CD133阳性造血祖细胞对结直肠癌细胞生物学特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     结直肠癌(colorectal carcinoma,CRC)是我国常见的消化系统恶性肿瘤之一,而转移是患者的主要致死原因。肿瘤转移是一个多步骤、多阶段的复杂过程,转移的肿瘤细胞经历了细胞骨架变化、黏附特性的改变、运动能力的增强及蛋白水解酶表达增加等一系列改变。
     动物实验最新的研究表明,造血祖细胞与肿瘤转移有着密切联系,KaplanRN等利用β半乳糖苷酶标记骨髓细胞移植的小鼠Lewis肺癌模型、小鼠B16黑色素瘤模型和c-myc转基因小鼠自发性淋巴瘤模型发现:VEGFR-1阳性造血祖细胞(vascular endothelial growth factor receptor-1 hemopoietic progenitor cells,VEGFR-1~+HPC)首先在特定器官形成VEGFR-1~+HPC细胞簇(VEGFR-1~+HPCcellular clusters),为瘤细胞准备了易于形成转移的微环境,这些细胞簇形成部位与肿瘤转移常见部位一致。研究表明,VEGFR-1~+HPC充当了肿瘤转移必不可少的细胞书签(cellular bookmarking)或者说特使细胞(envoy cells)。VEGFR-1~+HPC并非以前发现的血管内皮祖细胞(endothelial progenitor cells,EPC)即VEGFR-2阳性造血祖细胞,腹腔注射VEGFR-2抗体,不能阻断VEGFR-1~+HPC细胞簇形成及瘤转移灶形成,只能限制肿瘤转移灶生长。同时利用VEGFR-1抗体阻断或剔除VEGFR-1~+HPC,则能够抑制预迁移器官造血祖细胞簇的形成与肿瘤转移。但造血祖细胞在人体肿瘤的主要作用及机制仍不十分清楚,且目前尚未在人类肿瘤模型上得到证实,由于脐血来源广泛,获取较容易,成为骨髓及外周造血干祖细胞的极佳替代来源,我们选定CD133~+造血祖细胞,在减少其诱导分化的同时,观察其对低转移人大肠癌细胞体内外的增殖和侵袭作用。
     CD133是一个目前公认的造血祖细胞表面抗原,在正常及异常造血和非造血组织中均有表达,随着细胞的分化成熟其表达减弱、消失。在正常造血组织中,如人胚胎、肝脏和骨髓、脐血、成人骨髓和外周血CD34~+细胞中都可检测到CD133 mRNA,而在其他成熟血细胞均未检测到其表达。同时随着最新的研究表明,CD133 mRNA在外周血中的表达里,实体恶性肿瘤转移患者的表达水平明显高于非转移患者,且以骨转移患者的CD133 mRNA表达为著。但这一结果的作用机制主要是由于CD133~+造血祖细胞或者是CD133~+肿瘤干细胞的结果尚不清楚。
     本研究重点探讨CD133~+造血祖细胞对结直肠癌增殖、侵袭及转移的影响,阐明CD133~+造血祖细胞在结直肠癌转移中的主要生物学功能,为揭示结直肠癌转移机制及抗转移治疗奠定基础。
     方法
     1.CD133~+造血祖细胞的筛选、鉴定及培养
     由南方医院妇产科提供新鲜脐血标本20例,在脐血采集后6h内,利用CD133~+免疫磁珠,分离出CD133~+造血祖细胞,并分别予流式细胞仪及免疫细胞染色分析和鉴定样本量中CD133~+细胞含量,同时在减少诱导CD133~+分化的同时,培养CD133~+造血祖细胞。
     2.CD133~+造血祖细胞对结直肠癌细胞生物学特性的影响
     将CD133~+造血祖细胞与SW480共趋化培养,用MTT法检测肿瘤细胞的增殖及黏附能力的影响,用Transwell小室法检测肿瘤细胞的迁移能力的变化,用Westem blot了解VEGFR-1、MMP-2、E-Cadherin的表达情况。观察CD133~+造血祖细胞作用前后细胞增殖、体外侵袭变化。
     3.应用整体可视化结肠癌转移动物模型观察共移植效应
     利用稳定表达绿色荧光蛋白(enhanced green fluorescent protein,EGFP)的结肠癌细胞株SW480/EGFP~+;通过结肠癌尾静脉注射的方法建立结肠癌转移模型,利用肿瘤细胞表达EGFP的特点,将CD133~+细胞与SW480/EGFP~+共培养通过尾静脉注射的方法观察肿瘤细胞成瘤能力及体内转移能力的变化,应用组织病理学及分子生物学技术对结肠癌转移动物模型进行评价和鉴定。
     结果
     1、CD133~+造血祖细胞的筛选、鉴定及培养
     由南方医院妇产科提供,脐血标本共20份(其中18份成功提取新鲜细胞,2份失败),50~80 ml/份,枸橼酸抗凝,经产妇和家属同意取自足月健康顺产新生儿,新鲜脐血采集后6 h内,分离出CD133~+造血祖细胞。从新鲜的脐血中得到的单个核细胞数平均为(1.48±0.19)×10~7/ml,经CD133磁珠分离系统分离得CD133~+富集细胞的平均数为(1.33±0.01)×10~5/ml,新鲜脐血单个核细胞中的CD133~+细胞所占比例为(0.8±0.01)%,经流式细胞仪鉴定CD133~+CD34~+细胞纯度达到80%以上。CD133~+细胞培养一周后,免疫细胞化学染色CD133,显微镜下观察CD133阳性细胞数>90%。
     2、CD133~+造血祖细胞对结直肠癌细胞生物学特性的影响
     CD133~+造血祖细胞能显著促进SW480细胞的生长(n=60、Z=-6.106、P=0.000),能促进肿瘤细胞的形态学改变,即肿瘤细胞的核深染,异型明显,细胞呈多角形或不规则形,能显著促进SW480细胞的迁移能力;细胞黏附实验表明,含有CD133~+造血祖细胞的实验组其肿瘤细胞的黏附能力明显高于对照组(n=60、Z=-3.679,P=0.000)。利用丙酮沉淀法提取细胞总蛋白(即浓缩蛋白)检测MMP-2、VEGFR-1及E-Cadherin蛋白表达情况发现实验组中的3种蛋白表达水平均高于对照组。
     3、利用整体可视化结肠癌转移裸鼠模型观察共移植效应
     转染后的结肠癌细胞SW480/EGFP~+稳定、高效的表达绿色荧光蛋白,采用尾静脉注射的方法建立结肠癌可视化转移动物模型,注射2周后,实验组可见肿瘤转移,对照组未见有转移情况,注射4周后,实验组67%发生转移,对照组仅有一只发生转移,注射6周后,实验组中成瘤转移率为4/6,对照组中的成瘤转移率为1/6。经过生存分析的统计结果表明,实验组的转移率高于对照组(n=6,Breslow检验,P=0.045)。通过分子生物学技术,发现实验组中MMP-2、VEGFR-1蛋白高表达,而E-Cadherin的表达则逐渐减低。
     结论
     1、CD133~+造血祖细胞可显著促进人结直肠癌细胞的增殖及侵袭能力,CD133~+造血祖细胞与人结直肠癌细胞裸鼠共移植具有促转移作用,初步证明,人造血祖细胞可能对人结直肠癌细胞转移形成具有重要影响。
     2、CD133~+造血祖细胞可与结直肠癌细胞直接作用,能促进转移相关基因和血管生成因子MMP-2、VEGFR-1蛋白高表达,同时调节E-Cadherin的蛋白表达,初步表明:CD133~+造血祖细胞的促转移作用可能与转移相关因子MMP-2、VEGFR-1及E-Cadherin的表达有关。
     本研究的创新之处
     1、将人造血祖细胞与结直肠癌细胞株共趋化培养,直接在人癌实验层次揭示了造血祖细胞对结直肠癌细胞的作用。
     2、将人造血祖细胞与结直肠癌细胞株共趋化培养后进行人类肿瘤动物模型共移植实验研究。初步证明,CD133~+人造血祖细胞可显著促进人结直肠癌细胞的增殖及侵袭能力,CD133~+造血祖细胞与人结直肠癌细胞裸鼠共移植具有促转移作用,人造血祖细胞可能对人结直肠癌细胞转移形成具有重要影响。
BACKGROUND & OBJECTIVE
     Colorectal cancer (CRC) is the second worldwide leading cause of cancer death in the world. Metastasis is one of the basic characteristic of malignant tumors and is the main cause which affects the therapeutic efficacy and leads to the death of cancer patients. Metastasis is a sequential process, contingent on tumor cells breaking off from the primary tumor, travelling through the bloodstream, and stopping at a distant site. At the new site: the cells establish a blood supply and can grow a life-threatening mass.
