六角晶系铁氧体空心微球的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁氧体是一种传统的优良的吸收剂,具有吸收强、工艺简单、价格便宜等特点,但同时存在密度大、吸收频带不够宽等问题。空心结构的铁氧体是对传统实心铁氧体的改造,不仅密度小,还具有特殊的电、磁功能,有可能使电磁波在其空腔中反复振荡吸收,成为电磁波的“黑洞”,从而增加材料的吸波能力,同时可通过调节核壳粒子的内外径来调控电磁参数。空心结构的吸波材料是吸波材料的研究趋势。
     本文较为系统地概述了六角晶系铁氧体吸收剂的结构和基本特性;介绍了当前铁氧体超微粉末及空心微球的主要制备方法;用氧乙炔火焰粉末喷雾技术与等离子火焰溶液喷雾技术制备了六角晶系铁氧体空心微球,对其结构和性能进行了一系列的探讨工作。重点研究了热处理工艺(温度、时间、升温速率)对其相结构、微观形貌和微波性能的影响。
     用氧乙炔火焰粉末喷雾热解技术制备了六角晶系平面W型BaCo_2Fe_(16)O_(27)和M型BaFe_(12)O_(19)铁氧体空心微球。实验结果表明:该方法制备的空心微球粒径分布较广,主要在4~20 μm之间,平均密度在2.50g/cm~3左右。热处理过程表明,M型铁氧体直接由金属氧化物反应形成,未经历尖晶石中间相;W型铁氧体形成由金属氧化物到M相过渡相最终向W相的转变;当升温速率为5℃/min,温度在900℃,保温3小时和1200℃保温4小时,就分别形成单相M相和W相铁氧体;随着热处理温度的升高和保温时间的延长,衍射峰变尖锐,结晶更完整,空心微球的饱和磁化强度增大,矫顽力减小。随热处理温度的升高,W型铁氧体空心微球的介电常数降低;磁导率实部先增加后减少,虚部增加并出现明显的共振峰;M型铁氧体空心微球的介电常数增加,磁导率实部增加,虚部变化不明显。
     用等离子火焰悬浮液喷雾热解技术制备了六角晶系W型BaCo_2Fe_(16)O_(27)铁氧体空心微球。实验结果表明:粒度分布较均匀,基本在2~10 μm之间,平均密度为1.50g/cm~3左右;当升温速率为1.5℃/min、温度为1250℃,形成单相W相铁氧体空心微球,此时其饱和磁化强度为58emu/g,矫顽力为45Oe。
Ferrites are conventional wave absorbing materials, which have such advantages as strong absorption, simple techniques and cheap raw materials, but they are quite heavy and have difficulties in increasing the permeability in GHz region. Hollow ferrites particles are the alternative to conventional solid ferrites particles, which have lower density, larger specific surface area and stability. Moreover, it is expected electromagnetic wave can be reflected and absorbed again and again in the cavum of hollow particles which become its black hole. In addition, their electromagnetic parameters can be adjusted in a certain range by changing the thickness of the shell and the diameter of hollow microspheres, and the ability of absorbing microwave can be expected to improve. Wave absorbing materials of hollow structure are the research trend.
    In this thesis, the structure and basic characteristic of hexagonal ferrite absorbent were summarized, and popular methods to prepare ultrafine ferrite particles and hollow microspheres were introduced. Hexagonal ferrite hollow microspheres were prepared by flame powders spraying technique and flame suspending solution spraying technique. The phase component, microstructure and electromagnetic properties of the synthesized hollow microspheres were studied as functions of heat-treated techniques (like temperature, time, the speed of heating) in detail.
    W-type BaCo2Fe16O27 and M-type BaFe12O19 hexagonal ferrite hollow microspheres were fabricated by flame powders spraying technique using oxygen and acetylene as fuel. The method resulted in abroad particle size distribution (mainly from 4 m to 20 m ), and the density was about 2.50 g/cm3. The process of heat-treatment showed M-type ferrite was straightly formed from metal oxide without the transition of spinel phase. The formation process of W-type ferrite underwent from oxide of metal, the M-type transition phase to final W-phase. When the heating rate was 5 ℃/min, at 900 ℃ for 3 hrs and 1200 ℃ for 4 hrs, pure M-type and W-type ferrites were formed in air
    
    
    respectively. With heat treatment temperature increasing, crystal structure was more intact, the saturation magnetization increased and the coercive force decreased. With heat treatment temperature increasing, the complex permittivity of W-type ferrite hollow microspheres decreased; ' firstly increased and then decreased, increased and there was an obvious resonance peak; the complex permittivity ?of M-type ferrite hollow microspheres increased; ' increased, " was basically unchangeable.
