛋白和V蛋白结构域的大致位置。
     (3)通过反向遗传平台,替换基因Ⅶ型强毒ZJ1的P基因全基因或部分结构域,成功拯救5株重组病毒。3株P基因替换株的毒力强弱排序与其P基因来源毒株的毒力强弱排序相同,证实P基因是影响毒力的因素之一,同时发现P基因对毒力的影响是由多个结构域共同参与,而非单一结构域决定。
     (4)利用反向遗传平台,成功拯救2株V蛋白C端结构域缺失病毒,证实在相同病毒骨架下,ZJ1 V蛋白的干扰素拮抗能力强于LaSota。V蛋白C端结构域缺失株的生物学特性与亲本病毒差异不大,明显与NDV同类研究结果相反,推测基因Ⅶ型NDV高效的增殖和感染能力也是其免疫逃避机制之一。
     (5)细胞感染RZJ-VS以后,CPE明显改变,细胞以圆缩脱落为主,单层细胞完全破环的时间大幅度延长,暗示V蛋白的C端结构域应该具有未知的功能。
Newcastle disease(ND)is one of the most serious infectious diseases of birds,and has been a major cause of economic losses in poultry industry.Its causative agent, Newcastle disease virus(NDV),is the sole member of avian paramyxovirus-1 (APMV-1),belonging to genus Avulavirus,subfamily Paramyxovirinae,family Paramyxoviridae,order Mononegaviriales.NDV possesses a negative-sense, single-stranded continuous RNA genome,which consists of 15,186 nt,15,192 nt or 15,198 nt.The genome of NDV contains six genes in the order of 3'-NP-P-M-F-HN-L-5',encoding six viral proteins(nucleoprotein,phosphoprotein,matrix protein, fusion protein,haemagglutinin-neuraminidase and large protein,respectively).Like other members of the Paramyxovirinae,NDV edits its P gene by inserting one or two G residues at the conserved editing locus(UUUUUCCC)and transcribes three P-gene-derived mRNA species.The mRNAs encode the open reading frame(ORF)of P (unedited),the V ORF(with a+1 frameshift),and the W ORF(with a+2 frameshift).P protein associates with the soluble,monomeric form of N and prevents its illegitimate self-assembly onto cellular RNA.P protein also forms complexes with assembled form of N and L during transcription and replication.V protein,which is also transcribed from P gene,proved to be associated with viral Pathogenesis and functions as an alpha interferon antagonist.
     In 2000,NDV strain named ZJ1 was isolated and identified from goose flocks in Zhejiang province,and subsequently the complete genomic sequence of ZJ1 strain was determined.A transcription vector containing the full length cDNA of ZJ1 genome and three helper plasmids expressing NP,P or L protein respectively were constructed to establish the reverse genetics system for NDV ZJ1 strain.After cotransfecting the transcription vector together with three helper plasmids,highly virulent infectious NDV was successfully generated.This established reverse genetics system provides a powerful tool for the research of the P gene in this study.
     1.Full-length genome analysis of Newcastle diseases virus strains belonging to genotypeⅢandⅨreveals the common origin of recent epizootic viruses.
     Ten fragments from seven NDV strain were amplified and cloned into pGEM-T vector.Based on sequencing results,the entire genome sequences of five genotypeⅨstrains and two genotypeⅢstrains were determined.Alignment of the seven full-length sequences revealed the presence of the 6 nt insert in the 5'-noncoding region(NCR)of the NP gene of five genotypeⅨNDV isolates.In other words,the genome of genotype IX NDV was 15,192 nt in length,quite different from genotypeⅢstrains.The genome size of F48E8(F48E9)indicated that NDV strains with 15,192nt genome had emerged as early as 1940s,rather than 1960s when the infections of genotypesⅤandⅥstrains were found.Phylogenetic and genetic character analysis revealed that viruses belonging to genotypeⅨshared higher homology with early genotypesⅢandⅣstrains, although they possessed 6 nt insert in the NP gene,a derived characteristic of recent four genotypes.Based on epidemiological data and phylogenetic analysis,it is inferred that the insertion of 6 nt into the genome of a genotypeⅢstrain gave rise to genotypeⅨstrains,which could be the common origin of NDV strains belonging to genotypeⅤ-Ⅷ.
     2.Analysis of the domains of P gene-coded viral proteins and preparation of antiserum specific for C-terminal domain ofⅤprotein
     Fragments of P gene from NDV strains belonging to genotypeⅡ,Ⅲ,Ⅵa,Ⅶd and classⅠwere amplified with 5 pairs of specific primers.The PCR products were cloned to pGEM-T vector and sequenced to determine the exact nucleotide sequence of P gene. Based on sequencing results,the amino acid sequences of P,Ⅴand W protein were predicted,and subsequently sent to internet for second structure prediction and modeling.It was predicted that the structure ofⅤprotein of simian virus 5(SV5),a member of Rubulavirus,was adequate for modelingⅤprotein or the N moiety part of P protein of NDV,due to the homology ofⅤproteins in amino acid and second structure. Structural investigations on the P gene-encoded proteins showed that anα-helix in the phosphoprotein N-terminal domain(PNT)from 20 aa to 29 aa was identified,which was conserved in all Paramyxoviruses,acting as a chaperone for newly synthesized N, and prevent it from bingding to non-viral RNA in the infected cells.The phosphoprotein C-terminal domain(PCT)was mapped for various protein-protein interactions required for viral transcription:the putative oligomerization domain(PMD)was in the region between aa 221 and aa 290;the putative C-terminal sub-domain ofⅩdomain was found beween aa 350 and aa 392,which was proved to be a N:RNA-binding domain of Paramyxovirus;the C-terminal domain(CTD)ofⅤprotein was found beween aa 132 and aa 239,partially overlapping with PMD.According to the results of second structure analysis,the CTD of P gene from ZJ1 was amplified and cloned into pGEX-6p-l for expression.Several BALB/c mice were immunized with the expression products for more than four times to produce anti-serum specific for CTD.The indirect fluorescence assay(IFA)confirmed that anti-CTD serum reacted with NDV-infected cells,rather than other normal cells.
     3.Rescued NDVs with P gene derived from diverse origins showed differences in biological characteristics,especially in pathogenicity. In order to construct a plasmid for P gene substitution,a fragment of ZJ1 cDNA from 3641 nt(BglⅡ)to 4748 nt(BstZ17Ⅰ)was amplied and ligated with BglⅡ-digested plasmid pNDV/Z J1,containing the full-length cDNA of NDV ZJ1.The newly constructed plasmid was identified and called pTX37.The fragments of P gene were amplified from three NDV strains as follows:lentogenic strain LaSota,belonging to genotypeⅡ;mesogenic strain JS/05/9/Go,belonging to genotypeⅢ;velogenic strain JS/05/5/Go,belonging to genotypeⅦ.The PCR products of three P gene were digested with Smal and Apal,and ligated into the digested pTX37 to replace the P gene of pTX37.Subsequently,the recombinant plasmid and pNDV/ZJl were digested with XbaI and BstZ17I,and the products of digestion were ligated together to construct recombinant full-length cDNA of ZJ1 with heterologous P gene.The transcription vectors containing recombinant full-length cDNA together with three helper plasmids expressing viral protein NP,P and L were cotransfected into BSR-T7/5 cells,expressing T7 RNA polymerase.Three recombinant NDV strains were successfully rescued and named RZJ-LP,RZJ-4P and RZJ-IP respectively.To compare the biological characteristics of rescued viruses and wild-type NDV strain ZJ1,the mean death time (MDT),intracerebral pathogenicity index(ICPI),intravenous pathogenicity index(IVPI) and viral growth kinetics test were carried out.The results showed that recombinant NDV strains with P from LaSota or JS/05/9/Go were less virulent than wild-type strain ZJ1.In Vero,CEF and GEF cells,RZJ-LP and RZJ-4P grew more slowly and produced 10-fold fewer infectious progeny compared to ZJ1.The IVPI of RZJ-LP was 1.51,much lower than 2.54 of ZJ1.The pathogenicity of the three recombinant viruses indicated that P gene played an important role in virulence.
     4.Rescued NDV ZJ1 strain with partial P gene replacement showed differences in biological characteristics.
