Hedgehog信号通路对胰腺癌细胞株氟尿嘧啶化疗敏感性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的
     胰腺癌属高度恶性肿瘤,其发病率在全球呈上升趋势,确诊后平均生存时间不超过6个月,其诊断和治疗仍存在许多问题亟待解决。虽然手术切除是目前最有效的治疗方法,但85%的患者就诊时已属晚期,只有20%左右可以行手术治疗,大样本临床资料表明胰腺癌的5年生存率低于5%。虽然国内外有关胰腺癌早期诊断及综合治疗的研究报道很多,但至今尚无突破性进展。除手术外,化疗仍是目前治疗胰腺癌、预防术后复发、延长病人生存时间和提高生活质量的重要手段,但胰腺癌化疗过程中出现的复杂的耐药现象极大地影响了其治疗效果。化疗耐药仍是目前胰腺癌化疗中面临的最大困境,而如何逆转已知的化疗耐药成了近年来胰腺癌研究的热点。胰腺癌细胞经过化疗药物处理后,大部分的细胞可以被杀灭,但总会有少量肿瘤细胞残存下来,这部分细胞数量不多,经过一段时间的相对静止和休眠后,细胞又再次进入快速生长期,而且这部分经过药物筛选的细胞的耐药性明显升高。我们在研究中还同时发现,经过化疗药物处理后处于相对休眠状态的这一少部分细胞的某些特性与上述的肿瘤干细胞具有极大的相似性。
     Hedgehog(HH)信号通路是肿瘤干细胞的自我更新机制之一,主要由四部分所组成,包括:HH配体、2个跨膜蛋白质受体(PTCH)、(Smo)组成的受体复合物以及下游的转录因子G1i蛋白,通过激活此通路使肿瘤细胞的自我更新能力增强;Cyclopamine:环杷明)是Hedgehog信号通路的抑制剂,通过作用于Smo蛋白阻止该信号往下传递,从而抑制肿瘤细胞的自我更新繁殖。目前国内外的研究已证实Hedgehog通路在多种肿瘤中有表达,Hedgehog通路的研究可以为日后针对肿瘤干细胞治疗提供更进一步的资料。通过适当浓度的化疗药物联合针对干细胞HH信号传导通路的抑制剂可以在体外试验中抑制胰腺癌细胞的生长,提高胰腺癌的化疗效果,为胰腺癌的治疗带来新希望。
     研究方法:
     (1) SW1990, T3M4、PANC-1三株胰腺癌细胞株的体外培养、传代
     (2) SW1990、T3M4、PANC-1三株胰腺癌细胞株的生长曲线测定(MTT法)。
     (3)化疗药物5-FU以不同浓度梯度对三株细胞分别进行药物杀伤实验以筛选适宜的药物浓度,MTT法测定三株胰腺癌细胞株对5-FU化疗敏感性的IC50值。
     (4)运用针对HH信号传导通路的环杷明,以不同的浓度干预胰腺癌细胞株(实验共分为四组:5-FU化疗药物对照组、1uM和10uM环杷明处理组、番茄碱处理组),并进行以下实验:A. MTT实验;B.提取蛋白,Western Blot方法进行HH信号传导通路的检测;C.多种肿瘤干细胞标记物CD 133、CD44、CD24、EPCAM的联合检测。
     结果:
     1、SW1990、PANC-1、T3M4三株胰腺癌细胞株的5-FU化疗的IC50分别是31.97±5.21um、1.88±0.42mM、5.59±0.93uM。T3M4对5-FU化疗最为敏感,PANC-1对5-FU化疗不敏感,而SW1990对5-FU的敏感性中等。细胞增殖在48小时至72小时内较为缓慢,但是48小时至72小时后,细胞株增殖明显加快,进入对数生长期,至第5天到达顶峰,并进入平台期,其后细胞增殖缓慢。
     2、在T3M4和SW1990细胞株中,进行cyclopamine干预后,其对于5-FU化疗的IC50明显下降(P<0.01),1uM和10uM之间的差异有显著统计学意义(P<0.05)。而PANC-1对于cyclopamine干预的影响不大,不同浓度之间的差异也不具有显著性(P>0.05)。cyclopamine干预后,HH信号通路下游的Gli-1的表达明显下降。
     3、SW1990胰腺癌细胞株经过5-FU化疗处理后,肿瘤干细胞标记物(CD44、CD24)的比率明显增加,联合cyclopamine和5-FU干预后,肿瘤干细胞标记物(CD44、CD24)的比率显著下降(P<0.05)。而CD133、EPCAM的表达在各组之间的差别没有显著性(P>0.05)。
     结论:
     1、SW1990、PANC-1、T3M4三株胰腺癌细胞株中,T3M4对5-FU化疗最为敏感,PANC-1对5-FU化疗不敏感,而SW1990对5-FU的敏感性中等。
     2、Cyclopamine干预可以明显提高T3M4和SW1990细胞株对5-FU的化疗敏感性,且其效果与浓度成正比。但是cyclopamine对于PANC-1细胞株5-FU的化疗敏感性的提高相对较迟钝。
     3、经5-FU化疗后SW1990细胞株的肿瘤干细胞标记物(CD44、CD24)的表达比率明显增加,而CD133、EPCAM的变化不明显;联合环杷明和5-FU干预后,CD44、CD24表达比率明显下降,而CD133、EPCAM的变化不明显,因此,CD24、CD44可以作为胰腺癌干细胞的表面标志物,而EPCAM的表达率过高,不适宜作为胰腺癌干细胞的表面标志物。CD133的表达经过干预前后变化不明显,有待于进一步深入研究。
     4、本实验结果显示5-FU化疗耐药的细胞,具有部分肿瘤干细胞的特性,能被HH通路阻滞剂所抑制。
Background and Objective:
     Pancreatic cancer is highly malignant tumor, the incidence rate in the world is rising, the average survival time after diagnosis is not more than 6 months, its diagnosis and treatment there are still many issues that must be resolved. And there is a very low radical surgical resection rate because most cases are already in the advanced stages when diagnosed. The role of chemotherapy has become more important due to its effect towards tumor lesion and metastasis, as well as remission of symptoms. However, Traditional chemotherapy is ineffective. Five-year survival rate is very low for those treated with chemotherapy. Chemo-resistance is currently a major obstacle in tumor chemotherapy. Most of patients present with unresectable disease, resistant to chemotherapy, and high relapse, making prognosis of Pancreatic carcinoma very disappointing.
