电沉积制备FeCo薄膜及FeCo微粉的微波磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着现代通讯技术的发展,微波磁性材料的应用越来越广泛。在微波应用领域中,对微波磁性材料的磁导率和共振频率上的要求越来越高,人们希望在获得高的共振频率的同时获得高的磁导率。然而,传统的微波磁性材料中存在一个Snoek极限,即起始磁化率与共振频率的乘积和材料的饱和磁化强度成正比。由于Snoek极限的存在,对于饱和磁化强度一定的微波磁性材料,往往在获得了高的起始磁导率的同时其共振频率却很低;反之,获得了高的共振频率的同时其磁导率值却很低。为了突破Snoek极限,人们必须开发出新型的微波吸收材料。根据双各向异性模型,当磁性材料中存在一个易磁化面时,可以获得比传统磁性材料更为优越的微波磁性能,可以同时获得高的磁导率和高的共振频率。
     木文止是基于双各向异性模型,对平面磁各向异性型材料的微波磁性能进行了研究。我们选定的研究体系为平面磁各向异性型FeCo薄膜以及FeCo微粉复合材料。无论是薄膜还是微粉,都存在易磁化面,满足形成双各向异性的前提条件,并且FeCo合金具有高的饱和磁化强度。因此,该体系材料可以获得优异的微波磁性能。
     常用的制备薄膜的方法有很多,比如分子束外延、蒸镀,溅射,电化学沉积和化学镀等等。在众多薄膜制备的方法中,电沉积法的优势是工艺成本低,沉积速率快,适合大规模的工业化生产。在本文的工作中,我们采用电沉积法制备得到了具有易磁化面的FeCo薄膜和FeCo微粉材料,并利用X射线衍射(XRD)、扫描电子显微镜(SEM)、振动样品磁强计(VSM)、矢量网络分析仪(VNA)、原子吸收光谱和穆斯堡尔波谱等手段对样品的结构、形貌和磁性进行了研究,其中重点考察其微波电磁性能、微波吸收机理和微波吸收特性。
     本文的主要工作有以下几个方面:
     (1)利用恒电位电沉积模式,在ITO导电玻璃基底上成功制备出FeCo薄膜。通过在电沉积过程中外加磁场,使得FeCo薄膜具有平面各向异性,同时在面内诱导出了单轴各向异性。
     (2)系统地考察了电沉积工艺条件对FeCo薄膜结构、形貌和磁性能的影响,其中重点研究了薄膜成分、薄膜厚度、溶液温度等因素对FeCo薄膜面内、面外各向异性等效场和微波磁性的调控作用。
     (3)对于FeCO薄膜,只有当FeCO薄膜中Fe成分在35at.%和54at.%之间时,才能诱导出强的面内单轴各向异性,并同时获得优良的微波磁性。随着膜厚增大,FeCO薄膜表面粗糙度降低,当膜厚小于540nm时,较大的粗糙度导致磁矩在垂直于膜面方向有一个分量,影响了平面各向异性的形成;当膜厚大于540nm时,膜面粗糙度较小,平面各向异性较强,磁导率值较高。随着溶液温度升高,面内、外各向异性等效场均增大,导致其共振频率也随之增大。
     (4)通过系统地研究工艺参数对FeCO薄膜磁性能的影响,我们最终获得了微波磁性优良的FeCO薄膜的最佳制备工艺条件:镀液成分为FeSO_4'7H_2O0.1M; CoSO_4.7H_2O0.1M;H_3BO_30.4M;抗坏血酸1g/L;溶液温度40℃;镀液pH值:2.5;沉积电位:-1.6V;膜厚:1μm。在最佳工艺条件下,可以制备得到具有优良高频磁性的Fe_(52)CO_(48)薄膜,起始磁导率为220,共振频率为4.35GHz。
     (5)通过将微波磁性能优异的平面型FeCO薄膜从基底上剥离下来,研磨后得到了平面磁各向异性型FeCO微粉,制备得到复合材料并考察其微波电磁性能、微波吸收机理及微波吸收特性。
     (6)对于片状FeCO微粉复合材料,随着FeCO微粉体积浓度的升高,介电常数和磁导率也随之增大。不同体积浓度的FeCo微粉复合材料的(μi一1)-f_r值均大于其相应的SnOek极限值;磁场旋转取向可以使得片状FeCo微粉/石蜡复合材料的微波磁性进一步提高;对于不同条件(双氧水氧化、磁场旋转取向、环氧粘接剂)的片状FeCO微粉复合材料(30vol.%)样品,当厚度在2mm以上时,均能实现-10dB以上的反射吸收;对于同一体积分数的复合材料样品,随着厚度增加,其反射损耗峰位将向低频移动,这一规律可以用四分之一波长关系予以解释。
Recently, there has been great development in communication and information technology. There are more and more people who have paid attention to the microwave magnetic materials. In such microwave applications, the operating frequencies have reached the gigahertz region, and both high initial permeability and high resonance frequency are required. However, there exist a Snoek's limit for the conventional microwave magnetic materials, which means the product of permeability and resonance frequency is in proportion to the saturation magnetization. As a result, for conventional microwave materials, they always have a high resonance frequency while a low initial permeability. In the past several years, great effort has been made to exceed the Snoek's limit. According to the bianisotropy picture, high performance microwave magnetic materials can be obtained when the materials have an easy magnetic plane.
     Therefore, according to the bianisotropy picture, the aim of this work is to prepare high performance microwave magnetic materials. We focus on the FeCo film and FeCo powders, because they have easy plane and meet the demand of bianisotropy picture. Moreover, the FeCo alloy magnetic materials have high saturation magnetization, which is beneficial to achieve high permeability and high resonance frequency.