     The N-terminal moiety and C-terminal moiety of P gene of LaSota was respectively subcloned into plasmid pTX37 to replace the counterpart of P gene of ZJ1.As described above,the recombinant plasmids were ligated into pNDV/ZJ1,and subsequently two recombinant ZJ1 strains with chimeric P gene were rescued,called RZJ-LaN and RZJ-LaC.Two point mutations were introduced after the RNA edition motif in the P gene of plasmid pTX37 to inhibit the expression of the C-terminal domain(CTD)of V protein,while the expression of phosphoprotein was not changed.The resultant plasmid was ligated into full-length cDNA of ZJ1 and subsequently two CTD-deficient NDVs, named RZJ-VS and RZJ-VS/GFP,were rescued.To compare the biological characteristics of rescued viruses and wild-type NDV strain ZJ1,pathogenicity tests of MDT,ICPI,IVPI and viral growth kinetics test were carried out.The IVPI of RZJ-LaN and RZJ-LaC was 2.26 and 2.46,a bit lower than that of ZJ1,indicating that all the domains rather than single domain of P gene contributed to the low-virulence of RZJ-LP. It is noted that RZJ-LP,RZJ-LaN and RZJ-LaC grew equally in Vero cells,a cell lineage lacking interferon system,while the growth of RZJ-LaN in CEF and GEF was faster than those of others and that of RZJ-LaC was the lowest.RZJ-LaN produced 100-fold fewer infectious progeny than RZJ-LaC in vitro,indicating that the antagonism of the CTD of ZJ1 was better than LaSota.Although the rescued strain RZJ-VS encoded a V protein without CTD,it grew well in cells and eggs,even the same as wild-type strain.The biological characteristics of RZJ-VS were contrary to the results of similar research on other strains.In indirect fluorescent assy(IFA),many fluorescent cells were observed in RZJ-VS/GFP or RZJ/GFP-infected cells 12 h post-infection,indicating that ZJ1 predominated in propagation,which could also be an immune evasion mechanism.In addition,the cytopathic effect(CPE)of RZJ-VS and RZJ-VS/GFP was obviously different from that of ZJ1,indicating that certain function of CTD might not be discovered.
     Conclusion:
     (1)The entire genome sequences of five genotypeⅨstrains and two genotypeⅢstrains were determined and analyzed.Alignment of the seven full-length sequences revealed that the genome size of genotypeⅨNDV isolates was 15,192 nt,quite different from genotypeⅢstrains.Based on epidemiological data and phylogenetic analysis,it is inferred that the insertion of 6 nt into the genome of a genotypeⅢstrain gave rise to genotypeⅨstrains,which could be the common origin of NDV strains belonging to genotypeⅤ-Ⅷ.
     (2)The amino acid sequences of P,V and W protein were predicted and sent to internet for second structure prediction and modeling.Finally,all the functional domains were roughly located in P gene.
     (3)By using reverse genetics technology,five recombinant ZJ1 strains were rescued, three of which contained heterologous P gene,the others containing chimeric P gene.The biological characteristics of recombinant strains showed that P gene play an important role in virulence.
     (4)By using reverse genetics technology,two recombinant ZJ1 strains encoding CTD-deficientⅤprotein were rescued.The biological characteristics of recombinant strains showed that CTD of ZJ1 was more powerful than that of LaSota.The CTD-lacking strains grew as well as parental strain,contrary to the results of similar research on other strains,indicating that ZJ1 predominated in propagation,which could also be an immune evasion mechanism.
     (5)The cytopathic effect(CPE)of RZJ-VS and RZJ-VS/GFP was obviously altered, indicating that certain function of CTD might not be discovered.
引文
[1]Alexander D J.Newcastle disease.In: Swayne D E, Glisson J R, Jackwood M W (Eds.).A Laboratory Manual for the Isolation and Identification of Avian Pathogens.4th ed AmericanAssociation of Avian Pathologists, Kennett Square, PA, 1999, pp.156-163.
    [2]Alexander D J.Newcastle disease, other avian paramyxoviruses, and pneumovirus infections.In: Saif J M, Barnes H J, Glisson J R (Eds.).Diseases of Poultry, 11th ed.Iowa State UniversityPress, Ames, Iowa, 2003, pp.63-99.
    [3]Aldous E W, Alexander D J.Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1).Avian Pathol, 2001,30:117-128.
    [4]de Leeuw O, Peeters B J.Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily Paramyxovirinae.J Gen Virol, 1999,80:131-136.
    [5]Mayo M.A.A summary of taxonomic changes recently approved by ICTV.Arch Virol, 2002,147:1655-1656.
    [6]Krishnamurthy S, Samal S K.Nucleotide sequences of the trailer, nucleocapsid protein gene and intergenic regions of Newcastle disease virus strain Beaudette C and completion of the entire genome sequence.J Gen Virol, 1998, 79:2419-2424.
    [7]Huang Y, Wan H Q, Liu H Q.Genomic sequence of an isolate of Newcastle disease virus isolated from an outbreak in geese: a novel six nucleotide insertion in the non-coding regionof the nucleoprotein gene.Arch Virol, 2004,149:1445-4457.
    [8]Czegledi A, Ujvari D,Wehmann E.Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications.Virus Res, 2006, 120:36-48.
    [9]Millar N S, Emmerson P T.Molecular cloning and nucleotide sequencing of Newcastle disease virus.In: Alexander D J (ed).Newcastle disease.Kluwer, Boston, 1988, pp 79-97.
    [10]Samson A C, Levesley I, Russell P H.The 36K polypeptide synthesized in Newcastle disease virus-infected cells possesses properties predicted for the hypothesized V protein.J Gen Virol,1991,72:1709-1713.
    [11]Steward M, Vipond I B, Millar N S.RNA editing in Newcastle disease virus.J Gen Virol, 1993,74:2539-2547.
    [12]Steward M, Samson A C, Errington W.The Newcastle disease virus V protein binds zinc.Arch Virol, 1995, 140:1321-1328.
    [13]Gould A R,Hannson E,Selleck K.Newcastle disease virus fusion and haemagglutinin-neuraminidase gene motifs as markers for viral lineage.Avian Pathol,2003,32:361-373.
    [14]Ballagi-Pord(?)ny A,Wehmann E,Herczeg J.Identification and grouping of Newcastle disease virus strains by restriction site analysis of a region from the F gene.Arch Virol,1996,141:243-261.
    [15]Lomniczi B,Wehmann E,Herczeg J.Newcastle disease outbreaks in recent years in Western Europe were caused by a(Ⅵ)and a novel genotype(Ⅶ).Arch Virol,1998,143:49-64.
    [16]Herczeg J,Wehmann E,Bragg R R.1999.Two novel genetic groups(Ⅶb and Ⅷ)responsible for recent Newcastle disease outbreaks in Southern Africa,one(Ⅶb)of which reached Southern Europe.Arch Virol,1999,144:2087-2099.
    [17]Liang Y,Ma W T.A fowl disease caused by a filterable virus.Agricult Bull(in Chinese),1946,12:14-16.
    [18]Wu Y T,Liu X F,Zhang R K.Sequence analysis of the fusion protein gene of Newcastle disease virus strain F48E8.Chin J Virol(in Chinese),1999,15:143-146.
    [19]Liu X F,Wan H Q,Ni X X.Pathotypical and genotypical characterization of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985-2001.Arch Virol,2003,148:1387-1403.
    [20]姚春峰,仇旭升,刘文博,等。新城疫分离毒HN蛋白的抗原性初步分析及分子特性研究[J].微生物学通报,2008,35(1):87-93.
    [21]萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯著.金冬雁,黎孟枫译.分子克隆实验指南.第二版.北京:科学出版社.1995,pp1-69.
    [22]Collins M S,Bashiruddin J B,Alexander D J.1993.Deduced amino acid sequences at the fusion protein cleavage site of Newcastle disease virus showing variation in antigenicity and pathogenicity.Arch Virol,1993,128:363-370.
    [23]R(o|¨)mer-Oberd(o|¨)rfer A,Werner O,Veits J.Contribution of the length of the HN protein and the sequence of the F protein cleavage site to Newcastle disease virus pathogenicity.J Gen Virol,2003,84:3121-3129.
    [24]Aldous E W,Mynn J K,Banks J.A molecular epidemiological study of avian paramyxovirus type 1(Newcastle disease virus)isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene.Avian Pathol,2003,32:239-257.
    [25]Czegledi A, Herczeg J, Hadjiev G.The occurrence of five major Newcastle disease virus genotypes (Ⅱ, Ⅳ,Ⅴ,Ⅵ and Ⅶb) in Bulgaria between 1959 and 1996.Epidemiol Infect, 2002,129:679-688.
    [26]Lee Y J, Sung H W, Choi J G.Molecular epidemiology of Newcastle disease viruses isolated in South Korea using sequencing of the fusion protein cleavage site region and phylogenetic relationships.Avian Pathol, 2004, 33:482-491.