    W-type BaCo2Fe16O27 hexagonal ferrite hollow microspheres were also fabricated by flame suspending solution spraying technique. The results showed hollow microspheres had a narrow particle size distribution (mainly from 2 m to 10 m ), and the density was about 1.50 g/cm3. When the speed of heating was 1.5 /min and heat-treatment temperature was 1250 , pure W-phase ferrite was formed. In this condition, the saturation magnetization was 58 emu/g and the coercive force was 45 Oe.
引文
1.郭春艳.结构隐身复合材料技术.航空工艺技术,1998,17(3):28
    2.胡国光,姚学标,尹平,等.BaMnZnCoTi-W型铁氧体微波吸收特性的研究.功能材料,2000,31,(3):328
    3.姚学标,胡国光,尹平,等,(MnZnCo)2-W和(MnZnCo)2-Y型复合铁氧体材料吸收微波特性的研究与比较.功能材料,1999,30(4):361
    4.周志刚.铁氧体磁性材料.北京:科学出版社,1981
    5.汪忠柱.纳米级六角晶系复合W型铁氧体的制备及其吸波特性的研究.安徽:安徽大学,2002
    6.赵振声,张秀成,冯则坤,等.六角晶系铁氧体磁损耗机理研究.功能材料,1995,26(5):401
    7.胡国光,姚学标,尹平,等.Zn2-xCox-W型铁氧体微波吸收剂的制备和性能研究.磁性材料器件,1998,3(29):8
    8.方亮,官建国,张辉,等.六角晶系铁氧体BaZn2Fe16027的XRD分析及其微波电磁特性.分析测试学报,2000,9(4):51
    9.王常生,李龙土,齐西伟,等.CoZn-X型铁氧体的结构与高频磁性.功能材料,2003,3(11):299
    10.刘素琴,左晓希,桑商斌,等.锰锌铁氧体纳米晶的水热制备研究.磁性材料与器件,2000,31(2):12
    11.张海军,姚熹,张良莹.BaFe12019的溶胶-凝胶合成及其微波性能研究.功能材料,2002,33(4):376
    12.方以坤,汪忠柱,方庆清.纳米极六角晶系M型铁氧体微波吸收特性的研究.功能材料,2001,32(4):370
    13. Lee J H. J of Mater Sci, 1993, 4: 254
    14. Rivas J, Lopez-Quintela M A. First steps towards tailoring fine and ultrafine iron particles using microemulsions. IEEE Trans Magn, 1993, 29(6): 2655
    15. Caruso F, Shi X Y, Caruso R A, et al. Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core. Adv. Mater, 2001, 13(10): 740
    16. Moya S, Sukhorukov G B, Auch M, et al. Microencapsulation of
    
    Organic Solvents in Polyelectrolye Multilayer Icrometer Sized Shells. J Colloid Interface Sci, 1999, 216:297
    17. Caruso F, Trau D, Mohwald H, et al. Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules. Langmuir, 2000, 16:1485
    18. Mathiowitz E, Jacob J S, Jong Y S, et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature, 1997, 386:410
    19.李报厚,张登君,张冠东,等.氧化钇和氧化铈稳定氧化锆空心球形陶瓷粉末的研制.功能材料,1997,28(5):518
    20. Shiho H S, Kawahashi N. Iron Compounds as Coatings on Polystyrene Latex and as Hollow Spheres. J Colloid Interface Sci, 2000, 226:91
    21. Shiho H S, Kawahashi N. Titanium Compounds as Coatings Colloid on Polystyrene Latices and as Hollow Spheres. Polym Sci, 2000, 278: 270
    22. Eiden S, Maret G. Preparation and Characterization of Hollow Spheres of Rutile. J Colloid Interface Sci, 2002, 250:281
    23. Kawahashi N, Shiho H S. Copper and Copper Compounds as Coatings on Polystyrene Particles and as Hollow Spheres. J Mater Chem, 2000, 10(10): 2294
    24. Bamnolker H, Nitzan B, Gura S, et al. New Solid and Hollow, Magnetic and Nonmagnetic, Organic-norganic Monodispersed Hybrid Microspheres: Synthesis and Characterization. J Mater Sci Lett,1997, 16:1412
    25. Giersig M, Marzan L, Mulvaney P. Direct Observation of Chemical Reactions in Silica-Coated Gold and Silver Nanoparticles. Adv Mater, 1997, 9:570
    26. Kim S S, Kim S T, hhn J M, et al. Magnetic and Microwave Absorbing Properties of Co-Fe Thin Films Plated on Hollow Ceramic Microspheres of Low Density. Journal of Magnetism and Magnetic Materials, 2003, 8:1
    27. Yin J L, Qian X F, Yin J, et al. Preparation of ZnS/PS Microspheres
    
    and ZnS Hollow Shells. Mater Lett, 2003, 57(24-25): 3859