     Generally, the soft magnetic films are obtained through methods such as molecular beam epitaxy, thermal evaporation, sputtering, electrodeposition, electroless plating, and so on. Among them, electrodeposition technique is now emerging as an important method because of its low cost, high deposition rate and easy process control. In this work, we successfully prepared FeCo films and plate-like FeCo powders by electrodeposition. And then the structure, morphology and magnetic properties of the samples have been investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), Agilent E8363B vector network analyzer, inductively coupled plasma-atomic emission spectrometry (ICP) and Mossbauer spectroscopy.
     The main contents of this paper have been listed as below:
     (1) Fe-Co soft magnetic films with tunable high-frequency magnetic properties were successfully electrodeposited onto ITO conductive glass substrates using a conventional three-electrode cell. During deposition, an external magnetic field was applied in the FeCo film plane to induce an easy magnetic plane and an in-plane uniaxial anisotropy.
     (2) The influence of electrodeposition parameters on the structure, morphology and magnetic properties of FeCo films has been investigated. We focused on how the composition, film thickness and electrolyte temperature affect the in-plane, out-of-plane anisotropy field and microwave magnetic properties.
     (3) For electrodeposited FeCo films, well-defined uniaxial magnetic anisotropy could be induced only when the Fe content of deposit is between35and53at.%. At higher or lower Fe content, the anisotropy could not be induced in spite of the magnetic field applied during deposition. As film thickness increased, the surface roughness decreased. When the thicknesses are lower than540nm, the magnetization has a component out of film plane due to the rough surface. When the thicknesses are larger thant540nm, the films'surfaces become smooth and good microwave performances can be achieved. As the electrolyte temperature increased, both the in-plane and out-of-plane anisotropy fields increased, and as a result the resonance frequency increased also.
     (4) The optimized electrodeposition parameters have been obtained:the concentration of FeSO4·7H2O and CoSO4·7H2O are0.1M; the concentration of H3BO3is0.4M; electrolyte temperature:40℃; electrolyte pH:2.5; deposition potential:-1.6V; film thickness:1μm. For the optimized electrodeposited Fes2Co48film, the initial permeability is220and the resonance frequency is4.35GHz.
     (5) The optimized Fe52Co48film has been peeled off from ITO conductive glass substrate and then the plate-like FeCo powers were obtained. The composites were prepared by mixing the FeCo powers with paraffin wax or resin epoxy and their microwave magnetic properties、 microwave absorption mechanism and properties were investigated.
     (6) For planar anisotropy FeCo composites, the permeability increased with increasing volume concentration and the (μi-1)-fr are larger than the Snoek's limit. The align process can improve the microwave magnetic properties. For different (oxidized by H2O2, aligned or mixed by resin epoxy) planar anisotropy FeCo (30vol.%) composites, when the thickness were above2mm, the minimum microwave absorption values can be smaller than-10dB. For the same volume concentration samples, as the thickness increased, the peak frequency decreased, which can be explained by the quarter-wavelength (A/4) matching model.
引文
[1]Yamaguchi M, Kim K.H. and Ikedaa S. Soft magnetic materials application in the RF range[J]. J. Magn. Magn. Mater.2006,304:208-213.
    [2]Yu E., Shim J.S, Kim I., Han S.H. et al. Development of FeCo-based thin films for gigahertz applications[J]. IEEE Trans. Magn.200541:3259-3261.
    [3]Chung D.D.L, Materials for electromagnetic interference shielding[J]. Journal of materials engineering and performance,2000,9(3):350-354.
    [4]Mahmud E.; Kassim A., Fabrication and characterization of organic semiconductor for electromagnetic interference shielding material[J]. Journal of polymerengineering,2011,31(4): 319-322.
    [5]Von Klemperer Christopher J., Maharaj Denver, Composite electromagnetic interference shielding materials for aerospace applications[J]. Composite structures,200991(4):467-472.
    [6]Steffan Pavel, Stehlik Jiri, Vrba Radimir, Composite materials for electromagnetic interference shielding[J]. Personal Wireless Communications,2007245:649-652.
    [7]郑玉玲,于建军等电磁污染的危害与防护研究进展[J].职业与健康2011,27(6):689-691.
    [8]郝利君生活中的电磁辐射与防护[J].城市管理与科技2005 7(1):25-26.
    [9]马锐,马轶鸥雷达隐身与反隐身技术[J].舰船电子工程2008,28(10):28-32.
    [10]陶宇,陶志萍 雷达隐身技术的研究现状及其展望[J]材料导报2011 25(6):40-45.
    [11]Zhao D.L., Li X., Shen Z.M. Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes[J]. Composites Science and Technology,2008,68:2902-2908.
    [12]Olivier Acher, Modern microwave magnetic materials:Recent advances and trends[J]. Journal of Magnetism and Magnetic Materials,2009,321(4):2033-2034.
    [13]Wang M., Duan Y.P., Liu S.H., Li X.G., Ji Z.J., Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers[J]. Journal of Magnetism and Magnetic Materials,2009,321:3442-3446.
    [14]Yan L.G., Wang J.B., Ye Y.Z. et al. Broadband and thin microwave absorber of nickel-zinc ferrite/carbonyl iron Composite[J]. Journal of Alloys and Compounds,2009,487:708-711.
    [15]Zhu H., Zhang L., Zhang L.Z. et al. Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing[J]. Materials Letters 2010,64:227-230.