     Kaplan et al demonstrate that bone marrow-derived haematopoietic progenitor cells that express vascular endothelial growth factor receptor 1 (VEGFR-1; also known as Flt-1) home to tumour-specific pre-metastatic sites and form cellular clusters before the arrival of tumour cells. Preventing VEGFR-1 function using antibodies or by the removal of VEGFR-1~+ cells from the bone marrow of wild-type mice abrogates the formation of these pre-metastatic clusters and prevents tumour metastasis, whereas reconstitution with selected Id3 (inhibitor of differentiation 3)-competent VEGFR-1~+ cells establishes cluster formation and tumour metastasis in Id3 knockout mice. They set up an ingenious experiment to track the movements of various cell populations as tumour cells metastasized in the lungs of live mice. The mice were irradiated to kill off all their bone-marrow cells, which were then replaced by bone-marrow cells tagged with green fluorescent protein; this made the cells easy to find under a microscope. Once the new bone-marrow cells were established, the mice were injected in the skin with lung carcinoma or melanoma cells, each marked with red fluorescent protein. The tumour cells were expected to form a primary tumour in the skin, and then to metastasize to the lungs. But the green bone-marrow-derived cells appeared in the lungs on days 12-14 after injection of the red cells-well before any of the tumour cells had arrived in the lung. The red tumour cells turned up only on day 18 post-injection, and by day 23 micrometastases had formed, with more than 95% of the tumour cells being found in exactly the same sites as the bone-marrow-derived cells. Mice were injected intraperitoneally with anti-VEGFR-1 antibody, it eliminated the initiating clusters and completely prevented metastasis, whereas anti-VEGFR-2 antibody did not prevent the formation of VEGFR-1~+ clusters but limited metastatic progression. The hematopietic stem cells can now be obtained from peripheral or umbilic cord blood, as well as from bone marrow. The umbilic cord blood has more advantages than the bone marrow, with the sufficient donors and without the side effects, such as graff-versus-host disease(GVHD).
     CD133 is a 120-kDa five-transmembrane-domain glycoprotein expressed on normal primitive haematopoietic, endothelial, neural and epithelial cells. Expression of CD133 mRNA is significantly increased in peripheral blood mononuclear cells in solid cancers regardless of tumour type, particularly in patients with bone metastasis; overall survival was higher in patients with low or undetectable CD133 mRNA expression, although it was not ascertained whether the mononuclear cell fraction also contained CD133~+ tumour cells as well as CD133~+ haematopoietic progenitor cells.
     In this study, we aim to clarify the possible role of CD133~+ haematopoietic progenitor cells from cord blood in the proliferation, invasion and metastasis of CRC line SW480. It will be helpful to understand the molecular basis of CRC, and establish a new target for early metastatic diagnostic markers and novel therapeutic strategies.
     METHODS
     1、The identification and cultivation of CD133~+ haematopoietic progenitor cells from cord blood
     All human umbilical CB samples were obtained from the Obstetrics and Gynecology Department of Southern Hospital after informed consent. CD133~+ haematopoietic progenitor cells were isolated from human umbilical CB samples (total of 20 samples, 2 lost). Each pooled mononuclear cells obtained from CB samples after Ficoll density gradient centrifugation separation. CD133~+ haemato -poietic progenitor cells were positively isolated using the mini-MACS immunomagnetic separation system, according to manufacturer's instructions. After CD133~+ haematopoietic progenitor cells isolation, the purity of the isolated cell populations was determined by fluorescein-activated cell sorting with CD34-R-phycoerythrin-conjugated mouse anti-human monoclonal antibody, CD133-phycoerythrin anti-human monoclonal antibody (Miltenyi Biotec) and immunocytochemistry.