    28. Yin J L, Qian X F, Yin J, et al. Preparation of Polystyrene/zirconia Core-shell Microspheres and Zirconia Hollow Shells. Inorganic Chemistry Communications, 2003, 6(7): 942
    29. Keller S W, Olderburg S J, Lee T R, et al. Photoinduced Charge Separation in Mutilayer Thin Films Grown by Sequential Adsorption of Polyelectrolytes. J Am Chem Soc, 1995, 117:12879
    30. Caruso F. Nanoengineering of Particle Surfaces. Adv Mater, 2001, 13(1): 11
    31. Caruso F, Spasova M, et al. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach. Chem Mater, 2001, 13:109
    32. Caruso R A, Susha A, Caruso F. Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyene Colloidal Templates and Resulting Inorganic Hollow Spheres. Chem Mater, 2001, 13:400
    33. Caruso F, Caruso R A, Mohwald H. Production of Hollow Microspheres from Nanostructured Composite Particles. Chem Mater, 1999, 11: 3309
    34. Caruso F, Caruso R A, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science, 1998, 282(6): 1111
    35. Kim J W, Joe Y G, Suh K D. Poly(methyl methacrylate)Hollow Particles by Water- in-oil-in-water Emulsion Polymerization. Colloid Polym Sci, 1999, 277:252
    36. Lee J H, Park T G, Choi H K. Effect of Formulation and Processing Variables on The Characteristics of Microspheres for Water-soluble Drugs Prepared by w/o/o Double Emulsion Solvent Diffusion Method. International Journal of Pharmaceutics, 2000, 196(1): 75
    37. Jafelicci M J, Davolos M R, et al. Hollow Silica Particles from Microemulsion. J Non Crystalline Solids, 1999, 247:98
    38. Bruinsma P J, Liu J, Baskaran S. Mesoporous Silica Synthesized by
    
    Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres. Chem Mater, 1997, 9:2507
    39. Iida M, Sasaki T, Watanabe M. Titanium Dioxide Hollow Microspheres with an Extremely Thin Shell. Chem Mater, 1998, 10:3780
    40. Károly Zoltán, Szépvlgyi János. Hollow Alumina Microspheres Prepared by RF Thermal Plasma. Powder Technology, 2003, 132(2-3): 211
    41.胡广才,李怀曾,魏胜,等.玻璃球壳生产工艺研究[J].强激光与粒束,1995,7(2):183
    42.邱龙会,魏芸,等.液滴法制备空心玻璃微球的过程分析.原子能科学与技术,2001,35(1):60
    43. Sokol E V, Maksimova NV, et al. Hollow silicate Microspheres from Fly Ashes of the Chelyabinsk Brown Coals (South Urals, Russia). Fuel Processing Technology, 2000, 67(1): 35
    44. Sato Y, Kawashima Y, et al. In Vitro Evaluation of Floating and Drug Releasing Behaviors of Hollow Microspheres (microballoons) Prepared by the Emulsion Solvent Diffusion Method. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 1(93): 39
    45. Sato Y, Kawashima Y, et al. Physicochemical Properties to Determine the Buoyancy of Hollow Microspheres(microballoons) Prepared by the Emulsion Solvent Diffusion Method. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 3(55): 297
    46. Naskar M K, Chatterjee M, Lakshmi NS. Sol-emulsion-gel Synthesis of Hollow Mullite Microspheres. J Mater Sci, 2002, 37(2): 343
    47. Ren T Z, Yuan Z Y, Su B L. Surfactant-assisted Preparation of Hollow Microspheres of MesoporousTiO2. Chemical Physics Letters, 2003, 374(1-2): 170
    48. Fujiyama J S, Nakase Y, Osaki K, et al. Cisplatin Incorporated in Microspheres: Development and Fundamental Studies for its Clinical Application. Journal of Controlled Release, 2003, 89(3): 397
    49. Bae E, Chah S, Yi J. Preparation and Characterization of Ceramic Hollow Microspheres for Heavy Metal Ion Removal in Wastewater.