    [27]Liang R, Cao D J, Li J Q.Newcastle disease outbreaks in western China were caused by the genotypes Vila and VⅢ.Vet Microbiol, 2002, 87:193-203.
    [28]Mase M, Imai K, Sanada Y.Phylogenetic analysis of Newcastle disease virus genotypes isolated in Japan.J Clin Microbiol, 2002, 40:3826-3830.
    [29]Tsai H J, Chang K H, Tseng C H.Antigenic and genotypical characterization of Newcastle disease virus isolated in Taiwan between 1969 and 1996.Vet Microbiol, 2004, 104:19-30.
    [30]Ujvari D, Wehmann E, Kaleta E F.Phylogenetic analysis reveals extensive evolution of avian paramyxovirus type 1 strains of pigeons (Columba livia) and suggests multiple species transmission.Virus Res, 2003, 96:63-73.
    [31]Wehmann E, Czegledi A, Werner O.Occurrence of genotypes IV, V, VI and Vila in Newcastle disease outbreaks in Germany between 1939 and 1995.Avian Pathol, 2003, 32:157-163.
    [32]Wehmann, E., Ujv(?)ri, D., Mazija, H.Genetic analysis of Newcastle disease virus strains isolated in Bosnia-Herzegovina, Croatia, Slovenia and Yugoslavia, reveals the presence of only a single genotype, V, between 1979 and 2002.Vet Microbiol, 2003, 94:269-281.
    [33]de Leeuw O S, Koch G, Hartog L.Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the hemagglutinin-neuraminidase protein.J Gen Virol, 2005, 86:1759-1769.
    [34]Kattenbelt J A, Stevens M P, Gould A R.Sequence variation in the Newcastle disease virus genome.Virus Res, 2006, 116:168-184.
    [35]Romer-Oberdorfer A, Mundt E, Mebatsion T.Generation of recombinant lentogenic Newcastle disease virus from cDNA.J Gen Virol, 1999, 80:2987-2995.
    [36]Ujvari D.Complete nucleotide sequence of IT-227/82, an avian paramyxovirus type-1 strain of pigeons (Columba livia).Virus Genes, 2006, 32:49-57.
    [37]Zou J, Shan S, Yao N.Complete genome sequence and biological characterizations of a novel goose paramyxovirus-SF02 isolated in China.Virus Genes, 2005, 30:13-21.
    [38]Wu Y T, Liu X F, Zhang R K.(1999) Sequence analysis of the fusion protein gene of Newcastle disease virus strain F48E8.Chin J Virol (in Chinese), 1999 15:143-146.
    [39]Liu X F, Wan H Q, Ni X X.Pathotypical and genotypical characterization of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985-2001.Arch Virol, 2003, 148:1387-1403.
    [40]Sakaguchi T, Toyoda T, Gotoh B.Newcastle disease virus evolution: 1.Multiple lineages defined by sequence variability of the hemagglutinin-neuraminidase gene.Virology, 1989,169:260-272.
    [41]Locke D P, Sellers H S, Crawford J M.Newcastle disease virus phosphoprotein gene analysis and transcriptional editing in avian cells.Virus Res, 2000,69:55-68.
    [42]Seal B S, King D J, Locke D.Phylogenetic Relationships among Highly Virulent Newcastle Disease Virus Isolates Obtained from Exotic Birds and Poultry from 1989 to 1996.J Clin Microbio, 1998, 1141-1145.
    [43]Seal B S, King D J, Meinersman R J.Molecular evolution of the Newcastle disease virus matrix protein gene and phylogenetic relationships among the paramyxoviridae.Virus Res, 2000,66:1-11.
    [44]Wise M G, Sellers H S, Alvarez R.RNA-dependent RNA polymerase gene analysis of worldwide Newcastle disease virus isolates representing different virulence types and their phylogenetic relationship with other members of the paramyxoviridae.Virus Res, 2004,104:71-80.
    [1]Millar N S,Emmerson P T.Molecular cloning and nucleotide sequencing of Newcastle disease virus.In:Alexander D J(ed).Newcastle disease.Kluwer,Boston,1988,pp 79-97.
    [2]Samson A C,Levesley I,Russell P H.The 36K polypeptide synthesized in Newcastle disease virus-infected cells possesses properties predicted for the hypothesized V protein.J Gen Virol,1991,72:1709-1713.
    [3]Steward M,Vipond I B,Millar N S.RNA editing in Newcastle disease virus.J Gen Virol,1993,74:2539-2547.
    [4]Steward M,Samson A C,Errington W.The Newcastle disease virus V protein binds zinc.Arch Virol,1995,140:1321-1328.
    [5]Herczeg J,Wehmann E,Bragg R R.1999.Two novel genetic groups(Ⅶb and Ⅷ)responsible for recent Newcastle disease outbreaks in Southern Africa,one(Ⅶb)of which reached Southern Europe.Arch Virol,1999,144:2087-2099.
    [6]Hamaguchi M,Yoshida T,Nishikawa K.Transcriptive complex of Newcastle disease virus.Ⅰ.Both L and P proteins are required to constitute an active complex.Virology,1983,128:105-117.
    [7]Hamaguchi M,Nishikawa K,Toyoda T.Transcriptive complex of Newcastle disease virus.Ⅱ.Structural and functional assembly associated with the cytoskeletal framework.Virology,1985,147:295-308.
    [8]Yusoff K, Tan W S.Newcastle disease virus: macromolecules and opportunities.Avian Pathol, 2001,30:439-455.
    [9]Errington W, Emmerson P T.Assembly of recombinant Newcastle disease virus nucleocapsid protein into nucleocapsid-like structures is inhibited by the phosphoprotein.J Gen Virol, 1997,78:2335-2339.Printed in Great Britain
    [10]Karlin D, Longhi S, Receveur V, et al.The N-terminal domain of the phosphoprotein of morbilliviruses belongs to the natively unfolded class of proteins.Virology, 2002,296:251-262.
    [11]Liston P, DiFlumeri, C, Briedis D J.Protein interactions entered into by the measles virus P, V,and C proteins.Virus Res, 1995, 38:241-259.
    [12]Small wood S, Ryan K W, Moyer S A.Deletion analysis defines a carboxyl-proximal region of Sendai virus P protein that binds to the polymerase L protein.Virology, 1994,202:154-163.
    [13]Curran J, Boeck R, Lin-Marq N, et al.Paramyxovirus phosphoproteins form homotrimers as determined by an epitope dilution assay, via predicted coiled coils.Virology, 1995,214:139-149.
    [14]Harty R N, Palese P.Measles virus phosphoprotein (P) requires the NH2- and COOH-terminal domains for interactions with the nucleoprotein (N) but only the COOH terminus for interactions with itself.J Gen Virol, 1995, 76:2863-2867.
    [15]Ryan K W, Morgan E M, Portner A.Two noncontiguous regions of Sendai virus P protein combine to form a single nucleocapsid binding domain.Virology, 1991, 180:126-134.
    [16]Lamb R A, Kolakofsky D.Paramyxoviridae: The viruses and their replication.In Fields Virology (Fields B N, Knipe D M, Howley P M et al.eds), 2001, 1305-1340.Lippincott-Raven Publishers, Philadelphia.
    [17]Thomas S M, Lamb R A, Paterson R G.Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5.Cell,1988,54:891-902.
    [18]Paterson R G, Leser G P, Shaughnessy M A, et al.The Paramyxovirus SV5 V protein binds two atoms of zinc and is a structural component of virions.Virology, 1995, 208:121-131.
    [19]Liston P, Briedis D J.Measles virus V protein binds zinc.Virology, 1994, 198:399-404.
    [20]Huang Z , Krishnamurthy S , Panda A, et al.Newcastle disease virus V protein is associated with viral pathogenesis and s as an alpha interferon antagonist.J Virol, 2003, 77(16):8676-8685
    [21]Mebtasion T, Verstegen S, de Vaan L T C, et al.A recombinant Newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenecity for chicken embryos.J Virol, 2001, 75:420-428.
    [22]Park M S,Shaw M L,Munoz-Jordan J,et al.Newcastle Disease Virus(NDV)-Based Assay Demonstrates Interferon-Antagonist Activity for the NDV V Protein and the Nipah Virus V,W,and C Proteins.J Virol,2003,77:1501-1511.
    [23]黄勇,万洪全,刘红旗,等.鹅源新城疫病毒ZJ1株全基因组的序列测定,病毒学报,2003,19(4):348-354.
    [24]刘玉良,吴艳涛,黄勇,等.鹅源新城疫病毒NP、P和L基因的克隆与P基因的表达鉴定.微生物学通报,2004,31(2):37-40
    [25]萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯著.金冬雁,黎孟枫译.分子克隆实验指南.第二版.北京:科学出版社.1995,pp1-69.