     2、The effects of CD133~+ haematopoietic progenitor cells on human tumor cells SW480
     The treatment group is the co-culture of CD133~+ haematopoietic progenitor cells and SW480, the control group used the same culture medium without CD133~+ cells. The effect of CD133~+ haematopoietic progenitor cells on proliferation in SW480 cell was measured by MTT assay, the migration abilities of SW480 cell were assayed in Transwell cell culture, Cell adhesion assay was carried out in a 96 microplate well precoated with fibronection. The expression of VEGFR-1、MMP-2、E-Cadherin were analyzed by western blot.
     3、Using whole-body visualizing orthotopic animal model in colon cancer to demonstrate the effection of CD133~+ haematopoietic progenitor cells in vivo
     The metastatic ability evaluated by whole-body visualizing orthotopic animal model. The effection of CD133~+ haematopoietic progenitor cells on in vivo tumor growth was assessed by tail vein injection of SW480/EGFP~+/CD133~+ and SW480 /EGFP~+ cells .
     RESULTS
     The main results and findings are as follows:
     1、The identification and cultivation of CD133~+ haematopoietic progenitor cells from cord blood
     Isolated CD133~+ haematopoietic progenitor cells (purity over 80% as determined by flow cytometry) were characterized by flow cytometry and immunofluorescence staining for hematopoietic stem cells markers (CD133, CD34) and then cultured in undifferentiation conditions.
     2、The effects of CD133~+ haematopoietic progenitor cells on human tumor cells SW480 in vitro
     CD133~+ haematopoietic progenitor cells could significantly improve the growth ability of SW480 cell, not only the ability of proliferation(n=60、Z=-6.106、P=0.000), but also the morphology. The morphology of the cells was remarkably changed. Irregular nucleus, double nucleus and polymorphic nucleus appeared in the treatment group, and the cells shaped as polygon-like and leptosomatic. In the cell adhesion assay, OD_(490) of the treatment group was 0.11±0.01, the control group was 0.05±0.01, (n=60、Z=-3.679、P=0.000) . The expression of VEGFR-1、MMP-2、E-Cadherin protein could be up-regulated in vitro .
     3、The effection of CD133~+ haematopoietic progenitor cells on human tumor cells SW480/EGFP~+ in vivo
     SW480/EGFP~+ cells stably expressed high-levels of enhanced green fluorescent protein (EGFP) and EGFP had no effect on cell proliferation. Visualizing orthotopic animal model developed with tail vein injection was built with metastasis rate. After injection, animals had metastasis within 2 weeks in the treatment group, and subsequently, 4 weeks after injection, 67% of animal had metastasis in the treatment group. In control group ,only one animasl had metastasis (n=6, Breslow test, P=0.045) .The whole-body visualizing orthotopic animal model was successfully validated by pathological detection. The expression of VEGFR-1, MMP-2 protein could be up-regulated in vivo, but E-cadherin protein could be down-regulated.
     CONCLUSION
     1. CD133~+ haematopoietic progenitor cells are effective in increasing tumor cell proliferation and invasion. Hematopoietic progenitor cells may play an important role in the invasion and mesatasis of colorectal neoplasms.
     2. CD133~+ haematopoietic progenitor cells may involve in direct action to mediate proliferation, invasion and metastasis of CRC. The expression of VEGFR-1、MMP-2 protein could be up-regulated in co-transplantation and two-ways regulation the expression of E-cadherin protein. These data will be helpful to elucidate the molecular mechanism of CD133~+ haematopoietic progenitor cells and provide new clues.
引文
[01] Sung JJ, Lau JY, Goh K, et al. Increasing incidence of colorectal cancer in Asia: implications for screening[J]. Lancet Oncol, 2005, 6(11): 871-876.
    