    [16]Xu J.J., Yang C.M., Zou H.F. et al. Electromagnetic and microwave absorbing properties of Co?Z-type hexaferrites doped with LaJ3+[J]. Journal of Magnetism and Magnetic Materials,2009, 321:3231-3235.
    [17]Cheng Y.L., Dai J.M., Wu D.J., Sun Y.P. Electromagnetic and microwave absorption properties of carbonyl iron/Lao.6Sro.4MnO3 composites[J]. Journal of Magnetism and Magnetic Materials,2010,322:97-101.
    [18]Park K.Y., Han J.H., Lee S.B. et al. Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles[J]. Composites Science and Technology,2009,69:1271-1278.
    [19]Han M.G., Tang W., Chen W.B. et al. Effect of shape of Fe particles on their electromagnetic properties within 1-18 GHz range[J]. Journal of applied physics,2010,107:09A958.
    [20]Ma F., Qin Y., Li Y.Z., Enhanced microwave performance of cobalt nanoflakes with strong shape anisotropy[J]. Applied physics letters,2010,96:202507.
    [21]Fan X.A., Guan J.G., Cao X.F., Wang W., Mou F.Z., Low-Temperature Synthesis, Magnetic and Microwave Electromagnetic Properties of Substoichiometric Spinel Cobalt Ferrite Octahedra[J]. Eur. J. Inorg. Chem.2009,2010(3):419-426.
    [22]Zhao D.L., Luo F., Zhou W.C., Microwave absorbing property and complex permittivity of nano SiC particles doped with nitrogen[J]. Journal of Alloys and Compounds,2010.490:190-194.
    [23]Kim S.S., Microwave Absorbing Properties of Magnetic Composite Sheets for Oblique Incidence Angles[J]. IEEE Transactions on magnetics,2011,47(10):4314-4317.
    [24]Anil Ohlan, Kuldeep Singh, Namita Gandhi, Amita Chandra, S. K. Dhawan, Microwave absorption properties of NiCoFe2O4-graphite embedded poly(o-phenetidine) nanocomposites[J]. AIP Advances,2011:032157.
    [25]Yang Y.Q., Qi S.H., Zhang X.X, Qin Y.C., Preparation and microwave absorbing property of silver-coated graphite nanosheet NanoG with Pyrrole[J]. Materials Letters,2012,66:229-232.
    [26]Che R.X., Yu B., Wang C.X., Wei L.Q. Preparation and microwave absorption property of the core-nanoshell composite materials doped with Sm[J]. Advanced Materials Research,2012, 356-360:514-518.
    [27]邢丽英隐身材料[M].北京:化学工业出版社.2004[28]赵灵智,胡社军等吸波材料的吸波原理及其研究进展[J]现代防御技术2007
    35(1):27-31.
    [29]林其壬铁氧体上艺原理[M].上海:科学技术出版社,1987.
    [30]李荫远铁氧体物理学[M].北京:科学技术出版社,1962.
    [31]李斌太,陈大明,陈钦生 铁氧体微波吸收材料的研究进展[J].硅酸盐通报2004,5:66-69.
    [32]王璟,张虹等 稀土元素对W型钡铁氧体微波吸收特性的作用[J].功能材料与器件学报2007 13(4):317-322.
    [33]尹萍,胡国光BaMnZnCoTi-W型铁氧体微波吸收特性的研究[J].安徽大学学报(自然科学版)1999,23(1):37-40.
    [34]Mohammed N. Afsar, Konstantin A. Korolev, AsukaNamai, Shin-ichi Ohkoshi Millimeter-Wave, Ferromagnetic Absorption of Epsilon Aluminum Iron Oxide Nano Ferrites[J]. IEEE Transactions on magnetics,2011,47(10):2588-2591.
    [35]Wang L.X., Huang X.G., Zhang J.G., Wang H.Z., Zhang Q.T., Xu N. Microstructure and microwave electromagnetic properties of Dy'-doped W-type hexaferrites[J]. Rare Metals,2011, 30(5):505-509.
    [36]K. P. Andryushin, A. A. Pavelko, A. V. Pavlenko, I. A. Verbenko, L. A. Shilkina, S. P. Kubrin, and L. A. Reznichenko Relaxation Dynamics, Microwave Absorption, and Secondary Periodicity in Properties of Rare Earth Modified Bismuth Ferrites[J]. Technical Physics Letters, 2011,37(7):617-621.
    [37]M. Abdullah Dar, Vivek Verma, Vibhav Pandey, et al. Magnetic and Electrical Properties of Ti Substituted Lithium Zinc Ferrites[J]. Integrated Ferroelectrics,2010,119:135-142.
    [38]Zhen L., Gong Y. X., Jiang J. T., Shao W.Z., Electromagnetic properties of FeNi alloy nanoparticles prepared by hydrogen-thermal reduction method[J]. Journal of Applied Physics, 2008,104:034312.
    [39]Liu Q.L., Zhang D., Fan T.X. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites[J]. Applied Physics Letters,2008,93:013110.
    [40]Anil Ohlan, Kuldeep Singh, Amita Chandra, and S. K. Dhawan Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4-18 GHz[J]. Applied Physics Letters,2008,93:053114.
    [41]U.R. Limaa, M.C. Nasara, R.S. Nasara, M.C. Rezendeb, J.H. Araujoc, J.F. Oliveira Synthesis of NiCuZn ferrite nanoparticles and microwave absorption haracterization[J]. Materials Science and Engineering B,2008,151:238-242.
    [42]K. Praveena, K. Sadhana, S. Bharadwaj, S.R. Murthy Development of nanocrystalline Mn-Zn ferrites for high frequency transformer applications[J]. Journal of Magnetism and Magnetic Materials,2009,321:2433-2437.