    
    J Colloid Interface Sci, 2000, 230(2): 367
    50. Park J H, Oh C, Shin S I, et al. Preparation of Hollow Silica Microspheres in W/O Emulsions with Polymers. J Colloid Interface Sci, 2003, 266(1): 107
    51.吴晓光,车晔秋编译.国外微波吸收材料.国防科技大学出版社,1992
    52.蔡德录,刘承钧译.微波吸收材料.科学出版社,1985
    53.周敏,杨觉明,周建军.吸波材料研究进展.西安工业学院学报,2000,20(4):296
    54.曾汉民等.高技术新材料要览.北京:中国科学技术出版社,1993
    55.徐生求,段永法.新型吸波材料的研究现状与展望.空军雷达军事学院院报,2001,15(1):45
    56.宋保钢,赵晖,磁粉微波吸收材料.金属功能材料,1994,1:21
    57. Pitman K C, Lindley M W, Simkin D, et al. Radar Absorbers: Better by Design. IEEE Proceedings-F, 1991, 38(3): 223
    58. Gorshenev V N, Ibikov S B, Spector V N. Simulation, Synthesis and Investigation of Microwave Absorbing Composite Materials. Synthetic Metals, 1997, 22:55
    59.孟凡文,杨觉明,严文,等.纳米复合隐身材料.西安工业学院学报,1999,19(4):324
    60.吴明忠,刘怀忠.雷达吸波材料的吸波性能预测.上海航天,1998,1:21
    61.何山,熊克敏.潜艇雷达隐身用吸波涂料的研究.航空材料学报,1994,14(1):43
    62.吴明忠,赵振声,何华辉.隐身与反隐身技术的现状和发展.上海航天,1996,3:36
    63.吴明忠.雷达吸波材料的现状和发展趋势.磁性材料及器件,1997,28(2):26
    64.秦山荣,陈雷.国外新型隐身材料的动态.宇航材料工艺,1997,4:17
    65.阳开新.铁氧体吸波材料及其应用.磁性材料及器件,1996,27(3):19
    66.陈利民,亓家钟,朱雪琴,等.纳米γ-(Fe,Ni)合金颗粒的微观结构及其微波吸收特性.兵器材料科学与工程,1999,22(4):3
    67.刘列,张明雪,胡连成.吸波涂层材料技术的现状和发展.宇航材料工艺,1994,(1):1
    68.步文博,徐洁,丘泰,等.吸波材料的基础研究及微波损耗机理的探讨.材
    
    料导报,2001,5:14
    69. Youji, Kotsuka, Fujsawa, Japan. Electronic Wave Absorber. United States Patent, 6 057 796: May 2, 2000
    70.吴明忠,赵振声,何华辉.层状多晶铁纤维吸波材料的等效电磁参数.磁性材料及器件,1998,1(29):31
    71. Diaz MILLER M C, LORE M M, GILB James P K, et al. High-performance Matched Absorber Using Magnetodielectrics(e). US Patent, 6146691. 2000-11-14
    72. Zhong Wei, Ding Weiping, Jiang Yumei, et al. Preparation and Magnetic Properties of Barium Hexaferrite Nanoparticles Produced by the Citrate process. J Am Ceram Soc, 1997, 80(12): 3258
    73. Singh P, Babbar V K, Razdan A, et al. Complex Permeability and Permittivity, and Microwave Absorption Studies of Ca(CoTi)×Fe12-2×019 Hexaferrite Composites in X-band Microwave Frequencies. Mat Sci Eng B, 2000, 67:32
    74. Surig C, Hempel K A, Boneenerg D. Formation and Microwave Absorption of Barium and Strontium Ferrite Prepared by Sol-gel Technique. Appl Phys Lett, 1993, 63(20): 2836
    75. Wei F L, Fang H C, Ong C K J. Magnetic Properties of BaFe12-2×Co×Ti×019 Particles. J Appl Phys, 2000, 87(12): 8636
    76. Hanns P S, Jqaquin R, Jose S M. Transmission Electron Microscopy Study of Barium Hexaferrite Formation from Barium Carbonate and Hematite. J Mater Res, 1999, 14(9): 3647
    77.高荣发.热喷涂.中国腐蚀与防腐学会.北京:化学工业出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700