离散与小波变换新型算法及其在图像处理中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为特殊的多带完全重构滤波器,包括M带小波、各种离散正交变换在内的变换方法在信息处理,尤其是在图像处理中具有非常重要的地位和作用。论文以M带含参数线性相位小波变换以及小波与离散变换整数实现及其应用为研究对象,以低复杂度算法为核心,建立了多种多带小波的构造理论与方法,得到了包括小波变换、各种离散正交变换在内的整数变换算法体系;利用该理论体系,深入研究了包括图像压缩、数字水印、三维地形表示以及图像超分辨等诸多图像处理应用问题。
     本文的研究工作由新型算法的理论研究和图像处理应用研究两个方面组成。第一部分理论研究的主要成果有:
     1.建立了五种多带小波的构造方法。
     (1)通过研究多带完全重构滤波器长度、消失矩以及滤波器系数之间的关系,提出了多带小波构造的线性方程组解法,该方法对于滤波器带数较小时非常简单高效。
     (2)通过研究完全重构滤波器多相矩阵提升分解的一般形式,利用小波消失矩与Euclidean算法,建立了由基于提升分解的完全重构滤波器构造方法。
     (3)通过揭示离散变换本质上为具有至少一阶消失矩的完全重构滤波器特性,提出了基于离散变换方法的多带完全重构滤波器构造方法。
     (4)通过建立完全重构滤波器分解与重构端多相矩阵关系式,利用矩阵函数平移方法,从一个滤波器出发求出了所有其他分解与重构滤波器长度之和与之相等的滤波器。
     (5)另外,为了解决由于带数增加而导致现有构造方法运算量急剧增加的问题,利用计算机代数学中的Groebner基和合冲模算法理论,并通过建立矩阵多项式的正交分解方法,建立了多带小波的高效、高精度方法。
     本文找到的双正交小波其变换系数大部分是带参数的,搜索发现,当该参数属于某个区间时,找到的滤波器系数为双正交小波滤波器系数,因而很容易地找到具有良好计算性质的二进制系数小波。同时利用五种方法得到的小波各具特色。
     总之,本文建立的系列小波构造方法克服了经典的Daubechies方法需要多项式开方的困难,以及得到的小波滤波器系数为无理数的缺陷,同时,也避免了Sweldens提升分解方法不能揭示小波的重要性质——消失矩的问题,极大地丰富了已有小波变换系数的内容。人们可以根据需要,采用不同的方法,非常方便地构造和选用合适的小波变换。
     2.建立了各种离散三角变换整数实现的系统理论与算法。
     利用作者建立的系列离散变换浮点快速算法,并研究离散正交变换矩阵的稀疏提升分解性质:
     (1)提出了一般长度情形下具有提升结构的整数DCT算法以及带尺度整数DCT算法。
     (2)建立了各种离散变换矩阵的具有提升结构的新型稀疏分解,从而建立了整数DCT、整数DFT、整数DHT以及整数DWT的统一快速算法,上述算法的算术运算量在浮点运算次数总数意义下是最优的,而整数DFT则避免了复数运算。
     (3)设计了利用第二类整数DCT计算所有整数离散变换的统一快速算法。所有整数变换只需移位与加法,从而可以避免浮点运算。
     (4)为了克服(块)离散变换实施在图像上时产生边缘效应的问题,根据输出变换系数的加权,论文提出了一种加权整数重叠式变换(IntWLPT)理论与算法。
     第二部分内容研究整数小波与离散变换在图像压缩、数字水印、三维地形的带参数小波表示、Toeplitz系统求解及其在图像超分辨中的应用等问题。主要包括:
     (1)从建立低复杂度、低存储、适合硬件实现、高保真图像压缩方法的角度出发,基于“带”的(局部)小波变换,提出了一种带量化的集合分裂编码方法,建立了一种提高变换效率的带尺度小波提升分解,从而得到一种低存储、低复杂度的图像压缩方法。利用该方法与IntWLPT实施图像压缩时,在图像质量与JPEG 2000方法相近的前提下,存储开销减少75%,运算量减少54%。进行FPGA硬件仿真表明,利用本文得到的小波变换,只需保留其系数的二进制小数4位(即小数值不小于1/16),则按照软件压缩所得到的图像客观质量PSNR值与相应硬件仿真得到的PSNR相近,但易于硬件实现。
     (2)利用整数小波可以实现图像无损表示的特性,讨论了在数字高程模型(Digital Terrain Model, DTM)环境下的低计算复杂度数字水印新技术,该水印方法抗攻击和干扰的能力强,具有高度安全性。
     (3)应用带参数的小波变换,提出了一种利用含参数小波实现三维地形表示的高精度、低复杂度方法,在保证高精度的前提下,需要的三角形个数比国际通用方法减少16%左右。
     (4)在多重网格理论的框架下,通过小波变换矩阵构造出有效的限制与延拓算子,建立了一种高效、高精度的Toeplitz系统求解方法,基于此提出了图像超分辨的新型算法,图像恢复质量比经典的整体迭代法提高近7dB,获得了良好的图像超分辨效果。
As special types of multi-band perfectly reconstruction (PR) filters, transforms including wavelets,discrete orthogonal transforms is very important used in information processing fields, especially in image processing.