    [43]Masao Terada, Masahiro Itoh, Jiu Rong Liu, Ken-ichi Machida Electromagnetic wave absorption properties of Fe3C/carbon nanocomposites prepared by a CVD method[J]. Journal of Magnetism and Magnetic Materials,2009,321:1209-1213.
    [44]Ki-Yeon Park, Jae-Hung Han, Sang-Bok Lee, Jin-Bong Kim, Jin-Woo Yi, Sang-Kwan Lee, Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles[J]. Composites Science and Technology,2009,69:1271-1278.
    [45]Yu-Qing Kang, Mao-Sheng Cao, Jie Yuan, Xiao-Ling Shi, Microwave absorption properties of multiferroic BiFeO3 nanoparticles[J]. Materials Letters,2009,63:1344-1346.
    [46]Huo J., Wang L., Yu H.J. Polymeric nanocomposites for electromagnetic wave absorption[J]. J Mater Sci,2009,44:3917-3927.
    [47]Sachin Tyagia, Himanshu B. Baskeyb, Ramesh Chandra Agarwalaa, Vijaya Agarwalaa, Trilok Chand Shamib, Development of hard/soft ferrite nanocomposite for enhanced microwave absorption[J]. Ceramics International,2011,37(7):2631-2641.
    [48]K. Stojak, S. Pa, H. Srikanth, C. Morales, J. Dewdney, T. Wellerand, J. Wang, Polymer nanocomposites exhibiting magnetically tunable microwave properties[J]. Nanotechnology,2011, 22:135602.
    [49]Atul Thakura, Preeti Thakurb, Jen-Hwa Hsu Smart magnetodielectric nano-materials for the very high frequency applications[J]. Journal of Alloys and Compounds,2011,509:5315-5319.
    [50]Alexander A. Zharov, Nina A. Zharova Quasi-guided electromagnetic beam propagation in one-dimensional photonic crystal with a left-handed metamaterial[J]. Journal of applied physics, 2008,103:013109.
    [51]Zhang Z.H., Wang Z.P., Wang L.H., Design principle of single-or double-layer wave-absorbers containing left-handed materials[J]. Materials & Design,2009,30(9):3908-3912.
    [52]Da H.X., Xu C, Li Z.Y. Omnidirectional reflection from one-dimensional quasi-periodic photonic crystal containing left-handed material[J]. Physics Letters A,2005,345(4-6):459-468.
    [53]Panoiu N.C., Osgood R.M., Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials[J]. Physical Review E,2001,68(1):016611.
    [54]Grozdanov 1., Deposition of electrically conductive, microwave shielding, and ir-detecting inorganic coatings on poIymer-films[J]. Chemistry Letters,1994,3:551-554.
    [55]万梅香,李素珍,李军朝,曹镛 新型导电聚合物微波吸收剂的研究[J].宇航材料工艺, 1989,4-5:28-33.
    [56]王科伟,许波新型雷达波吸收材料导电聚合物的研究[J].光电技术应用200621(1):24-28.
    [57]张凯,曾敏等.导电高分子材料的进展[J].化工新型材料,2002,30(7):13-15.
    [58]N.A. Buznikov, I.T. Iakubov, A.L. Rakhmanov, A.O. Sboychakov High-frequency magnetic permeability of nanocomposite film[J]. Journal of Magnetism and Magnetic Materials,2005, 293:938-946.
    [59]A.B. Rinkevich, D.V. Perov, V.O. Vaskovsky, Types of magnetic resonances in electromagnetic wave penetration through thin magnetic films[J]. Phys. Scr.2011,83:015705.
    [60]I.T. Iakubov, A.N. Lagarkov, S.A. Maklakov et al. Microwave and static magnetic properties of multi-layered iron-based films[J]. Journal of Magnetism and Magnetic Materials,2009, 321:726-729.
    [61]F. Grange, C. Delaveaud, B. Viala, K. Mahdjoubi, Analysis of artificial magnetic conductors with high-permeability thin films[J]. Appl Phys A,2011,103:581-585.
    [62]Chai G.Z., Guo D.W., Fan X.L., Xue D.S., Microwave magnetic properties of soft magnetic thin films[J]. Science China,2011,54(7):1200-1207.
    [63]Ge S.H., Chen Z.Q., Zuo H.P. et al. High Frequency Magnetic Properties and Intergranule Interaction of Nano-Granular Films with High Resistivity and High Permeability[J]. J. Nanosci. Nanotechnol.2010,10(10):6411-6418.
    [64]Zhang Y.P., Fan X., Wang W.G. et al. Study and tailoring spin dynamic properties of CoFeB during rapid thermal annealing[J]. Applied Physics Letters,2011,98:042506.
    [65]N. X. Sun, S. X. Wang, T. J. Silva et al. High-Frequency Behavior and Damping of Fe-Co-N-Based High-Saturation Soft Magnetic Films[J]. IEEE Transactions on magnetics,2002, 38(1):146-150.
    [66]Yu-Ming Kuo and Jenq-Gong Duh, Effect of nitrogen contents on the high-frequency characteristics and magnetic properties of FeHfN films[J]. Journal of Physics:Conference Series, 2011,266:012074.
    [67]Yu-Ming Kuo, Jenq-Gong Duh Influence of the nitrogen contents on the permeability characteristics and soft magnetic properties of FeHfN films[J]. Applied Surface Science,2011, 257:6387-6390.