    [26]Blanchard L,Tarbouriech N,Blackledge M,et al.Structure and dynamics of the nucleocapsid-binding domain of the Sendai virus phosphoprotein in solution.Virology,2004,319:201-211
    [27]Curran J,Boeck R,Lin-Marq N,et al.Paramyxovirus phosphoproteins form homotrimers as determined by an epitope dilution assay,via predicted coiled coils.Virology,1995,214:139-149.
    [28]Curran J.Reexamination of the Sendai virus P protein domains required for RNA synthesis:A possible supplemental role for the P protein.Virology,1996,221:130-140.
    [29]Curran J,Pelet T,Kolakofsky D.An acidic activation-like domain of the Sendai virus P protein is required for RNA synthesis and encapsidation.Virology,1994,202:875-880.
    [30]Li T,Chen X,Garbutt K C,et al.Structure of DDB l in Complexwith a Paramyxovirus V Protein:Viral Hijack of a Propeller Cluster in Ubiquitin Ligase.Cell,2006,124:105-117.
    [31]Karlin D,Ferron F,Canard Bet al.2003.Structural disorder and modular organization in Paramyxovirinae N and P.J Gen Virol,2003,84:3239-3252.
    [1]Alexander DJ.Newcastle disease.In:Swayne DE,Glisson JR,Jackwood MW,et al.A Laboratory Manual for the Isolation and Identification of Avian Pathogens.4th ed.American Association of Avian Pathologists,Kennett Square,PA,1999,pp.156-163.
    [2]Peeters B P,de Leeuw O S,Koch G,et al.Rescue of Newcastle disease virus from cloned cDNA:evidence that cleavability of the fusion protein is a major determinant for virulence.J Virol,1999,73:5001-5009.
    [3]仇旭升,孙庆,姚春峰,等.两株基因Ⅲ型强毒新城疫的全基因组测序及其与Ⅰ系苗的亲缘性分析.微生物学报(Acta Microbiologica Sinica),2009,49(3):302-308.
    [4]Angela R,Ortrud W,Jutta V,et al.Contribution of the length of the HN protein and the sequence of the F protein cleavage site to Newcastle disease virus pathogenicity.J Gen Virol,2003,84:3121-3129.
    [5]Huang Z,Krishnamurthy S,Panda A,et al.Newcastle disease virus V protein is associated with viral pathogenesis and s as an alpha interferon antagonist.J Virol,2003,77(16):8676-8685.
    [6]Rout S N,Samal S K.TheLarge Polymerase Protein Is Associated with the Virulence of Newcastle Disease Virus.J Viroi,2008,82:7828-7836.
    [7]Lamb R A,Kolakofsky D.Paramyxoviridae:The viruses and their replication.In Fields Virology(Fields B N,Knipe D M,Howley P Met al.eds),2001,1305-1340.Lippincott-Raven Publishers,Philadelphia.
    [8]Hamaguchi M,Yoshida T,Nishikawa K,et al.1983.Transcriptive complex of Newcastle disease virus.I.Both L and P proteins are required to constitute an active complex.Virology,1983,128:105-117.
    [9]Hamaguchi M,Nishikawa K,Toyoda T,et al.Transcriptive complex of Newcastle disease virus.Ⅱ.Structural and functional assembly associated with the cytoskeletal framework.Virology,1985,147:295-308.
    [10]Mebtasion T,Verstegen S,de Vaan L T C,et al.A recombinant Newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenecity for chicken embryos.J Virol,2001,75:420-428.
    [11]Park M S,Shaw M L,Munoz-Jordan J,et al.Newcastle Disease Virus(NDV)-Based Assay Demonstrates Interferon-Antagonist Activity for the NDV V Protein and the Nipah Virus V,W,and C Proteins.J Virol,2003,77:1501-1511.
    [12]Neumann G,Whitt M A,Kawaoka Y.Adecade after the generation of a negative-sense RNA virus from cloned cDNA-what have we learned? J GenVirol,2002,83(11):2635-2662.
    [13]Huang Z,Elankumaran S,Panda A,et al.Recombinant Newcastle disease virus as a vaccine vector.Poultry Sci,2003,82:899-906.
    [14]Liu Y L,Hu S L,Zhang Y M,et al.Generation of a velogenic Newcastle disease virus from cDNA and expression of the green fluorescent protein.Arch Virol,2007,152:1241-1249.
    [15]黄勇,万洪全,刘红旗,等.鹅源新城疫病毒ZJ1株全基因组的序列测定.病毒学报,2003,19(4):348-354.
    [16]Johnson K N,Zeddam J-L,Ball L A.Characterization and construction of functional cDNA clones of Pariacoto virus,the first Alphnodavirus isolated outside Australasia.J Virol,2000,74:5123-5132.
    [17]刘玉良,吴艳涛,黄勇,等.鹅源新城疫病毒NP、P和L基因的克隆与P基因的表达鉴定.微生物学通报,2004,31(2):37-40.
    [18]Hu S L,Liu Y L,Zhang Y M,et al.Generation of a recombinant Newcastle disease virus Expressing green fluorescence protein gene.Virologica Sinica,2007,22(1):54-59.
    [19]胡顺林,吴艳涛,刘文博,等.鹅源新城疫病毒单克隆抗体的研制及其与不同NDV毒株的反应性.中国兽医科技,2005,35(5):341-345.
    [20]萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯著.金冬雁,黎孟枫译.分子克隆实验指南(第二版).北京:科学出版社.1995,pp1-69.
    [21]郑明球.家畜传染病学实验指导(第三版).中国农业出版社.2002,pp108-109
    [22]Kawaoka Y.Biology of negative strand RNA viruses:the power of reverse genetics.In:Conzelmann K K.ed.Reverse genetics of mononegavirales,1~(st)edition.2004,1-41.
    [23]Neumann G,Whitt M A,Kawaoka Y.Adecade after the generation of a negative-sense RNA virus from cloned cDNA-what have we learned? J Gen Virol,2002,83(11):2635-2663.
    [24]Krishnamurthy S,Samal K.Nucleotide sequences of the trailer,nucleocapsid protein gene and intergenic regions of Newcastle disease virus strain Beaudette C and completion of the entire genome sequence.Journal of General Virology,1998,79:2419-2424.
    [25]Panda A,Huang Z,Elankumaran S,et al.Role of fusion protein cleavage site in the virulence of Newcastle disease virus.Microb Pathog,2004,36:1-10.
    [26]Curran,J.,Marq,J.B.& Kolakofsky,D.An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication.J Virol,1995,69:849-855.
    [27]Shaji D,Shaila M S.(1999).Domains of Rinderpest virus phosphoprotein involved in interaction with itself and the nucleocapsid protein.Virology,1999,258:415-424.
    [28]Errington W,Emmerson P T.Assembly of recombinant Newcastle disease virus nucleocapsid protein into nucleocapsid-like structures is inhibited by the phosphoprotein.J Gen Virol,1997,78:2335-2339.Printed in Great Britain
    [29]Karlin D,Longhi S,Receveur V,et al.The N-terminal domain of the phosphoprotein of morbilliviruses belongs to the natively unfolded class of proteins.Virology,2002,296:251-262.
    [30]Blanchard L,Tarbouriech N,Blackledge M,et al.Structure and dynamics of the nucleocapsid-binding domain of the Sendai virus phosphoprotein in solution.Virology,2004,319:201-211
    [31]Rahaman A,Srinivasan N,Shamala N,et al.Phosphoprotein of the Rinderpest virus forms a tetramer through a coiled coil region important for biological function.J Biol Chem,2004,279:23606-23614.
    [1]Lamb R A,Kolakofsky D.Paramyxoviridae:The viruses and their replication.In Fields Virology(Fields B N,Knipe D M,Howley P Met al.eds),2001,1305-1340.Lippincott-Raven Publishers,Philadelphia.
    [2]Steward,M.,I.B.Vipond,N.S.Millar,and T.Emmerson.1993.RNA editing in Newcastle disease virus.J Gen.Virol.74:2539-2547.
    [3]Errington W,Emmerson P T.Assembly of recombinant Newcastle disease virus nucleocapsid protein into nucleocapsid-like structures is inhibited by the phosphoprotein.J Gen Virol,1997,78:2335-2339.Printed in Great Britain
    [4]Karlin D,Longhi S,Receveur V,et al.The N-terminal domain of the phosphoprotein of morbilliviruses belongs to the natively unfolded class of proteins.Virology,2002,296:251-262.