    [02]郑树,蔡善荣.中国人结直肠癌的流行病学研究[J].The Chinese-German Journal of Clinical Oncology,2003,2(2):2-75.
    
    [03] Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplantedhemopoietic stem cells: Inferences for the localization of stem cell niches[J]. Blood,2001, 97(8): 2293-2299.
    
    [04] Taichman RS, Emerson SG. The role of osteoblasts in the hematopoieti micr-oenvironment[J]. Stem Cells, 1998, 16(1): 7-15.
    
    [05] Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated deployment of SDF-1induces revascularization through recruitment of CXCR4(+) hemangiocytes[J].Nature Medicine, 2006, 12(5): 557-567.
    
    [06] Miraglia S, Godfrey W, Yin AH, et al. A novel five-transmembrane hematopoie-tic stem cell antigen: isolation, characterization, and molecular cloning [J]. Blood,1997, 90(12): 5013-5021.
    
    [07] Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novelmarker for humanhematopoietic stem and progenitor cells[J]. Blood, 1997, 90(12): 5002-5012.
    
    [08] Wuchter C, Ratei R, Spahn G, et al. Impact of CD133 (CD133) and CD90 expression analysis for acute leukemia immunophenotyping[J]. Haematologica, 2001,86(2): 154-161.
    [09] Kuci S, Schumn M, Schlegel PG, et al. Phenotyp ic and functional characterization of mobilized peripheral blood CD133~+CD34~+hematopoietic stem cell[J].Blood, 1999, 94( Supp 11): 559.
    
    [10] Dao MA, Arevalo J, Nolta JA. Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution[J].Blood, 2003, 101(1): 112-118.
    
    [11] Handgretinger R, Gordon PR, Leimig T, et al. Biology and plasticity of CD133~+ hematopoietic stem cells[J]. Ann N Y Acad Sci, 2003, 996: 141-151.
    
    [12] Huss R, Lange C, Weissinger EM, et al.Evidence of peripheral blood-derived,plastic-adherent CD34-/low hematopoietic stem cell clones with mesenchymal stem cell characteristics[J]. Stem Cells, 2000,18(4): 252-260.
    
    [13] Huss R. Isolation of primary and immortalized CD34- hematopoietic and mesenchymal stem cells from various sources[J]. Stem Cells, 2000,18(1): 1-9.
    
    [14] Wright DE, Wagers AJ, Gulati AP, et al. Physiological migration of hematopoietic stem and progenitor cells[J]. Science, 2001,294(5548): 1933-1936.
    [15] Collins AT, Berry PA, Hyde C, et al. Prospective identifica- tion of tumorigenic prostate cancer stem cells[J]. Cancer Res, 2005, 65(23): 10946-10951.
    [16] Olempska M, Eisenach PA, Ammerpohl O, et al. Detection of tumor stem cell markers in pancreatic carcinoma cell lines[J]. Hepatobiliary Pancreat Dis Int, 2007,6(1): 92-97.
    