    [68]G.V. Kurlyandskaya, S.M. Bhagat A.V. Svalovl, E. Fernandez A. Garcia-Arribas and J.M. Barandiaran, FeNi-based Film Nanostructures For High Frequency Applications:Design and Characterization [J]. Solid State Phenomena,2011,168-169:257-260.
    [69]J.L. Snoek, Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s[J]. Physica,1948,14:207-217.
    [70]GH.Jonke H.P.J.Wijinand,P.B.Brawn, [J]. PhiliPsTech.Rev.1956,18:145.
    [71]Xue D.S., Li F.S., Fan X.L., Wen F.S., Bianisotropy Picture of Higher Permeability at Higher Frequencies[J]. Chin. Phys. Lett.2008,25:4120.
    [72]卢亚锋,M. Przybylski,王文宏等[J].在Pd/Cu(100)表面上外延的超薄Co膜的结构和磁性[J].物理学报,2005,54:5405.
    [73]C. J. Lin, G.L. Gorman, Evaporated CoPt alloy films with strong perpendicular magnetic anisotropy[J]. Appl. Phys.Lett.1992,61:1600.
    [74]张继成,吴卫东,许华,唐晓红 磁控溅射技术新进展及应用[J].材料导报,2004,18(4):56-59.
    [75]W.Schindler, O. Schneider and J. Kirschner, Electrodeposition of ultrathin magnetic films of Fe and Co[J]. J. Appl. Phys.1997,81:3915-3917.
    [76]S. D. Sartale, V. Ganesan, and C. D. Lokhande, Electrochemical deposition and characterization of CoFe2O4 thin films[J]. Phys. Stat. Sol.2005,202:85-94.
    [77]F. Cheng, Z. Peng, Z. Xu., The sol-gel preparation and AFM study of spinel CoFe2O4 thin film[J]. Thin Soild Films.1999,339:109-113.
    [78], Ichiro Koiwa, Masanori Toda, Tetsuya Osaka, Effect of film thickness on the Magnetic properties of electroless cobalt alloy plating films for perpendicular magnetic recording media[J]. J. Electrochem. Soc,1986,133(3):597-600.
    [79]高颖,邬冰,电化学基础[M].北京:化学工业出版社,2004.
    [80]Kench, J. R. and S. B. Schuldt, Concerning the Origin of Uniaxial Magnetic Anisotropy in Electrodeposited Permalloy Films[J]. Journal of applied physics,1970,41(8):3338-3346.
    [81]Liao S H, High moment CoFe thin films by electrodeposition[J]. IEEE Trans. Magn.1987,23 (5):2981-2983.
    [82]Bedenbecker M and Gatzen H H, Investigation on a NiFe alloy with a coefficient of thermal expansion matching the one of silicon[J]. J. Appl. Phys.,2006,99:08M308.
    [83]Kakuno E M, Mosca D H, Mazzaro I et al. Structure, Composition, and Morphology of Electrodeposited CoxFe1-x Alloys[J]. J. Electrochem..Soc.1997,144:3222-3226.
    [84]Lallemand F, Ricq L, Deschaseaux E et al. Electrodeposition of cobalt-iron alloys in pulsed current from electrolytes containing organic additives[J]. Surf. Coat. Technol.,2005,197:10-17.
    [85]Yokoshima T, Imai K., Hiraiwa T and Osaka T, Preparation of high-Bs Co-Fe soft magnetic thin films by electrodeposition[J]. IEEE Trans. Magn.2004,40:2332-2334.
    [86]Liu X M, Evans P and Zangari G, Electrodeposited Co-Fe and Co-Fe-Ni alloy films for magnetic recording write heads[J]. IEEE Trans. Magn.2000,36:3479-3481.
    [87]Tanahashi K and Maeda M, Field-induced uniaxial magnetic anisotropy of electrodeposited Fe-Co films[J]. J. Appl. Phys.1984,56:581-582
    [88]X.M. Liu, J.O. Rantschler, C. Alexander, G. Zangari, High-Frequency Behavior of Electrodeposited Fe-Co-Ni Alloys[J]. IEEE Trans. Magn.2003,39:2362-2364.
    [89]S. Mizutani, T. Yokoshima, H. Nam et al.High-Frequency Permeability and Thermal Stability of Electrodeposited High-Bs CoNiFe Thin Films[J]. IEEE Trans. Magn.2000,36:2539-2541.
    [90]F.M.F. Rhen, P. McCloskey, T. O'Donnell, S. Roy, High-frequency permeability of electroplated CoNiFe and CoNiFe-C alloys[J]. J. Magn. Magn. Mater.,2008,320:e819-e822.
    [91]X.M. Liu, G. Zangari, M. Shamsuzzoha, Structural and Magnetic Characterization of Electrodeposited,High Moment FeCoNi Films[J]. J. Electrochem. Soc.2003,150:C159-C168.
    [1]廖绍彬,铁磁学(下册)[M].北京:科学出版社1988.
    [2]宛德福,马兴隆,磁性物理学[M].北京:电子工业出版社1999.
    [3]近角聪信(著),葛世慧(译),铁磁性物理[M].兰州:兰州大学出版社2002.
    [4]J.B. Youssef, P.M. Jacquart, N. Vukadinovic, H. Le Gall, Frequency-Dependent Complex Permeability in Zr-Substituted Permalloy Thin Films[J]. IEEE Trans. Magn.2002,38:3141-3143.
    [5]A. Neudert, J. Mccord, R. Schafer, L. Schultz, Dynamic anisotropy in amorphous CoZrTa films[J]. J. Appl. Phys.95 (2004) 6595-6597.