    [5]Bellini W J,Englund G,Rozenblatt S,et al.Measles virus P gene codes for two proteins.J Virol,1985,53:908-919.
    [6]Curran J,Kolakofsky D.1989.Scanning independent ribosomal initiation of the Sendai virus Y proteins in vitro and in vivo.EMBO J,1989,8(2):521-526.
    [7]Giorgi C,Blumberg B M,Kolakofsky D.Sendai virus contains overlapping genes expressed from a single mRNA.Cell,1983,35(3 Pt.2):829-836.
    [8]Yu M,Hansson E,Langedijk J P,et al.The attachment protein of Hendra virus has high structural similarity but limited primary sequence homology compared with viruses in the genus Paramyxovirus.Virology,1998,251:227-233.
    [9]Harcourt B H, Tamin A, Ksiazek TG, et al.Molecular characterization of Nipah virus, a newly emergent paramyxovirus.Virology 2000;271: 334-349.
    [10]Tarbouriech N J, Ebel C C, Ruigrok K W H, et al.On the domain structure and the polymerization state of the Sendai virus P protein.Virology, 2000, 266:99-109.
    [11]Blanchard L, Tarbouriech N, Blackledge M, et al.Structure and dynamics of the nucleocapsid-binding domain of the Sendai virus phosphoprotein in solution.Virology, 2004, 319:201-211
    [12]Rahaman A, Srinivasan N, Shamala N, et al.Phosphoprotein of the Rinderpest virus forms a tetramer through a coiled coil region important for biological function.J Biol Chem, 2004, 279:23606-23614.
    [13]Giorgi C, Blumberg B M, Kolakofsky D.Sendai virus contains overlapping genes expressed from a single mRNA.Cell, 1983, 35 (3 Pt.2):829-836.
    [14]Cattaneo R, Kaelin K, Baezko K, et al.Measles virus editing provides an additional cysteine-rich protein.Cell, 1989,56:759-764.
    [15]Paterson R G, Thomas S M, Lamb R A.Specific nontemplated nucleotide addition to a simian virus 5 mRNA: Prediction of a common mechanism by which unrecognized hybrid P-cysteine-rich proteins are encoded by Paramyxovirus P genes.In: Kolakofsky D, Mahy B W J, eds.Genetics and Pathogenicity of Negative Strand Viruses.London: Elsevier,1989:232-245.
    [16]Thomas S M, Lamb R A, Paterson R G.Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5.Cell, 1988,54:891-902.
    [17]Vidal S, Curran J, Kolakofsky D.Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity.J Virol, 1990,64:239-246.
    [18]Thomas S M, Lamb R A, Paterson R G.Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5.Cell,1988,54:891-902.
    [19]Paterson R G, Leser G P, Shaughnessy M A, et al.The Paramyxovirus SV5 V protein binds two atoms of zinc and is a structural component of virions.Virology, 1995, 208:121-131.
    [20]Liston P, Briedis D J.Measles virus V protein binds zinc.Virology, 1994, 198:399-404.
    [21]Huang Z , Krishnamurthy S , Panda A, et al.Newcastle disease virus V protein is associated with viral pathogenesis and s as an alpha interferon antagonist.J Virol, 2003,77(16):8676-8685.
    [22]Mebtasion T,Verstegen S,de Vaan L T C,et al.A recombinant Newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenecity for chicken embryos.J Virol,2001,75:420-428.
    [23]Park M S,Shaw M L,Munoz-Jordan J,et al.Newcastle Disease Virus(NDV)-Based Assay Demonstrates Interferon-Antagonist Activity for the NDV V Protein and the Nipah Virus V,W,and C Proteins.J Virol,2003,77:1501-1511.
    [24]Newcastle Disease Virus V Protein Is a Determinant of Host Range Restriction Man-Seong Park,Adolfo Garc(?)a-Sastre,Jerome F.Cros.JOURNAL OF VIROLOGY,Sept.2003,p.9522-9532 Vol.77,No.17
    [25]Johnson K N,Zeddam J-L,Ball L A.Characterization and construction of functional cDNA clones of Pariacoto virus,the first Alphnodavirus isolated outside Australasia.Journal of Virology,2000,74:5123-5132.
    [26]刘玉良,吴艳涛,黄勇,等.鹅源新城疫病毒NP、P和L基因的克隆与P基因的表达鉴定.微生物学通报,2004,31(2):37-40.
    [27]Hu S L,Liu Y L,Zhang Y M,et al.Generation of a recombinant Newcastle disease virus Expressing green fluorescence protein gene.Virologica Sinica,2007,22(1):54-59.
    [28]黄勇,万洪全,刘红旗,等.鹅源新城疫病毒ZJ1株全基因组的序列测定.病毒学报,2003,19(4):348-354.
    [29]Liu Y L,Hu S L,Zhang Y M,et al.Generation of a velogenic Newcastle disease virus from cDNA and expression of the green fluorescent protein.Arch Virol,2007,152:1241-1249.
    [30]Horvath C M.Weapons of STAT destruction:Interferon evasion by paramyxovirus V proteins.Eur J Biochem,2004,271:4621-4628.
    [31]Samuel C E.Antiviral Actions of Interferons.Clin Microbiol Rev,2001,14(4):778-809.
    [1]Lamb R A,Kolakofsky D.Paramyxoviridae:The viruses and their replication.In Fields Virology(Fields B N,Knipe D M,Howley P Met aI.eds),2001,1305-1340.Lippincott-Raven Publishers,Philadelphia.
    [2]de Leeuw O,Peeters B J.Complete nucleotide sequence of Newcastle disease virus:evidence for the existence of a new genus within the subfamily Paramyxovirinae.J Gen Virol,1999,80:131-136.
    [3]Mayo M A.A summary of taxonomic changes recently approved by ICTV.Arch Virol,2002,147:1655-1656.
    [4]Calnek B W.Diseases of Poultry.Tenth edition.Ames, Iowa, USA: Iowa state university press, 1998,691-712.
    [5]Yusoff K, Tan W S.Newcastle disease virus: macromolecules and opportunities.Avian Pathol,2001,30:439-455.
    [6]Boeck R, Curran J, Matsuoka Y, et al.The parainfluenza virus type 1 P/C gene uses a very efficient GUG codon to start its C protein.J Virol, 1992,66:1765-1768.
    [7]Curran J, Kolakofsky D.Ribosomal initiation from an ACG codon in the Sendai virus P/C mRNA.EMBO J, 1988,7:245-251.
    [8]Gupta K C, Patwardhan S.ACG, the initiator codon for a Sendai virus protein.J Biol Chem,1988,263:8553-8556.
    [9]Latorre P, Kolakofsky D, Curran J.Sendai virus Y proteins are initiated by a ribosomal shunt.Mol Cell Biol, 1999, 18:5021-5031.
    [10]Curran J, Kolakofsky D.1989.Scanning independent ribosomal initiation of the Sendai virus Y proteins in vitro and in vivo.EMBO J, 1989, 8 (2):521- 526.
    [11]Giorgi C, Blumberg B M, Kolakofsky D.Sendai virus contains overlapping genes expressed from a single mRNA.Cell, 1983, 35 (3 Pt.2):829-836.
    [12]Cattaneo R, Kaelin K, Baezko K, et al.Measles virus editing provides an additional cysteine-rich protein.Cell, 1989,56:759-764.
    [13]Paterson R G, Thomas S M, Lamb R A.Specific nontemplated nucleotide addition to a simian virus 5 mRNA: Prediction of a common mechanism by which unrecognized hybrid P-cysteine-rich proteins are encoded by Paramyxovirus P genes.In: Kolakofsky D, Mahy B W J,eds.Genetics and Pathogenicity of Negative Strand Viruses.London: Elsevier, 1989:232-245.
    [14]Thomas S M, Lamb R A, Paterson R G.Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5.Cell,1988,54:891-902.
    [15]Vidal S, Curran J, Kolakofsky D.Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity.J Virol, 1990,64:239-246.
    [16]Steward M, Vipond I B, Millar N S, et al.RNA editing in Newcastle disease virus.J Gen Virol,1993,74:2539-2547.
    [17]Kolakofsky D, Roux L, Garcin D, et al.Paramyxovirus mRNA editing, the 'rule of six' and error catastrophe: a hypothesis.J Gen Virol, 2005, 86:1869-1877
    [18]Pelet T, Curran J, Kolakofsky D.The P gene of bovine parainfluenza virus 3 expresses all three reading frames from a single mRNA editing site.EMBO J, 1991,10:443-448.