     In this thesis, we focus on the construction of M band wavelets with parameters with linear phase, integer implementation of wavelet and various types of discrete orthogonal transforms and their application. With the low complexity algorithms being the nucleus, the construction theory and methods is developed for M wavelets, a algorithm system of integer transforms involving wavelets and discrete transforms is proposed. Based on this theory, some application subjects, such as image compression, watermarking, three-dimensional surface approximations, and image superresloution, are investigated deepgoingly.
     The work of this thesis are composed of two parts that in cludes new types of algorithm theory and its application in image processing.
     The first content are mainly concerned with the following theoretic hands:
     1. Five types of wavelet construction methods is achieved:
     (1) By investigating relations among the length, vanishing moment and the coefficients of perfect reconstruction(PR) filters, a linear equations is solved for constructing M band wavelets, it is very easy and highly efficient when the number of band of PR filters is small.
     (2) By describing the general characters of lifting factorization for polyphase matrix of PR filters, and using vanishing moment of wavelet and Euclidean algorithm, the construction method via lifting scheme for PR filters is obtained.
     (3) By revealing the property that the discrete transforms is a PR filters in essential contain at least one order vanishing moment, a construction method based on discrete transform is also proposed.
     (4) By developing the polyphase matrix relations between analysis and synthesis parts of PR filter, using exchange of the matrix function, we can achieve all PR filters that the sum of filter length of analysis and synthesis parts is unchanged.
     (5) Furthermore, in order to overcome the that computational complexity increase sharply with the number of band M larger, using Groebner base and syzygy module of computer algebra, and orthogonal factorization for matrix polynomial, a low complexity and high precision construction for M band wavelet is obtained.
     The coefficients of almost wavelets developed in this paper contain some free parameters, and the intervals that these parameters belong to is achieved by employing the sufficient conditions. Moreover, these five types of construction have various features. In conclusion, the construction methods developed in this thesis can overcome the difficulty that Daubechies's method need the square-root finding the polynomial and the coefficient with irrational numbers, and on the other hand, the defect that vanishing moment of wavelet can not reveale lifting scheme methods developed by Sweldens can completely avoided. Users can easy select various types wavelets for their purpose.
     2. Systematic theory and integer implemental algorithms for vasious types of discrete sinusoidal transforms is presented.
     Using known fast floating algorithms developed by authors, and by studying sparse matrix decomposition via lifting steps, we get:
     (1) The integer DCT and the scaled integer DCT algorithms with general length is achieved.
     (2) The integer DCT, integer DFT, integer DHT and integer DWT and fast algorithms for them have been achieved, the number of operations is optimal under the sense of floating-point corresponding discrete transforms. The complex operations for integer DFT is also completely eliminated.
     (3) In order to speed up the efficiency of software, the unified approach that use integer DCT-Ⅱto compute all other integer discrete transforms have also been proposed. All integer transforms need only shifting and additions, so the floating-point operations are completely avoided.
     The second part in this thesis discusses the applications of the developed methods in image compression, watermarking, three-dimensional surface meshing, and image superresolution. The mainly contents includes:
     (1) In order to achieve image compression methods that is low complexity, low memory, hardware friendly, and high fidelity, the combination of stripe-based (local) wavelet and set splitting is used, and scaled wavelet lifting scheme is also proposed, and finally a low memory and low complexity image coding is developed. When the combination of the IntWLPT and this new coding method is used, memory and complexity are reduced by 75% and 54% respectively compared with that of JPEG 2000.