    [17] Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human coloncancer-initiating cells[J]. Nature, 2007, 445(7123):111-115.
    [18] Yin S, Li J, Hu C, et al.CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity[J]. Int J Cancer, 2007, 120(7): 1444-1450.
    [19] Yi L, Zhou ZH, Ping YF, et al. Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma[J]. Mod Pathol,2007,20(10): 1061-1068.
    [20] Bruno S, Bussolati B, Grange C, et al. CD133~+ renal progenitor cells contribute to tumor angiogenesis[J]. Am J Pathol, 2006, 169(6): 2223-2235.
    [21] Mehra N, Penning M, Maas J, et al. Progenitor marker CD133 mRNA is elevated in peripheral blood of cancer patients with bone metastases[J]. Clin Cancer Res, 2006, 12(16): 4859-4866.
    
    [22] Mendes SC, Robin C, Dzierzak E. Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny[J]. Development, 2005, 132(5): 1127-1136.
    
    [23] Christofori G. New signals from the invasive front[J]. Nature, 2006, 441(7092):444-450.
    
    [24] Jin H, Aiyer A, Su J, et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature[J]. Journal of Clinical Investigation,2006, 116(3): 652-662.
    
    [25] Song S, Ewald AJ, Stallcup W, et al. PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival[J]. Nature Cell Biology, 2005, 7(9): 870-879.
    
    [26] Coussens LM, Werb Z. Inflammation and cancer[J]. Nature, 2002, 420(6917):860-886.
    
    [27] Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth[J]. Nature Medicine, 2001, 7(11): 1194-1201.
    
    [28] Kaplan RN, Riba RD, Zacharoulis S,et al. VEGFR1-positive haematopoietic bone marrow Vprogenitors initiate the pre-metastatic niche[J]. Nature, 2005, 438(7069): 820-827.
    
    [29] Peters BA, Diaz LA, Polyak K, et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature[J]. Nature Med, 2005, 11(3): 261-262.
    [30] Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion[J]. Cell, 2005, 121(3): 335-348.
    
    [31] Ara T, Tokoyoda K, Sugiyama T, et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny[J].Immunity, 2003, 19(2): 257-267.
    
    [32] Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells[J]. Nature Immunology, 2005, 6(10): 1038-1046.
    
    [33] Nilsson SK, Johnston HM, Whitty GA, et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells[J]. Blood, 2005, 106(4): 1232-1239.
    
    [34] Wai PY, Kuo PC. The role of osteopontin in tumor metastasis[J]. Journal of Surgical Research, 2004, 121(2): 228-241.
    
    [35] Kang Y, Chen CR, Massague JA. Self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells[J]. Molecular Cell, 2003, 11(4): 915-926.
    
    [36] Kimura T, Boehmler AM, Seitz G, et al. The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34~+ progenitor cells[J]. Blood, 2004,103(12): 4478-4486.
    
    [37] Reca R, Mastellos D, Majka M, et al. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1[J]. Blood, 2003, 101(10): 3784-3793.
    
    [38] Avigdor A, Goichberg P, Shivtiel S, et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34~+ stem/progenitor cells to bone marrow[J]. Blood, 2004, 103(8): 2981-2989.
    
    [39] Wysoczynski M, Reca R, Ratajczak J, et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient[J]. Blood, 2005, 105(1): 40-48.
    
    [40] Janowska-Wieczorek A, Majka M, Kijowski J, et al. Platelet-derived mic-roparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment[J]. Blood, 2001, 98(10): 3143-3149.
    
    [41] Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune -deficient NOD/SCID and NOD/SCID/B2mnull mice[J]. Leukemia, 2002, 16(10):1992-2003.
    
    [42] Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration[J]. Nat Med, 2003, 9(6): 702-712.
    
    [43] Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells[J].Exp Hematol, 2002, 30(9): 973-981.
    
    
    [1] Bartunek J, Vanderheyden M, Vandekerckhove B, et al.Intracoronary Injection ofCD133-positive enriched bone marrow progenitor cells promotes cardiac recoveryafter recent myocardial infarction: Feasibility and safety[J]. Circulation, 2005, 112(9):1178-1183.
    
    [2] Barfield RC, Hale GA, Burnette K, et al. Autologous transplantation of CD133selected hematopoietic progenitor cells for treatment of relapsed acute lymphoblasticleukemia[J]. Pediatr Blood Cancer, 2005, 111(21): 1-5.
    
    [3] Reeves MB, MacAry PA, Lehner PJ, et al. Latency, chromatin remodeling, andreactivation of human cytomegalovirus in the dendritic cells of healthy carriers[J].Proc Natl Acad Sci, 2005, 102 (11): 4140-4145.
    