    [6]康青新型微波吸收材料[M].北京:科学出版社2006.
    [7]T. Giannakopoulou, A. Kontogeorgakos, G. Kordas, Single-layer microwave absorbers: influence of dielectric and magnetic losses on the layer thickness[J]. Journal of Magnetism and Magnetic Materials 2003,263(1-2):173-181.
    [8]M. Matsumoto, Y. Miyata, Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal particles[J]. IEEE Transactions on Magneties,1997, 33(6):4459-4464.
    [9]Wang B.C., Wei J.Q, Yang Y., Wang T., Li F.S., Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite[J]. Journal of Magnetism and Magnetic Materials,2011,323:1101-1103.
    [1]高颖,邬冰 电化学基础[M].北京:化学工业出版社,2004.
    [2]周绍民等,金属电沉积[M].上海:上海科技技术出版社,1987.
    [3]安茂忠,电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [4]1.W.Wolf, Composition and Thickness Effects on Magnetic Properties of Electrodeposited Nickel-Iron Thin Films[J]. J. Electrochem. Soc,1961,108:959-964.
    [5]Liu X.M., Zangari G., Shen L.Y., Electrodeposition of soft, high moment Co-Fe-Ni thin films [J]. J. Appl. Phys.87 (2000) 5410-5412.
    [6]I. Tabakovic, V. Inturi, S. Riemer, Composition, Structure, Stress, and Coercivity of Electrodeposited Soft Magnetic CoNiFe Films:Thickness and Substrate Dependence[J]. J. Electrochem. Soc,2002,149(1):C18-C22.
    [7]Tetsuya Osaka, Takahiro Sawaguchi, Fumio Mizutanic et al. Effects of Saccharin and Thiourea on Sulfur Inclusion and Coercivity of Electroplated Soft Magnetic CoNiFe Film[J]. J. Electrochem. Soc,2002,146(9):3295-3299.
    [8]李培森,物性测量原理与测试分析方法[M].兰州:兰州大学出版社1994.
    [9]梁敬魁,粉末衍射法测定晶体结构[M].北京:科学出版社,2003.
    [10]刘粤惠,X射线衍射分析原理与应用[M].北京:化学工业出版社,2003.
    [11]李树堂,晶体X射线衍射学基础[M].北京:冶金工业出版社,1990.
    [12]付洪兰,实用电子显微镜技术[M].北京:高等教育出版社,2004.
    [13]马金鑫,扫描电子显微镜入门[M].北京:科学出版社,1985.
    [14]Bekker V, Seemann K and Leiste H[J]. J. Magn. Magn. Mater.2004,270:327
    [1]Xue D.S., Li F.S., Fan X.L., Wen F.S., Bianisotropy Picture of Higher Permeability at Higher Frequencies[J]. Chin. Phys. Lett.2008,25:4120-4123.
    [2]Fraunfelder H, Nagle D.E., Taylor R.D Elliptical Polarization of Fe57 Gamma Rays., [J]. Phys. Rev.1962,126(3):1065-1075.
    [3]Preston R.S., Hanna S.S., Heberle J., Mossbauer Effect in Metallic Iron,[J]. Phys. Rev.1962, 128(5):2207-2218.
    [4]Hakan Kockar, Mursel Alper, Oznur Karaagac et al., Contribution of electrolyte pH and deposition potentials to the magnetic anisotropy of electrodeposited nickel films, [J]. Journal of Magnetism and Magnetic Materials,2010,322:1088-1091.
    [5]Zhang,Y.H., G. Ivey D., Electroplating of Nanocrystalline CoFeNi Soft Magnetic Thin Films from a Stable Citrate-Based Bath, [J]. Chem. Mater.16:1189-1194.
    [6]Liu X.M. Zangari G. High Moment FeCoNi Alloy Thin Films Fabricated by Pulsed-Current Electrodeposition, [J]. IEEE Trans. Magn.,2001,37(4):1764-1766.
    [7]Kyung Seek Lewa, M.Raja et al., Effect of pH and current density in electrodeposited Co-Ni-P alloy thin films, [J]. Materials Chemistry and Physics,2008,112:249-253.
    [8]Cui X.W., Chen W.X., Saccharin Effects on Direct-Current Electroplating Nanocrystalline Ni-Cu Alloys, [J]. Journal of The Electrochemical Society,2008,155(9):K133-K139.
    [9]Ji Hyun Min, Jun-Hua Wu, Ji Ung Cho et al. The pH and current density dependence of DC electrodeposited CoCu thin films, [J]. Journal of Magnetism and Magnetic Materials,2006, 304:e100-e102.
    [10]Zhang,Y.H., G. Ivey D., Characterization of Co-Fe and Co-Fe-Ni soft magnetic films electrodeposited from citrate-stabilized sulfate baths, [J]. Materials Science and Engineering B. 2007,140(1-2):15-22.
    [11]G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets, [J]. IEEE Trans. Magn.,,1990,26:1397-1402.
    [12]Bakonyi I., Toth Kadar E., Pogany L. et al., Preparation and characterization of d.c. plated nanocrystalline nickel electrodeposits,[J]. Surface and Coationgs Technology.1996,78:124-136.
    [13]Alper, M., Kockar H., Kuru H., Meydan T., Influence of deposition potentials applied in continuous and pulse waveforms on magnetic properties of electrodeposited nickel-iron films, [J]. Sensors and Actuators A.2006,129(1-2):184-187.
    [14]Kockar, H., M. Alper, et al. Contribution of electrolyte pH and deposition potentials to the magnetic anisotropy of electrodeposited nickel films, [J]. Journal of Magnetism and Magnetic Materials,2010,322(9-12):1088-1091.