     (2) Using the feature that the wavelet can express information lossless, a low computational complexity watermarking under the Digital Terrain Model—DTM is proposed, experimental results shows the robustness of the algorithm to noise and data smooth, and furthermore, this method is also high security.
     (3) A type of low complexity and high precision three-dimensional surface meshing is obtained by use of wavelet with parameters, the number that triangles needed is reduced 16% compared with that of the commonly used mthods.
     (4) Under the frame of multigrid theory, using wavelet transforms construct interpolation and polyphase matrices, a high precision and low complexity method for solving ill-conditioned Toeplitz systems is proposed. And finally, image superresolution techniques via wavelet and multigrid is developed, the simulation results demonstrate the effectiveness of the proposed methods.
引文
[1]Apousleman G P, Marcelin M W, Hunt B R. Compression of Hyperspectral Imagery Using the 3-D DCT and Hybrid DPCM/DCT. IEEE Trans. Geosince and Remote Sensing, 1995,33(1):26-34,1995
    [2]Christopoulos C. JPEG-2000 Verification Model 2.0 (Technical Description). ISO/IEC JTC 1/SC 29/WG 1 N988, Oct.1998
    [3]Chui C K. An Introduction to Wavelets. Academic Press,1992
    [4]Daubechies I. Ten Lectures on Wavelets. SIAM:Philadephia,1992
    [5]Daubechies I, Sweldens W. Factoring Wavelet Transforms Into Lifting Steps. J. Fourier Anal.,1998:247-269
    [6]戴善荣.数据压缩.西安:西安电子科技大学出版社,1990
    [7]高文.多媒体数据压缩技术.北京:电子工业出版社,1994
    [8]Golub G, Van C, Loan. Matrix Computation. The Johns Hopkins University Press. Baltimore, MD,1983
    [9]Huckbusch W. Iterative Solution of Large Sparse Systems of Equations. Springer-Verlag, 1990
    [10]Huckbusch W(有中译本).Multigrid Methods and Applications. Springer-Verlag,1985
    [11]胡昌华,张军波,夏军,张伟.基于Matlab的系统分析与设计——小波分析.西安:西安电子科技大学出版社,1999
    [12]Hunt R E,et al. Fast Algorithms for Digital Signal Processing. Addision-Wesley, Reeding, Mass.,1994
    [13]蒋增荣,曾泳泓,等.快速算法.长沙:国防科技大学出版社,1993
    [14]Kim Y S, Kwon O H,Park R H. Wavelet Based Watermarking Method for Digital Images Using the Human Visual System. Electron Letters,1999,35(6):466-468
    [15]MPEG Software Simulation Group(MSSG). MPEG2 Encoder/Decoder, Version 2(Online), Available HTTP:http://www.mpeg.org/MSSG/,Jun.1996
    [16]Nussbamer H J. Fast Fourier Transform and Convolution Algorithms. Springer-Verlag, 1981
    [17]Pennebaker W B, Mitchell J L. JPEG:Still Image Compression Standard. Van Nastrand Reinhold,1993
    [18]全国第二届信息隐藏学术研讨会论文集,2000
    [19]Rao K R, Yip P. Discrete Cosine Transform. Academic Press, New York,1990
    [20]孙圣和,陆哲明.数字水印处理技术.电子学报,2000,28(8):85-90
    [21]孙仲康,沈振康.数字图像处理及其应用.北京:国防工业出版社,1983
    [22]沈兰荪.图像编码与异步传输.北京:人民邮电出版社,1998
    [23]Wang Z, Hunt B R. The Discrete W Transform. Appl. Math.Comput.,1985,16(1):19-48
    [24]Wu C F, Hsieh W S. Digital Watermarking Using Zero-tree of DCT. IEEE Trans. Consumer Electronics,2000,46(1):87-99
    [25]张贤达.现代信号处理.北京:清华大学出版社,1996
    [26]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998
    [27]陈佩,张卫东,全亚斌,许晓鸣.用提升方法设计M带LPPR-FIR滤波器组.电子学报,2002,31(1):136-138
    [28]程正兴.小波分析算法与应用.西安:西安交通大学出版社,1997
    [29]Cohen A I, Daubechies I, Feauveau J C. Bi-orthogonal Bases of Compactly sup-ported Wavelets. Comm. Pure and Applied Math.,1992,45:485-560
    [30]Dabuchies I. Orthogonal Bases of Compactly Supported Wavelets. Comm. Pure and Applied Math.,1988,41:909-996