    [19]Sakai Y, Suzu S, Shioda T, Shibuta H.Nucleotide sequence of the bovine parainfluenza 3 virus genome: Its 3' end and the genes of NP, P, C and M proteins.Nucleic Acids Res, 1987,15:2927-2944.
    [20]Curran, J., Marq, J.B.& Kolakofsky, D.An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication.J Virol, 1995, 69:849-855.
    [21]Matsuoka Y, Curran J, Pelet T, et al.The P gene of human parainfluenza virus type 1 encodes P and C proteins but not a cysteine-rich V protein.J Virol, 1991, 65:3406-3410.
    [22]Durbin AP, McAuliffe JM, Collins PL, Murphy BR.Mutations in the C, D, and V open reading frames of human parainfluenza virus type 3 attenuate replication in rodents and primates.Virology 1999;261:319-329.
    [23]Galinski M S, Troy R M, Banerjee A K.RNA editing in the phosphoprotein gene of the human parainfluenza virus type 3.Virology, 1992, 186:543-550.
    [24]Paterson R G, Lamb R A.RNA editing by G-nucleotide insertion in mumps virus P-gene mRNA transcripts.J Virol, 1990, 64:4137-4145.
    [25]Gotoh B, Komatsu T, Takeuchi K, et al.The C-terminal half-fragment of the Sendai virus C protein prevents the gamma-activated factor from binding to a gamma-activated sequence site.Virology, 2003,316(1):29-40.
    [26]Gotoh B, Takeuchi K, Komatsu T, et al.The STAT2 activation process is a crucial target of Sendai virus C protein for the blockade of alpha interferon signaling.J Virol, 2003,77:3360-3370.
    [27]Kato A, Ohnishi Y, Kohase M, et al.Y2, the smallest of the Sendai virus C proteins, is fully capable of both counteracting the antiviral action of interferons and inhibiting viral RNA synthesis.J Virol, 2001, 75(8):3802-3810.
    [28]Kato A, Ohnishi Y, Hishiyama M, et al.2002.The amino-terminal half of Sendai virus C protein is not responsible for either counteracting the antiviral action of interferons or down-regulating viral RNA synthesis.J Virol, 2002.76(14):7114-7124.
    [29]Shaffer J A, Bellini W J, Rota P A.The C protein of measles virus inhibits the type I interferon response.Virology, 2003, 315:389-397.
    [30]Huang Z , Krishnamurthy S , Panda A, et al.Newcastle disease virus V protein is associated with viral pathogenesis and s as an alpha interferon antagonist.J Virol, 2003, 77(16):8676-8685
    [31]Bellini W J, Englund G, Rozenblatt S, et al.Measles virus P gene codes for two proteins.J Virol,1985,53:908-919.
    [32]Yu M, Hansson E, Langedijk J P, et al.The attachment protein of Hendra virus has high structural similarity but limited primary sequence homology compared with viruses in the genus Paramyxovirus.Virology, 1998, 251:227-233.
    [33]Harcourt B H, Tamin A, Ksiazek TG, et al.Molecular characterization of Nipah virus, a newly emergent paramyxovirus.Virology 2000;271: 334-349.
    [34]Curran J, de Melo M, Moyer S, et al.Characterization of the Sendai virus V protein with an anti-peptide antiserum.Virology, 1991, 184:108-116.
    [35]Herrler G, Compans R W.Synthesis of mumps virus polypeptides in infected Vero cells.Virology, 1982,119:430-438.
    [36]Curran J, Marq J B, Kolakofsky D.The Sendai virus nonstructural C proteins specifically inhibit viral mRNA synthesis.Virology, 1992, 189:647-656.
    [37]Tarbouriech N J, Ebel C C, Ruigrok K W H, et al.On the domain structure and the polymerization state of the Sendai virus P protein.Virology, 2000, 266:99-109.
    [3 8]Structure and dynamics of the nucleocapsid-binding domain of the Sendai virus phosphoprotein in solution.Blanchard L, Tarbouriech N, Blackledge M, et al.Virology, 2004, 319:201-211
    [39]Rahaman A, Srinivasan N, Shamala N, et al.Phosphoprotein of the Rinderpest virus forms a tetramer through a coiled coil region important for biological function.J Biol Chem, 2004,279:23606-23614.
    [40]Curran J , Boeck R, Lin-Marq N, et al.Paramyxovirus phosphoproteins form homotrimers as determined by an epitope dilution assay, via predicted coiled coils.Virology, 1995,214:139-149.
    [41]Bowman M C, Smallwood S, Moyer S A.Dissection of individual functions of the Sendai virus phosphoprotein in transcription.J Virol, 1999, 73:6474-6483.
    [42]Kolakofsky D, Le Mercier P, Iseni F, et al.Viral RNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis.Virology, 2004, 318:463-473.
    [43]Karlin D, Ferron F, Canard B et al.2003.Structural disorder and modular organization in Paramyxovirinae N and P.J Gen Virol, 2003, 84:3239-3252.
    [44]Bankamp B, Horikami S M, Thompson P D, et al.Domains of the measles virus N protein required for binding to P protein and self-assembly.Virology, 1996, 216:272-277.
    [45]Buchholz C J, Retzler C, Homann H E, et al.The carboxy-terminal domain of Sendai virus nucleocapsid protein is involved in complex formation between phosphoprotein and nucleocapsid-like particles.Virology, 1994, 204:770-776.
    [46]Curran J, Homann H, Buchholz C, et al.The hypervariable C-terminal tail of the Sendai paramyxovirus nucleocapsid protein is required for template function but not for RNA encapsidation.J Virol, 1993, 67:4358-4364.
    [47]Harty R N, Palese P.Measles virus phosphoprotein (P) requires the NH2- and COOH-terminal domains for interactions with the nucleoprotein (N) but only the COOH terminus for interactions with itself.J Gen Virol, 1995,76:2863-2867.
    [48]Nishio M, Tsurudome M, Ito M, et al.Mapping of domains on the human parainfluenza virus type 2 nucleocapsid protein (NP) required for NP-phosphoprotein or NP-NP interaction.J Gen Virol, 1999,80:2017-2022.
    [49]Nishio M, Tsurudome M, Kawano M, et al.Interaction between nucleocapsid protein (NP) and phosphoprotein (P) of human parainfluenza virus type 2: one of the two NP binding sites on P is essential for granule formation.J Gen Virol, 1996, 77:2457-2463.
    [50]Precious B, Young D F, Bermingham A, et al.Inducible expression of the P, V, and NP genes of the paramyxovirus simian virus 5 in cell lines and an examination of NP-P and NP-V interactions.J Virol, 1995, 69:8001-8010.
    [51]Shaji D, Shaila M S.(1999).Domains of Rinderpest virus phosphoprotein involved in interaction with itself and the nucleocapsid protein.Virology, 1999, 258:415-424.
    [52]Tober C, Seufert M, Schneider H, et al.Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis.J Virol, 1998, 72:8124-8132.
    [53]Errington W, Emmerson P T.Assembly of recombinant Newcastle disease virus nucleocapsid protein into nucleocapsid-like structures is inhibited by the phosphoprotein.J Gen Virol, 1997,78:2335-2339.Printed in Great Britain
    [54]Barik S, Banerjee A K.Sequential Phosphorylation of the Phosphoprotein of Vesicular Stomatitis Virus by Cellular and Viral Protein Kinases Is Essential for Transcription Activation.J Virol, 1992,66(2): 1109-1118.
    [55]Byrappa S, Pan Y B, Gupta K C.Sendai virus P protein is constitutively phosphorylated at serine249: High phosphorylation potential of the P protein.Virology, 1996,216:228-234.
    [56]Huntley C C, De B P, Banerjee A K.Phosphorylation of Sendai Virus Phosphoprotein by Cellular Protein Kinase C.J Biol Chem, 1997, 272(26): 16578-16584.
    [57]De B P, Gupta S, Banerjee A K.Cellular protein kinase C isoform zeta regulates human parainfluenza virus type 3 replication.Proc Natl Acad Sci USA, 1995,92:5204-5208.
    [58]Hu C J, Kato A, Bowman M C, et al.Role of primary constitutive phosphorylation of Sendai virus P and V proteins in viral replication and pathogenesis.Virology, 1999,263:195-208.
    [59]Karlin D, Longhi S, Receveur V, et al.The N-terminal domain of the phosphoprotein of morbilliviruses belongs to the natively unfolded class of proteins.Virology, 2002,296:251-262.
    [60]Romero P, Obradovic Z, Li X, et al.Sequence complexity of disordered proteins.Proteins, 2001,42:38-48.