    [4] Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelialcells from AC133-positive progenitor cells[J]. Blood, 2000, 95 (10): 3106-3112.
    
    [5] Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivoexpanded endothelial progenitor cells for myocardial ischemia[J]. Circulation, 2001,103(5): 634-637.
    
    [6]赵春玲,崔秀云,王继红等。 白眉蝮蛇去整合素rAdinbitor对人肝癌细胞系 SMMC-7721细胞黏附与增殖的影响[J]。中国癌症杂志,2006,16(11):958-963.
    
    [7] Harris DT, Schumacher MJ, Rychlik S, et al. Collection, separation andcryopreservation of umbilical cord blood for use in transplantation[J]. Bone MarrowTransplantation, 1994, 13 (2): 135- 143.
    
    [8] Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for humanhematopoietic stem and progenitor cells[J]. Blood, 1997, 90(12): 5002-5012.
    
    [9] Miraglia S, Godfrey W, Yin AH, et al. A novel five-transmembrane hemato- poietic stem cell antigen: isolation, characterization, and molecular cloning[J]. Blood,1997, 90(12): 5013-5021.
    
    [10] Gallacher L, Murdoch B, Wu DM, et al. Isolation and characterization of human CD34(-)Lin(-) and CD34(+)Lin(-) hematopoietic stem cells using cell surface markers AC133 and CD7[J]. Blood, 2000, 95(9): 2813-2820.
    [11] Lang P, Bader P, Schumm M, et al. Transplantation of a combination of CD133~+ and CD34~+ selected progenitor cells from alternative donors[J]. Br J Haematol, 2004,124(1): 72-79.
    
    [12] Bitan M, Shapira MY, Resnick IB, et al. Successful transplantation of haplo-identically mismatched peripheral blood stem cells using CD133~+-purified stem cells[J]. Exp Hematol, 2005, 33(6): 713-718.
    
    [13] Bonanno G, Mariotti A, Procoli A, et al. Human cord blood CD133~+ cells imm-unoselected by a clinical-grade apparatus differentiate in vitro into endothelial-and cardiomyocyte-like cells[J]. Transfusion, 2007,47(2): 280-289.
    [14] Bussolati B, Bruno S, Grange C, et al. Isolation of renal progenitor cells from adult human kidney[J]. Am J Pathol, 2005, 166(2): 545-555.
    
    [15] am Esch JS 2nd, Knoefel WT, Klein M, et al. Portal application of autologous CD133~+ bone marrow cells to the liver: a novel concept to support hepatic regeneration[J]. Stem Cells, 2005, 23(4): 463-470.
    
    [16] Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells[J]. Proc Natl Acad Sci U S A, 2000, 97(26): 14720-14725.
    [17] Lee A, Kessler JD, Read TA, et al. Isolation of neural stem cells from the postnatal cerebellum[J]. Nature Neurosci, 2005, 8(6): 723-729.
    [18] Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells[J]. Cancer Res, 2005, 65(23): 10946-10951.
    [19] Olempska M, Eisenach PA, Ammerpohl O, et al. Detection of tumor stem cell markers in pancreatic carcinoma cell line[J]. Hepatobiliary Pancreat Dis Int, 2007,6(1): 92-97.
    
    [20] Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human coloncancer-initiating cells[J]. Nature, 2007, 445(7123): 111-115.
    
    [21] Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity[J]. Int J Cancer, 2007, 120(7): 1444-1450.
    
    [22] Yi L, Zhou ZH, Ping YF, et al. Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma[J]. Mod Pathol,2007,20(10): 1061-1068.
    
    [23] Bruno S, Bussolati B, Grange C, et al. CD133~+ renal progenitor cells contribute to tumor angiogenesi[J]s. Am J Pathol, 2006, 169(6): 2223-2235.
    
    [24] Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34~+ cells identifies a population of functional endothelial precursors[J]. Blood, 2000, 95(3): 952-958.
    
    [25]Kuci S, WesselsJT, BuhringHJ, et al. Identification of a novel class of human adherent CD34- stem cells that give rise to SCID-repopulating[J]. Cells Blood, 2003,101(3): 869-876.
    
    [26] Keith WN.Form stem cells to cancer: balancing immortaliy and neoplasia[J].Oncogene, 2004, 23(29): 5092-5094.
    
    [27] Kaplan, RN, Riba RD, Zacharoulis S,et al.VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J]. Nature, 2005, 438(7069):820-827.
    
    
    [1] Chishima T, Miyagi Y, Wang X, et al. Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression[J]. Cancer Res, 1997, 57(10): 2042-2047.
    [2] Jain RK, Munn LL, and Fukumura D. Dissecting tumour pathophysiology using intravital microscopy[J]. Nat Rev Cancer, 2002, 2(4): 266-276.
    