    [31]Heller P N. Rank M Wavelets with N Vanishing Moments. SIAM.J. Matrix Anal. Appl.,1995,16(2):502-519
    [32]Ikehara M, Tran T D,Nguyen T Q. A Family of Lapped Regular Transform with Integer Coefficients. IEEE Trans. Signal Processing,2002,50(4):834-841
    [33]Lawton W M. Necessary and Sufficient Conditions for Existence of Wavelet Bases. J. Math. Phys.,1991,32:57-61
    [34]李洪刚,Wang Q,吴乐南.A Novel Design of Lifting Scheme from General Wavelet. IEEE Trans. Signal Processing,2001,49(8):1714-1717
    [35]Lightstone M, Majani E, Mitra S K. Low Bit-rate Design Consideration for Wavelet-based Image Coding. Multidimensional Syst. Signal Processing,1998,7:1000-1013
    [36]Mallat S. A Theory for Multiresolution Signal Decomposition:The Wavelet Represen- tation. IEEE Trans.PAMI-11,1989:674-693
    [37]Mallat S, Zhong S. Zero-crossing of a wavelet transform. IEEE Trans. IT,1991,37 (4):1019-1033
    [38]龙瑞麟,等.多维小波分析及其应用.北京:世界图书出版公司,1996
    [39]Oraintara S, et al. Lattice Structure for Regular Paraunitary Linear Phase Filterbanks and M-band Orthogonal Symmetric Wavelets. IEEE Trans. Signal Processing,2001,49:265-2672
    [40]Phoong S M, Kim C W, Vaidyanathan P P, et al. A New Class of Two-channel Biorthogonal Filter Banks and Wavelets Bases. IEEE Trans. Signal Processing,1995, 43:649-655
    [41]水鹏朗,保铮,张贤达.M-band Compactly Supported Orthogonal Symmetric Inter-polating Scaling Functions. IEEE Trans. Signal Processing,2001,49(8):1704-1713
    [42]Strang G,Nguyen T. Wavelets and Filter Banks. Cambridge, MA:Wellesley,1996
    [43]Sweldens W. The Lifting Scheme:A New Philosophy in Biorthogonal Wavelet Constr-uctions. Proc. SPIE,1995,2569,:68-79
    [44]Sweldens W. The Lifting Scheme:A Custom-design of Biorthogonal Wavelets. Appli-ed Comput. and Harmonic. Anal.,1996,3(2):186-200
    [45]Steffen P, et al. Theory of Regular M-band Wavelet Bases. IEEE Trans. Signal Processing,1993,41:3497-3510
    [46]Tay D B H. Rationalizing Coefficient of Popular Biothogonal Wavelet Filters. IEEE. Trans. Circuits and Systems for Video Technology,2000,10(10)
    [47]Tran T D, et al. On M-channel Linear Phase FIR Filter Banks and Application in Image Compression. IEEE Trans. Signal Processing,1997,45:2175-2187
    [48]Tran T D. Linear Phase Perfect Construction Filter Banks:Theory, Structure, Design and Application in Image Compression. Ph. D Thesis, the University of Wisconsin, Madison, 1999
    [49]Vaidyanathan P P. Biorthogonal Partners and Applications. IEEE Trans. Signal Processing, 2001,49:1013-1027
    [50]Vaidyanathan P P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ:Pren-tice-Hall,1993
    [51]Vetterli M, Herley C. Wavelets and Filter Banks:Theory and Design. IEEE Trans. Signal Processing,1992,40(9):2207-2232,1992
    [52]Vetterli M, Kovaceiv J. Wavelets and Subband Coding. Prentice-Hall, Englewood Cliffs, N.J.,1995
    [53]Zhang J K,保铮. Three-band Compactly Supported Orthogonal Interpolating Scaling Function. Electron. Lett.,1998,34(5):451-452
    [54]Vrcelj B, Vaidyanathan P P. MIMO Biorthogonal Partners and Applications. IEEE Trans. Signal Processing,2002,50(3):528-542
    [55]水鹏朗,保铮.Construction of Nearly Orthogonal Interpolating Wavelet. Signal Processing, 199,70(3):289-300
    [56]王国秋,袁卫卫.一般的9/7小波滤波器及其图像压缩性能研究.电子学报,2001,29(1)
    [57]Wei D, Tian J, Jr., Wells R O, Burrus C S. A New Class of Biorthogonal Wav-elet Systems for Image Transform Coding. IEEE. Trans. Image Processing,1998,7:1000-1013