    [15]Karpuz, A., H. Kockar et al. Electrochemical production of Fe-Cu films:determination of the deposition potentials and their effect on microstructural and magnetic properties, [J]. European Physical Journal-Applied Physics,2009,48(3):30504-30507.
    [16]Hakan Kockar, Mursel Alper, Turgut Sahin, Murside Safak Haciismailoglu, Co-Fe Films: Effect of Fe Content on Their Properties, [J]. J. Nanosci. Nanotechnol.2010,10(11):7639-7642.
    [17]Tanahashi K and Maeda M., Field-induced uniaxial magnetic anisotropy of electrodeposited Fe-Co films, [J]. J. Appi. Phys.1984,56:581-582.
    [18]Liu X.M., Zangari G., Shen L.Y.,Electrodeposition of soft, high moment Co-Fe-Ni thin films, [J]. J. Appl. Phys.87 (2000) 5410-5412.
    [19]I. Tabakovic, V. Inturi, S. Riemer, Composition, Structure, Stress, and Coercivity of Electrodeposited Soft Magnetic CoNiFe Films:Thickness and Substrate Dependence, [J]. J. Electrochem. Soc,2002,149(1):C18-C22.
    [20]Jianbiao Dai, Leszek M. Malkinski, Jinke Tang, Analysis of the Thickness Dependence of Magnetic Properties and Interparticle Interaction of Granular Films, [J]. IEEE Trans. Magn.,2000, 36(5):2918-2920.
    [21]E.N. MITCHELL, H.B. HAUKAAs, H.D. BALE, J.B. STREEPER:Compositional and Thickness Dependence of the Ferromagnetic Anisotropy in Resistance of Iron-Nickel Films, [J]. Journal Of Applied Physics,1964,35(9):2604-2608.
    [22]T. MIYAZAKI, T. AJIMA, F. SATO, Dependence of magnetoresistance on thickness and surstrate temperature for 82Ni-Fe alloy film, [J]. Journal of Magnetism and Magnetic Materials, 1989,81:86-90.
    [23]C. Cucci, M.G. Pini, P. Politi, A. Rettori, Effect of surface orientation and thickness on the magnetization of anisotropic FCC ferromagnetic films, [J]. Journal of Magnetism and Magnetic Materials,2001,231:98-107.
    [24]C.Y. Hung,1. Berger, Exchange forces between domain wall and electric current in permalloy films of variable thickness, [J]. J. Appl. Phys.1988,63 (8),:4276-4278.
    [25]M. Li, G.C. Wang, In situ measurement of thickness dependence of magnetoresistance and magnetic hysteresis loops ofultrathin Co films on a SiCO2/Si(111) substrate, [J]. Journal of Magnetism and Magnetic Materials,2000,217:199-206.
    [26]U. SH1MCTNY, K. RABFNOVITCH, A. B1RAN, Influence of Thickness of Thin Fe Films on Magnetization, [J]. J. Appl. Phys.,1970 41(2):641-643. [27] V.S. Gornakova, C.G. Lee, B.S. Lee, Magnetooptical study of thickness dependences of magnetization reversal of thin NiFe and Co films, [J]. Journal of Magnetism and Magnetic Materials,2007,310:e896-e898.
    [28]K. Sumiyama, T. Sato, G.M. Graham, Thickness dependence of magnetization in Fe-Ni invar alloy film solid state communications, [J]. Solid State Communications,1976,19:403-404.
    [29]Hong J.S., Thickness-dependent magnetic anisotropy in ultrathin Fe/Co/Cu(001) films, [J]. PHYSICAL REVIEW B,2006,74:172408.
    [30]M. Redjdal, Transitional Domain Wall Structure in Permalloy Magnetic Films With Decreasing Thickness, [J]. IEEE Trans. Magn.,2000,36(5):3071-3073.
    [31]L. Neel, REMARQUES SUR LA THEORIE DES PROPRIETES MAGNETIQUESDES COUCHES MINCES ET DES GRAINS FINS, J. Phys Radium,1956,17:250-255.
    [32]N.G. Chechenin, E.H. du Marchie van Voorthuysen, J.Th.M. De Hosson, D.O. Boerma, [J]. J. Magn. Magn. Mater.2005,1539:290-291.
    [33]M. Goto, H. Tange, T. Kamimori, Thickness dependence of field induced uniaxial anisotropy in 80-permalloy films, [J]. J. Magn. Magn. Mater.,1986,62:251-255.
    [34]H. Katada, T. Shimatsu, I. Watanabe, H. Muraoka, Induced uniaxial magnetic anisotropy field in very thin NiFe and CoZrNb films, [J]. IEEE Trans. Magn.2000,36:2905-2908.
    [35]Q. Zeng, I. Baker, Y. Sun, J.B. Cui, C.P. Daghlian, Thickness dependence of the microstructure and magnetic anisotropy of sputtered Fe5oNi50 films, [J]. J. Appl. Phys.,2006, 99:08M302.
    [36]L. Neel, Anisotropie magnetique superficielle et surstructures d'orientation, [J]. J. Phys. Radium 1954,15:225.
    [37]T.L. Gilbert, A phenomenological theory of damping in ferromagnetic materials, [J]. IEEE Trans. Magn.2004,40:3443-3449.
    [38]J.B. Youssef, P.M. Jacquart, N. Vukadinovic, H. Le Gall, Frequency-Dependent Complex Permeability in Zr-Substituted Permalloy Thin Films, [J]. IEEE Trans. Magn.2002, 38:3141-3143.