    [3] Huang MS, Wang TJ, Liang CL, et al. Establishment of fluorescent lung carcinoma metastasis model and its real-time microscopic detection in SCID mice[J].Clin Exp Metastasis, 2002,19(4): 359-368.
    
    [4] Li CY, Shan S, Huang Q, et al. Initial stages of tumor cell-induced angiogenesis:evaluation via skin window chambers in rodent models[J]. J Natl Cancer Inst, 2000,92(2): 143-147.
    
    [5] Ito S, Nakanishi H, Ikehara Y, et al. Real-time observation of micrometastasis formation in the living mouse liver using a green fluorescent protein gene-tagged rat tongue carcinoma cell line[J]. Int J Cancer, 2001, 93(2): 212-217.
    
    [6] Yang M, Baranov E, Li XM, et al. Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors[J]. Proc Natl Acad Sci U S A, 2001,98(5): 2616-2621.
    
    [7] Nakanishi H, Ito S, Mochizuki Y, et al. Evaluation of chemosensitivity of micrometastases with green fluorescent protein gene-tagged tumor models in mice[J].Methods Mol Med, 2005, 111: 351-362.
    
    [8] Hoffman RM. Orthotopic metastatic (MetaMouse) models for discovery and development of novel chemotherapy[J]. Methods Mol Med, 2005, 111: 297-322.
    
    [9] Yamamoto N, Yang M, Jiang P, et al. Determination of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging[J]. Cancer Res, 2003, 63(22):7785-7790.
    
    [10] Yang M, Li L, Jiang P, et al. Dual-color fluorescence imaging distinguishes tumor ells from induced host angiogenic vessels and stromal cells[J]. Proc Natl Acad Sci U S A, 2003, 100(24): 14259-14262.
    
    [11] Soker S, Takashima S, Miao HQ, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor[J]. Cell, 1998 Mar 20, 92(6): 735-745.
    
    [12] Curran S, Murray GI. Matrix metalloproteinases in tumour invasion and metastasis[J]. J Pathol, 1999 Nov, 189(3): 300-308
    
    [13] Masaki T, Sugiyama M, Matsuoka H, et al. Matrix metallo-proteinases may contribute compensationally to tumor invasion in T1 colorectal carcinomas[J]. Anti-cancer Res, 2003, 23(5): 4169-4173.
    
    [14] Curran S, Dundas SR, Buxton J, et al. Matrix metallop roteinase / tissue inhibitors of matrix metallop roteinase phenotype identifies poor p rognosis colorectal cancers [J]. Clin Cancer Res, 2004, 10(24): 8229-8234.
    
    [15] Sis B, Sagol O, Kupelioglu A, et al. Prognostic significance of matrix metallop roteinase-2, cathep sin D, and tenascin-C exp ression in colorectal carcinoma [J] .Pathol Res Pract, 2004, 200(5): 379-387.
    
    [16] Smith ME , Pignatelli M. The molecular histology of neoplasia : the role of the cadherin/ catenin complex. Histopathology , 1997, 31(2): 107-111.
    [17] Pennisi E. How a growth control path takes a wrong turn to cancer[J]. Science,1998,281(5382):1438-1440.
    
    [18] Kantak S, Kramer RH. E-cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells [J]. Biol Chem, 1998, 273(27): 16953-16961.
    
    [19] Batlle E, Vendu J, Domingue D, et al. Protein kinase c2aactivity inversely modulates invasion and growth of intestinal cells[J]. J Biol Chem, 1998, 273(24): 15091-15098.
    
    [20] Perl AK, Wilgenbus P , Dahl U, et al. A causal role for E-cadherin in the transition from adenoma to carcinoma[J]. Nature, 1998, 392(6672): 190-193.
    [21] Criox BS , Sheehan C , Rak JW, et al. E-cadherin dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27kip1[J]. J Cell Biol, 1998,142(2): 557-571.
    
    [22] Hori H , Fujimori T, Fujii S, et al. Evaluation of tumor cell dissociation as a predictive marker of lymph node metastasis in submucosal invasive colorectal carcinoma [J]. Dis Colon Rectum, 2005,48(5): 938-945.
    
    [23] Bendardaf R, Elzagheid A, Lamlum H, et al. E -cadherin, CD44s and CD44v6 correlate with tumour differentiation in colorectal cancer [J]. Oncol Rep, 2005, 13 (5):831-835.
    
    [24] Foty RA, Steinberg MS. Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy[J]. Int J Dev Biol, 2004,48(5-6): 397-409.
    [25] Kang Y, Massague J. Epithelial-mesenclyma transitions: twist in development and metastasis[J]. Cell, 2004, 118(3): 277-279.
    