    [58]Buchberger B. Grobner Bases and Systems Theory. Special Issue to Application of Grobner Bases in Multidimentional Systems and Signal Processing, May,2001
    [59]Park H, Kalker T, Vetterli M. Grobner Bases and Multidimensional FIR Multirate System. Multidimensional System and Signal Processing,1997,8(1-2):11-30
    [60]Park H, Woodbum C. An Algorithmic Proof of Suslin's Stability Theorem for Poly-nomials Rings. Journal of Algebra,1995,176(277):298
    [61]Basu S, Choi H M. Multidimensional Causal, Stable, Perfect Reconstruction Filter Banks. in Proceedings of the ICIP-94,1994,805:809
    [62]Lebrun J, Selesnick I. Grobner Bases and Wavelet Design. Journal of Symbolic Co-mputation,2003.
    [63]Adams W W, Loustaunau P. Introduction to Grobner Bases, Graduate Studies in Mathematics. American Mathematical Society, Providence, R.J.,1994
    [64]Bilgin A, Zweig G, Marcellin M W. Three-dimensional Image Compression with Integer Wavelet Transforms. Applied. Optics,2000,39(11):1799-1814
    [65]Calderbank R, Daubechies I, Sweldens W,et al. Wavelet Transform that Map Integers to Integers. Appl. Comput. Harmon. Anal.,1998,5(3):332-369
    [66]Cham W K, Yip P C. Integer Sinusoidal Transforms for Image Processing. International J. Electronics,1991,70(6):1015-1030
    [67]Cham W K. Development of Integer Cosine Transform by the Principles of Dyadic Symmetry. Proc.Inst. Elect. Eng., pt.1,1989,136(4):276-282
    [68]Cham W K, Chan Y T. An Order 16-integer Cosine Transform. IEEE Trans. Signal 参考文献 183Processing,1991,39:1205-1208
    [69]Cham W K, Choy C S, Lam W K, et al.2-D Integer Cosine Transform Chip set and Its Application. IEEE Trans. Consumer Electron.,1992,38:43-47
    [70]Chen Y J. Integer Discrete Cosine Transform (IntDCT), Invited Paper. the second Int. Conf. Inform. Comm. And Signal Processing, Singapore,1999
    [71]郝鹏威,石青云.可逆线性变换的整数实现.中国科学(E),2000,30(2):132-141
    [72]Kovacevic J, Sweldens W. Wavelet Familes of Increasing Order in Arbitrary Dimen-sions. IEEE Trans. Image Processing,2000,9(3):480-496
    [73]Liang J, Tran T D. Fast Multiplierless Approximations of the DCT with Lifting Sche-me. IEEE Trans. Signal Processing,2001,49(12)
    [74]Memon N, Wu X, Yeo B L. Improved Techniques for Lossless Image Comp-ression with Reversible Integer Wavelet Transform. IEEE Int. Conf, Image Proce-ssing,1998,3
    [75]Oraintara S, Chen Y J,Nguyen T Q. Integer Fast Fourier Transform. IEEE Trans. Signal Processing,2002,50(3):607-618
    [76]Pei S C, Ding J J. The Integer Transforms Analogous to Discrete Trigono Metric Trans-forms. IEEE Trans. Signal Processing,2000,48:3345-3363
    [77]Philps W. Lossless DCT for Combined Lossy/lossless Image Coding. IEEE Int. Conf. Image Processing,1998,3:891-895
    [78]Sweldens W. The Lifting Scheme:A Second Generation Wavelets. SIAM.J. Math. Anal.,1998,29(2):511-546
    [79]Tran T D. Fast Multiplierless Approximation of the DCT.33rd Annual Conference on Information Sciences and Systems. Baltimore, MD,1999:933-938
    [80]Tran T D. The LiftLT:Fast-lapped Transforms Via Lifting Steps, IEEE Trans. Signal Processing Lett.,2000,7(6):145-148
    [81]Tran T D. Fast Multiplierless Approximation of the DCT. IEEE Trans. Signal Proce-ssing Lett.,2000,7(6):142-144
    [82]Castleman K. Digital Image Processing. Prentice-Hall Inc.,1996
    [83]Brislawn C M, Bradley J N, Onyshczak R J, et al. The FBI Compression St-andards for Digitzed Fingerprint Images. in Proc. SPIE Denver,CO,1996.