    [61]Williams R M, Obradovi Z, Mathura V, et al.The protein non-folding problem: amino acid determinants of intrinsic order and disorder.Pac Symp Biocomput, 2001, 89-100.
    [62]Curran J.Reexamination of the Sendai virus P protein domains required for RNA synthesis: A possible supplemental role for the P protein.Virology, 1996, 221:130-140.
    [63]Curran J, Pelet T, Kolakofsky D.An acidic activation-like domain of the Sendai virus P protein is required for RNA synthesis and encapsidation.Virology, 1994,202:875-880.
    [64]Liston P, DiFlumeri, C, Briedis D J.Protein interactions entered into by the measles virus P, V,and C proteins.Virus Res, 1995, 38:241-259.
    [65]Smallwood S, Ryan K W, Moyer S A.Deletion analysis defines a carboxyl-proximal region of Sendai virus P protein that binds to the polymerase L protein.Virology, 1994,202:154-163.
    [66]Ryan K W, Morgan E M, Portner A.Two noncontiguous regions of Sendai virus P protein combine to form a single nucleocapsid binding domain.Virology, 1991, 180:126-134.
    [67]Horikami S M, Curran J, Kolakofsky D, et al.Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro.J Virol, 1992,66:4901-4908.
    [68]Tarbouriech N, Curran J, Ruigrok R W, et al.Tetrameric coiled coil domain of Sendai virus phosphoprotein.Nat Struct Biol, 2000, 7:777-781.
    [69]Poch O, Blumberg B M, Bougueleret L, et al.Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: Theoretical assignment of functionaldomains.J Gen Virol, 1990:71:1153-1162.
    [70]Ryan K W, Portner A.Separate domains of Sendai virus P protein are required for binding to viral nucleocapsids.Virology, 1990,174:515-521.
    [71]Tuckis J, Smallwood S, Feller J A, et al.The C-terminal 88 amino acids of the Sendai virus P protein have multiple functions separable by mutation.J Virol, 2002,76:68-77.
    [72]Paterson R G, Leser G P, Shaughnessy M A, et al.The Paramyxovirus SV5 V protein binds two atoms of zinc and is a structural component of virions.Virology, 1995,208:121-131.
    [73]Liston P, Briedis D J.Measles virus V protein binds zinc.Virology, 1994,198:399-404.
    [74]Capili A D, Schultz D C, Rauscher, I F, et al.Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zincbinding domains.EMBO J, 2001,20:165-177.
    [75]Li T, Chen X, Garbutt K C, et al.Structure of DDB1 in Complexwith a Paramyxovirus V Protein: Viral Hijack of a Propeller Cluster in Ubiquitin Ligase.Cell, 2006, 124:105-117.
    [76]Lin G Y, Paterson R G, Richardson C D, et al.The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein.Virology, 1998, 249:189-200.
    [77]Didcock L, Young D F, Goodbourn S, et al.The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation.J Virol, 1999,73:9928-9933.
    [78]Didcock L, Young D F, Goodbourn S, et al.Sendai virus and simian virus 5 block activation ofinterferonresponsive genes: importance for virus pathogenesis.J Virol, 1999, 73:3125-3133.
    [79]Wansley E K, Parks G D.Naturally occurring substitutions in the P/V gene convert thenoncytopathic paramyxovirus simian virus 5 into a virus that induces alpha/beta interferon synthesis and cell death.J Virol, 2002, 76:10109-10121.
    [80]He B, Paterson R G, Stock N, et al.Recovery of paramyxovirus simian virus 5 with a V protein lacking the conserved cysteine-rich domain: the multifunctional V protein blocks both interferon-beta induction and interferon signaling.Virology, 2002, 303:15-32.
    [81]Lin G Y, Lamb R A.The paramyxovirus simian virus 5 V protein slows progression of the cell cycle.J Virol, 2000, 74:9152-9166.
    [82]Poole E, He B, Lamb R A, et al.The V proteins of simian virus 5 and other Paramyxoviruses inhibit induction of interferon-beta.Virology, 2002,303:33-46.
    [83]Blatt L M, Davis J M, Klein S B, et al.The biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon.J Interferon Cytokine Res, 1996,16:489-499.
    [84]Diaz M 0, Bohlander S, Allen G.Nomenclature of the human interferon genes.J Interferon Cytokine Res, 1996, 16:179-180.
    [85]Roberts R M, Liu L, Guo Q, et al.The evolution of the type I interferons.J Interferon Res, 1998,18:805-816.
    [86]Stark G R, Kerr I M, Williams B R, et al.How cells respond to interferons.Annu Rev Biochem,1998,67:227-264.
    [87]Young H A.Regulation of interferon- gene expression.J Interferon Cytokine Res, 1996,16:563-568.
    [88]Finter N B.The naming of cats-and alpha-interferons.Lancet, 1996, 348:348-349.
    [89]Samuel C E.Mechanisms of the Antiviral Actions of IFN.Prog Nucleic Acid Res Mol Biol,1988,35:27-72.
    [90]Samuel C E.Antiviral actions of interferon.Interferon-regulated cellular proteins and their surprisingly selective antiviral activities.Virology, 1991, 183:1-11.
    [91]Bach E A, Aguet M, Schreiber R D.The IFN gamma receptona paradigm for cytokine receptor signaling.Annu Rev Immunol, 1997, 15:563-591.
    [92]Isaacs A, Lindemann J.Virus interference.I.The interferon.Proc R Soc Lond B, 1957,147:258-267.
    [93]Pestka S A, Langer J A, Zoon K C, et al.Interferons and their actions.Annu Rev Biochem, 1987,56:317-332.
    [94]Goodbourn S, Didcock L, Randall R E.Interferons: cell signalling, immune modulation,antiviral response and virus countermeasures.J Gen Virol, 2000, 81:2341-2364.
    [95]Pestka S A, Langer J A, Zoon K C, et al.Interferons and their actions.Annu Rev Biochem, 1987,56:727-777.
    [96]Samuel C E.Antiviral actions of interferons.Clin Microbiol Rev, 2001, 14:778-809.
    [97]Darnell J E, Kerr I M, Stark G M.Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins.Science, 1994, 264:1415-1421.
    [98]Levy D E.Physiological significance of STAT proteins: investigations through gene disruption in vivo.Cell Mol Life Sci, 1999, 55:1559-1567.
    [99]Schindler C.Cytokines and JAK-STAT signaling.Exp Cell Res, 1999, 253:7-14.
    [100]Schindler C, Darnell J E.Transcriptional responses to polypeptide ligands: the JAK-STAT pathway.Annu Rev Biochem, 1995, 64: 621-651.
    [101]Darnell, J.E., Jr.1997.STATs and gene regulation.Science 277:1630-1635.
    [102]Horvath C M.STAT proteins and transcriptional responses to extracellular signals.Trends Biochem Sci, 2000, 25:496-502.
    [103]Leonard W J, O'Shea J J.Jaks and STATs: biological implications.Annu Rev Immunol, 1998,16:293-322.
    [104]Doyle S, Vaidya S, O'Connell R et al.IRF3 mediates a TLR3/TLR4-specific antiviral gene program.Immunity, 2002, 17:251-263.
    [105]Vaidya, S.A.& Cheng, G.(2003) Toll-like receptors and innate antiviral responses.Curr.Opin.Immunol.15,402-407.
    [106]Lau J F, Parisien J P, Horvath C M.Interferon regulatory factor subcellular localization is determined by a bipartite nuclear localization signal in the DNA-binding domain and interaction with cytoplasmic retention factors.Proc Natl Acad Sci USA, 2000, 97:7278-7283.
    [107]Horvath C M, Stark G R, Kerr I M, et al.Interactions between STAT and non-STAT proteins in the Interferon stimulated gene factor 3 transcription complex.Mol Cell Biol, 1996,16:6957-6964.
    [108]Li X, Leung S, Kerr I M, et al.Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling.Mol Cell Biol, 1997, 17:2048-2056.
    [109]Aaronson D S, Horvath C M.A road map for those who don't know JAK-STAT.Science,2002, 296:1653-1655.
    [110]Kessler D S, Veals S A, Fu X Y, et al.Interferon-a regulates nuclear translocation and DNA-binding affinity of ISGF-3, a multimeric transcriptional activator.Genes Dev, 1990,4:1753-1765.
    [111]Lau J F, Horvath C M.Mechanisms of Type Ⅰ Interferon Cell Signaling and STAT-Mediated Transcriptional Responses.Mt Sinai J Med, 2002, 69:156-168.
    [112]Haller O, Frese M, Kochs G.Mx proteins: mediators of innate resistance to RNA viruses.Rev Sci Technol OffInt Epizootol, 1998, 17:220-230.