    [26] Thiery JP. Epithelial-mesenclyma transitions in tumor progression[J]. Nature Rev Cancer, 2002,2(6): 442-454.
    
    
    [01] Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplantedhemopoietic stem cells: Inferences for the localization of stem cell niches[J]. Blood,2001, 97 (8): 2293-2299.
    
    [02] Taichman RS, Emerson SG. The role of osteoblasts in the hematopoietimicroenvironment[J]. Stem Cells, 1998,16(1): 7-15.
    
    [03] Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated deployment of SDF-1induces revascularization through recruitment of CXCR4(+) hemangiocytes[J].Nature Medicine, 2006, 12(5): 557-567.
    
    [04] Yu Y, Flint A, Dvorin EL, et al. AC 133-2, a novel isoform of human AC 133stem cell antigen[J]. Journal of Biological Chemistry, 2002, 277(23): 20711-20716.
    
    [05] Danet GH, Luongo JL, Butler G, et al. ClqRp defines a new human stem cellpopulation with hematopoietic and hepatic potential[J]. Proceedings of the NationalAcademy of Sciences USA, 2002, 99(16): 10441-10445.
    
    [06] Dao MA ,Arevalo J, Nolta JA.Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution[J].Blood, 2003, 101(1): 112-118.
    
    [07] Handgretinger R, Gordon PR, Leimig T, et al. Biology and plasticity of CD133+ hematopoietic stem cells[J]. Ann N Y Acad Sci., 2003, 996: 141-151.
    
    [08] Huss R, Lange C, Weissinger EM, et al.Evidence of peripheral blood-derived,plastic-adherent CD34-/low hematopoietic stem cell clones with mesenchymal stem cell characteristics[J]. Stem Cells, 2000, 18(4): 252-260.
    
    [09] Huss R. Isolation of primary and immortalized CD34- hematopoietic and mesenchymal stem cells from various sources[J]. Stem Cells, 2000, 18(1): 1-9.
    
    [10] CHANG Hao. Progress in research of hematopoietic stem cell[J]. Bulletin of Biology, 2006, 41(2): 56-60.
    
    [11] Wright DE, Wagers AJ, Gulati AP,et al. Physiological migration of hematopoietic stem and progenitor cells. Science, 2001, 294(5548): 1933-1936.
    
    [12] Mendes SC, Robin C, Dzierzak E. Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny[J]. Development, 2005, 132(5): 1127-1136.
    
    [13] Christofori G. New signals from the invasive front[J]. Nature, 2006, 441(7092):444-450.
    
    [14] Jin H, Aiyer A, Su J, et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature [J]. Journal of Clinical Investigation,2006, 116(3): 652-662.
    
    [15] Song S, Ewald AJ, Stallcup W, et al. PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival[J]. Nature Cell Biology, 2005, 7(9): 870-879.
    
    [16] Coussens LM, Werb Z. Inflammation and cancer[J]. Nature, 2002, 420 (6917):860-886.
    
    [17] Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone- marrow -derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth[J]. Nature Medicine, 2001, 7(11):1194-1201.
    
    [18] Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow Vprogenitors initiate the pre-metastatic niche[J]. Nature, 2005,438(7069): 820-827.
    
    [19] Peters BA, Diaz LA, Polyak K, et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature[J]. Nature Med, 2005, 11(3): 261-262.
    
    [20] Orimo A, Gupta PB, Sgroi DC,et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion[J]. Cell, 2005, 121(3): 335-348.
    
    [21] Ara T, Tokoyoda K, Sugiyama T, et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny [J].Immunity, 2003,19(2): 257-267.
    
    [22] Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells[J]. Nature Immunology, 2005, 6(10): 1038-1046.
    
    [23] Nilsson SK, Johnston HM, Whitty GA, et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells[J]. Blood, 2005, 106(4): 1232-1239.
    
    [24] Wai PY, Kuo PC. The role of osteopontin in tumor metastasis[J]. Journal of Surgical Research, 2004, 121(2): 228-241.
    
    [25] Kang Y, Chen CR, Massague J. A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells[J]. Molecular Cell, 2003, 11(4): 915-926.
    
    [26] Wysoczynski M, Reca R, Ratajczak J, et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient[J]. Blood , 2005, 105(1): 40-48.
    
    [27] Janowska-Wieczorek A, Majka M, Kijowski J ,et al. Platelet-derived mic-roparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment [J]. Blood, 2001, 98(10): 3143-3149.
    
    [28] Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2mnull mice[J]. Leukemia, 2002, 16(10):1992-2003.
    
    [29] Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration[J]. Nat Med, 2003, 9(6): 702-712.
    
    [30] Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells[J].Exp Hematol, 2002, 30(9): 973-981.
    
    [31] Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells [J].Science, 2004, 306 (5701): 1568-1571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700