    [84]Shaprio J. Embedded Image Coding Using Zero-trees of Wavelet Coefficients. IEEE Trans. Signal Processing,1993,41:3446-3462
    [85]Vetterli M, Kovaceiv J. Wavelets and Subband Coding. Prentice-Hall, Englewood Cliffs, N.J.,1995
    [86]ISO/IEC JPEG 2000标准论文资料
    [87]Said A, Perlman W A. An Image Multiresolution Representation for Lossless and Los-sy Image Compression. IEEE Trans. Image Processing,1996,5:1303-1310
    [88]Xiong Z, Guleryuz O,Orchard M T. A DCT-based Embedded Image Coder. IEEE Trans. Signal Processing Letters,1996,3:289-290
    [89]Tran T D, Nguyen T Q, Hu Y H. A Perceptually-tuned Block-transform-based Progressive Transmission Image Coder. Proc.31st Asilomer Conference on SSC, Pacific Grove, Nov. 1997
    [90]Soon H. Tan, et al. Classified Perceptual Coding with Adaptive Quantization. IEEE Trans. Circuits and Systems for Video Technology,1996,6(4):375-388
    [91]刘宇新,李衍达.基于重叠正交变换的自适应图像水印.电子学报,2001,29(10):1368-1371
    [92]Chang C C, Wu T C. Remote Password Authentication with Smart Cards. IEE Proceedings-e, May 1991,138(3):165-168
    [93]胡金星,吴焕萍.基于网格划分的海量DEM数据生成.计算机辅助设计与图形学学报,2004,16(1):41-44
    [94]J Mark Ware. A Procedure for Automatically Correcting Invalid Flat Triangles Occurring in Triangulated Contour Data. Computers & Geosciences,1998,24(2):141-151
    [95]Watson A B, Yang G Y. Visibility of Wavelet Quantization Noise. IEEE Transactions on Image Processing,1997,6(8):1164-1174
    [96]邸元.基于等高线建立DTM中平坦区域的一种处理方法.计算机辅助设计与图形学学报,2000,12(8):566-570
    [97]全国第二届信息隐藏学术研讨会论文集.北京:2000
    [98]Kim Y S, Kwon O H, Park R H. Wavelet Based Watermarking Method for Digital Images Using the Human Visual System. Electron. Letters,1999,35(6):466-468
    [99]孙圣和,陆哲明.数字水印处理技术.电子学报,2000,28(8):85-90
    [100]闫宇松,石青云.可逆的DCT的整数变换与无失真图像压缩.软件学报,2000,11(5):620-627
    [101]Nagai T, Ikehara M, Kaneko M,et al. Generalized Unequal Length Lapped Orthogonal Transform for Subband Image Coding. IEEE Trans. Signal Pro-cessing,2000,48:3365-3377
    [102]R L De Queiroz, Nguyen T Q, Rao K R. The GenLOT: Generalized Linear-phase Lapped Orthogonal Transform. IEEE Trans. Signal Processing,1996,44:497-507
    [103]Miyahara M, Kotani K, Algazi V R. Objective Picture Quality Scale (PQS) for Image Coding. IEEE Trans. Commun.,1998,46(9):1215-1225
    [104]Gross M H, Gatti R, Staadt O. Fast Multiresolution Surface Meshing. IEEE Trans. Visualization and Computer Graphics,1996,2(1):45-57
    [105]Adams M D,Kossentini F. Reversible Integer-to-integer Wavelet Transforms for Image Compression: Performance Evaluation and Analysis. IEEE Trans. Image Pro-cessing, 2000,6:1010-1023
    [106]Malvar H S. Signal Processing with Lapped Transforms. Englewood Cliffs, NJ: Prentice-Hall,1992
    [107]Malvar H S. Extended Lapped Transforms:Properties, Applications and Fast Algori-thms. IEEE Trans. Signal Processing,1992,40:2703-2714
    [108]Malvar H S. Biorthogonal and Nonuniform Lapped Transforms for Transform Coding with Reduced Blocking and Ringing Artifacts. IEEE Trans. Signal Processing,1998,46: 1043-1053