    [113]Staeheli P, Pitossi F, Pavlovic J.Mx proteins: GTPases with antiviral activity.Trends Cell Biol, 1993,3:268-272.
    [114]Levy D E, Garcia-Sastre A.The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion.Cytokine Growth F R, 2001,12:143-156.
    [115]Haspel R L, Salditt-Georgieff M, Darnell J E Jr.The rapid inactivation of nuclear tyrosine phosphorylated Statl depends on a protein tyrosine phosphatase.EMBO J, 1996,15:6262-6268
    [116]Haspel R L, Darnell J E Jr.A nuclear protein tyrosine phosphatase is required for the inactivation of Statl.Proc Natl Acad Sci USA, 1999, 96:10188-10193.
    [117]ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, et al.Identification of a nuclear Statl protein tyrosine phosphatase.Mol Cell Biol, 2002, 22:5662-5668.
    [118]Lee C K, Bluyssen H A, Levy D E.Regulation of interferon-alpha responsiveness by the duration of Janus kinase activity.J Biol Chem, 1997, 272:21872-21877.
    [119]Parisien J P, Lau J F, Rodriguez J J, et al.The V protein of human parainfluenza virus 2 antagonizes type I interferon responses by destabilizing signal transducer and activator of transcription 2.Virology, 2001, 283:230-239.
    [120]Kubota T, Yokosawa N, Yokota S, et al.C terminal CYS-RICH region of mumps virus structural V protein correlates with block of interferon alpha and gamma signal transduction pathway through decrease of STAT 1-alpha.Biochem Biophys Res Commun, 2001,283:255-259.
    [121]Parisien J P, Lau J F, Horvath C M.STAT2 acts as a host range determinant for species-specific paramyxovirus interferon antagonism and simian virus 5 replication.J Virol,2002,76:6435-6441.
    [122]Parisien J P, Lau J F, Rodriguez J J, et al.Selective STAT Protein Degradation Induced by Paramyxoviruses Requires both STAT1 and STAT2, but is Independent of alpha/beta Interferon Signal Transduction.J Virol, 2002, 76:4190-4198.
    [123]Ulane C M, Rodriguez J J, Parisien J P, et al.(2003) STAT3 ubiquitylation and degradation by mumps virus suppress cytokine and oncogene signaling.J Virol, 2003, 77:6385-6393.
    [124]Yokosawa N, Yokota S, Kubota T, et al.C-Terminal Region of STAT-1 alpha Is Not Necessary for Its Ubiquitination and Degradation Caused by Mumps Virus V Protein.J Virol, 2002,76:12683-12690.
    [125]Young D F, Didcock L, Goodbourn S, et al.Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response.Virology, 2000, 269:383-390.
    [126]Ulane C M, Horvath C M.Paramyxoviruses SV5 and HP1V2 Assemble STAT Protein Ubiquitin Ligase Complexes from Cellular Components.Virology, 2002, 304:160-166.
    [127]Nishio M, Garcin D, Simonet V.The carboxyl segment of the mumps virus V protein associates with Stat proteins in vitro via a tryptophan-rich motif.Virology, 2002, 300:92-99.
    [128]Andrejeva J, Poole E, Young D F, et al.The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT 1 by the V protein of the paramyxovirus simian virus 5.J Virol, 2002, 76:11379-11386.
    [129]Young D F, Chatziandreou N, He B, et al.(2001) Single amino acid substitution in the V protein of simian virus 5 differentiates its ability to block interferon signaling in human and murine cells.J Virol, 2001, 75:3363-3370.
    [130]Farrar J D, Smith J D, Murphy T L, et al.Selective loss of type 1 interferon induced STAT4 activation caused by a minisatellite insertion in mouse Stat2.Nat Immunol, 2000, 1:65-69.
    [131]Park C, Lecomte M J, Schindler C.Murine Stat2 is uncharacteristically divergent.Nucleic Acids Res, 1999,27:4191-4199.
    [132]Paulson M, Pisharody S, Pan L, et al.Stat protein transactivation domains recruit p300/CBP through widely divergent sequences.J Biol Chem, 1999, 274:25343-25349.
    [133]Horvath C M.Silencing STATs: lessons from paramyxovirus interferon evasion.Cytokine Growth FR, 2004, 15:117-127.
    [134]Ulane C M, Kentsis A, Cruz C D, et al.Composition and assembly of STAT-targeting ubiquitin ligase complexes: paramyxovirus V protein carboxyl terminus is an oligomerization domain.J Virol, 2005, 79:10180-10189.
    [135]Mebtasion T, Verstegen S, de Vaan L T C, et al.A recombinant Newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenecity for chicken embryos.J Virol.2001, 75:420-428.
    [136]Park M S, Shaw M L, Munoz-Jordan J, et al.Newcastle Disease Virus (NDV)-Based AssayDemonstrates Interferon-Antagonist Activity for the NDV V Protein and the Nipah Virus V,W, and C Proteins.J Virol, 2003, 77:1501-1511.
    [137]Chua K B, Bellini W J, Rota P A, et al.Nipah virus: a recently emergent deadly paramyxovirus.Science, 2000, 288:1432-1435.
    [138]Lam S K.Nipah virus - a potential agent of bioterrorism? Antiviral Res, 2003, 57:113-119.
    [139]Wang L, Harcourt B H, Yu M, et al.Molecular biology of Hendra and Nipah viruses.Microbes Infect, 2001,3:279-287.
    [140]Rodriguez J J, Parisien J P, Horvath C M.Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation.J Virol,2002,76:11476-11483.
    [141]Rodriguez J J, Wang L F, Horvath C M.Hendra virus V protein inhibits interferon signaling by preventing STAT1 and STAT2 nuclear accumulation.J Virol, 2003, 77:11842-11845.
    [142]Rodriguez J J, Cruz C D, Horvath C M.Identification of the nuclear export signal and STAT-binding domains of the Nipah virus V protein reveals mechanisms underlying interferon evasion.J Virol, 2004, 78:5358-5367.
    [143]Shaw M L, Garcia-Sastre A, Palese P, et al.Nipah virus V and W proteins have a common STAT 1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively.J Virol, 2004, 78:5633-5641.
    [144]Palosaari H, Parisien J P, Rodriguez J J, et al.STAT protein interference and suppression of cytokine signal transduction by measles virus V protein.J Virol, 2003, 77:7635-7644.
    [145]Garcin D, Latorre P, Kolakofsky D.Sendai virus C proteins counteract the interferon-mediated induction of an antiviral state.J Virol, 1999, 73:6559-6565.
    [146]Garcin D, Curran J, Kolakofsky D.(2000) Sendai virus C proteins must interact directly with cellular components to interfere with interferon action.J Virol, 2000, 74:8823-8830.
    [147]Garcin D, Curran J, Itoh M, et al.Longer and shorter forms of sendai virus c proteins play different roles in modulating the cellular antiviral response.J Virol, 2001, 75:6800-6807.
    [148]Takeuchi K, Komatsu T, Yokoo J, et al.Sendai virus C protein physically associates with Statl.Genes Cells, 2001, 6:545-557.
    [149]Garcin D, Marq, J B, Goodbourn S, et al.The amino-terminal extensions of the longer Sendai virus C proteinsmodulate pY701-Statl and bulk Statl levels independently of interferon signaling.J Virol, 2003, 77:2321-2329.
    [150]Saito S, Ogino T, Miyajima N, et al.Dephosphorylation failure of tyrosine-phosphorylated STAT1 in IFN-stimulated Sendai virus C protein-expressing cells.Virology, 2002,293:205-209.
    [151]Garcin D, Marq J B, Strahle L, et al.All four Sendai Virus C proteins bind Statl, but only the larger forms also induce its mono-ubiquitination and degradation.Virology, 2002,295:256-265.
    [152]Komatsu T, Takeuchi K, Yokoo J, et al.C and V proteins of Sendai virus target signaling pathways leading to IRF-3 activation for the negative regulation of interferon production.Virology, 2004, 325:137-148
    [153]Kiyotani K, Sakaguchi T, Kato A, et al.Paramyxovirus Sendai virus V protein counteracts innate virus clearance through IRF-3 activation, but not via interferon, in mice.Virology, 2007,359:82-91.
    [154]Dunker A K, Lawson J D, Brown C J et al.(2001).Intrinsically disordered protein.J Mol Graph Model, 2001, 19:26-59.
    [155]Uversky V N.What does it mean to be natively unfolded? Eur J Biochem, 2002, 269:2-12.
    [156]Wright P E, Dyson H J.Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm.J Mol Biol, 1999, 293:321-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700