    [39]P.M. Jacquart, L. Roux, Influence of the electrical resistivity of a ferromagnetic thin film on its permeability measurement performed with a permeameter, [J]. J. Magn. Magn. Mater.2004, 281:82-91.
    [40]A. Neudert, J. Mccord, R. Schafer, L. Schultz, Dynamic anisotropy in amorphous CoZrTa films, [J]. J. Appl. Phys.2004,95 (11):6595-6597.
    [41]Y. Liu, Z.W. Liu, C.Y. Tan, C.K. Ong, High frequency characteristics of FeCoN thin films fabricated by sputtering at various (Ar+N2) gas flow rates, [J]. J. Appl. Phys.,2006,100:093912.
    [42]R. Lopusnik, J.P. Nibarger, T.J. Silva, Z. Celinski, Different dynamic and static magnetic anisotropy in thin PermalloyTM films, [J]. Appl. Phys. Lett.2003,83:96-98. [43] N.N. Phuoc, L.T. Hung, C.K. Ong, FeCoHfN thin films fabricated by co-sputtering with high resonance frequency, [J]. J. Alloys Compd.2011,509:4010-4013.
    [44]N.N. Phuoc, C.K. Ong, Influence of ferromagnetic thickness on dynamic anisotropy in exchange-biased Mnlr/FeCo multilayered thin films, [J]. Physica B,2011 406:3514-3518.
    [45]H. Hoffmann, Theory of magnetization ripple, [J]. IEEE Trans. Magn.1968,4:32-38. [46]K.J. Harte, Theory of magnetization ripple in Ferromagnetic films, [J]. J. Appl. Phys.,1968, 39(3):1503-1524
    [47]H. Hoffmann, Influence of local inhomogeneities on the magnetic properties of thin ferromagnetic films and nanostructures, [J]. Thin Solid Films,2000,373:107-112.
    [48]F. Xu, X.Y. Zhang, Y.G. Ma, N.N. Phuoc, X. Chen, C.K. Ong, Influence of Cu underlayer on the high-frequency magnetic characteristics of as-sputtered FeCoSiN granular thin films, [J]. J. Phys. D:Appl. Phys.2009,42:015002.
    [49]C. Kittel, Interpretation of Anomalous Larmor Frequencies in Ferromagnetic Resonance Experiment, [J]. Phys. Rev.1947,71:270-271.
    [50]P.C. Fannin, C.N. Marin,1. Malaescu, The influence of particle concentration and polarizing field on the resonant behaviour of magnetic fluids, [J]. J. Phys.:Condens. Matter,2003, 15:4739-4750.
    [51]X.M. Liu, J.O. Rantschler, C. Alexander, G. Zangari, High-Frequency Behavior of Electrodeposited Fe-Co-Ni Alloys, [J]. IEEE Trans. Magn.2003,39:2362-2364.
    [52]James O. Rantschler and Chester Alexander, Ripple field effect on high-frequency measurements of FeTiN films, [J]. J. Appl. Phys.,2003,93(10):6665-6667.
    [53]Peter, L., Z. Rolik, et al. Temperature dependence of giant magnetoresistance and magnetic properties in electrodeposited Co-Cu/Cu multilayers:The role of superparamagnetic regions, [J]. Physical Review B 2006,73:174410.
    [54]Seemann K, Leiste H and Bekker V. Uniaxial anisotropy and high-frequency permeability of novel soft magnetic FeCoTaN and FeCoAIN films field-annealed at CMOS temperatures, [J]. J. Magn. Magn.Mater.,2004,283(2-3):310-315.
    [1]J. C. M. Garnett, Colours in Metal Glasses and in Metallic Films[J]. Phil. Trans. R. Soc. Lond. A,1904,203:385-420.
    [2]D. A. G. Bruggeman, Berechnung verschiedener physikalischer konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen[J]. Ann. Phys.1935,416(7):636-664.
    [3]L. Olmedo, G. Chateau, C. Deleuze, and J. L. Forveille, Microwave characterization and modelization of magnetic granular materials[J]. J. Appl. Phys.,1993,73:6992-6994.
    [4]J.L. Snoek, Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s[J]. Physica,1948,14:207-217.
    [5]X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, Z.D. Zhang, Microwave-absorption properties of ZnO-coated iron nanocapsules[J]. Appl. Phys. Lett.2008,92:173117.
    [6]J.R. Liu, M. Itoh, K.I. Machida, Electromagnetic wave absorption properties of a-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range[J]. Appl. Phys. Lett.2003,83(19):4017-4019.
    [7]J.R. Liu, M. Itoh, K.I. Machida, GHz Range Absorption Properties of a-Fe/Y2O3 Nanocomposites Prepared by Melt-spun Technique[J]. Chem. Lett.2003,32:394-395.
    [8]T. Inui, K. Konishi, K. Oda, Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites[J]. IEEE Trans. Magn.1999,35:3148-3150.
    [9]A. R. Bueno, M. L. Gregori and M. C. S. Nobrega, Microwave-absorbing properties of Ni0.50-xZn0.50-xMe2xFe2O4 (Me=Cu, Mn, Mg) ferrite-wax composite in X-band frequencies[J]. J. Magn. Magn. Mater.2008,320(6):864-870.
    [10]S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Churn, Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies[J]. IEEE Trans.Magn.,1991,27:5462-5464.
    [11]A. N. Yusoff, M. H. Abdullah, S. H. Ahmad et al., Electromagnetic and absorption properties of some microwave absorbers[J]. J. Appl. Phys.,2002,92(2):876-882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700