    [109]Grocheng K. Irregular Sampling, Toeplitz Matrics and the Approximation of Expo-nential Type. Math. Comput.,1999,68(226):749-765
    [110]Serra S. How to Choose Best Iterative Stragetgy for Symmetric Toeplitz Systems. SIAM. J. Numer. Anal.1999,36
    [111]Fiorentino G, Serra. Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions. SIAM. J.Sci. Comput.,19%,17: 1068-1081
    [112]Sun H, Chan R, Chang Q. A Note on the Convergence of the Two Grid Method for Toeplitz Systems. Comp.Math.Appl.,1997,34(1):11-18
    [113]Chan R H, Chang Q S,Sun H W. Multigrid Method for Ill-conditioned Symm-etric Toeplitz Systems. SIAM. J. Sci. Comput.,1998,19(2):516-529
    [114]Serra S. Superlinear PCG Methods for Symmetric Toeplitz Systems. Math., Comput., 1999,68(226):793-803
    [115]Beylkin G, Coifman R, Rokhlin V. Fast Wavelet Transforms and Numerical Algo-rithms. Comm. Pure Appl. Math.,1991,44:141-183
    [116]Ohsmann M. Fast Cosine Transform of Toeplitz Matrices, Algorithms and Applicati-ons. IEEE Trans. Signal Processing,1993,41(10):3057-3061
    [117]Arguello F, Trenas M A, Lopez J,Zapata E L. Algorithm for Cosine Transform of Toeplitz Matrices. Electron. Lett.,1998,34(12):1182-1183
    [118]Ohsmann M. Fast Transform of Toeplitz Matrices, Linear Algebra,1995,231:181-192
    [119]Heinig G, Rost K. Representation of Toeplitz-plus-hankel Matrices Using Trigono-metric Transformations with Applications to Fast Matrix-vector Multiplications. Lin-ear Algebra, Appl.,1998,275:225-248
    [120]Huang T S, Tsay R Y. Multi Frame Image Restoration and Registration, in Advances in Computer Vision and Image Processing, Greenwich. CT:JAI,1985:317-339
    [121]Kim S P, Bose N K, Valenzuela H W. Recursive Reconstruction of High Res-olution Image from Noisy Undersampled Multiframes. IEEE Trans. Signal Proce-ssing,1990,38 (6):1013-1027
    [122]Irani M, Peleg S. Improving Resolution by Image Registration, Computer Vision. Graphics, and Image Processing,1991,53(5):231-239
    [123]Stark H, Oskoui P. High-resolution Image Recovery from Image-plane Arrays, Using Convex Projections. J.of the Optical Soceity of America, A,1989,6(11):1715-1726
    [124]Schultz R R, Stevenson R L. Extraction of High-resolution Frames from Video Sequences. IEEE Trans. Image Processing,1996,5(6):996-1011
    [125]Elad M, Feuer A. Restoration of a Single Superresolution Image from Several Blurr-ed, Noisy and Undersampled Measured Images. IEEE Trans. Image Processing,1997,6 (12):1646-1657
    [126]邵凌,丁佩律,张立明,胡波.从多帧低分辨率图像序列中获取高分辨率图像的算法研究.电子学报,2002,30(1):58-61
    [127]Nguyen N X. Numerical Algorithms for Image Superresolution. PH. D Thesis, the Stanford University,2000
    [128]Connolly T,Lane R. Gradient Methods for Superresolution. Proc. Int. Conf. On Image Processing,1997,1:917-920
    [129]Chan R, Chan T, Ng M,et al. Preconditioned Interative Methods for High Resolution Image Reconstruction from Multisensors, Advanced Signal Processing Algorithms. Architecture and Implementations Ⅷ,1998,3461:348-357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700