     Hedgehog signaling pathway is one of the self renewal mechanism of cancer stem cell. It is composed of four parts, including HH ligand, two transmembrane protein-acceptor(PTCH)、(Smo) compounds and transcriptive protein Gli in downstream. The self renewal ability of cancer cell is become stronger When the Hedgehog signaling pathway is in activation. Cyclopamine is the specificity inhibitor of Hedgehog signaling pathway and it could bound with protein Smo, so the pathway turn into inactivation and reduce the capability of self renewal. Nowadays, researches identified Hedgehog pathway expressed in many kinds of cancers. Hedgehog researches could bring more useful information for killing cancer cell in the further.
     Methods:
     1. SW1990, T3M4 and PANC-1 pancreatic cancer cell lines are cultured in vitro, breeding the next generation.
     2. Three pancreatic carcinoma cell lines growth curve are analysis (MTT methed).
     3. Three cell lines were treated with 5-FU of different concentrations to screen suitable anti-drug concentration. And also MTT method 3 pancreatic cancer cells to determine 5-FU chemotherapy sensitivity of IC50 values.
     4. Different concentration of cyclopamine, which is HH signaling pathway inhibitor, are applied to treated the three pancreatic cancer cell lines. Experiment is divided into four groups:5-FU chemotherapy group, luM and 10uM cyclopamine combine with 5-FU group, tomatidine combine with 5-FU group. The following experiments are carryout:A. MTT test; B. Extracted proteins for Western Blot test; C. Multiple cancer stem cell marker CD133, CD44, CD24, EPCAM joint detection.
     RESULT:1、SW1990, PANC-1, T3M43 pancreatic cancer cell lines IC50 value of 5-FU chemotherapy were 31.97±5.21um,1.88±0.42mM,5.59±0.93uM. Of the three cell lines, T3M4 of the most sensitive to 5-FU chemotherapy, PANC-1 is not sensitive, and SW1990 is medium.
     2、Cell proliferation in 48 hours to 72 hours is slow, but after 48-72 hours, cell proliferation significantly accelerated into the logarithmic phase, and reach its peak after 5 days, and enter the plateau phase of cell proliferation. To T3M4 and SW1990 cell lines, after treated with cyclopamine, IC50 value of 5-FU chemotherapy is decreased dramaticaly (P<0.01), luM and 10uM cyclopamine significant difference between the statistical significance (P<0.05). But to PANC-1 cell line, the change is not significant. After the intervention with cyclopamine, Gli-1 which is HH pathway downstream protein decrease.
     3、after 5-FU chemotherapy treatment, cancer stem cell marker (CD44, CD24) increase significantly in SW1990, and decrease significantly after treated with cyclopamine and 5-FU (P<0.05). And CD133, EPCAM expression of differences among the groups is not significant (P> 0.05).
     Conclusion:
     1. In the three pancreatic cancer cell lines, T3M4 is the most sensitive to 5-FU chemotherapy, PANC-1 is not sensitive, and SW1990 is on the sensitivity of 5-FU medium.
     2. Cyclopamine intervention can significantly improve the T3M4 and SW1990 cells to 5-FU chemotherapy sensitivity, and its effect is proportional to the concentration. But to PANC-1 cells, the chemotherapy sensitivity increase is relatively slow.
     3. The 5-FU chemotherapy in cancer stem cell marker (CD44. CD24) expression ratio significantly increased, while CD 133 and EPCAM not obvious. the combine intervention of cyclopamine and 5-FU, CD44 and CD24 expression ratio significantly, while the CD133, EPCAM not obvious. Thus, CD24 and CD44 can serve as a pancreatic stem cell surface markers, However, EPCAM and CD 133 are not suitable.
     4.5-FU chemotherapy resistant cells, with some of the characteristics of cancer stem cells, can be inhibited by HH signaling pathway blockers.
引文
[1]赵玉沛.重视早期诊断是攻克胰腺癌的关键[J].中华外科杂志,2001,39,4:261-262.
    [2]Kindler HL.Front-line therapy of advanced pancreatic cancer[J]. Semin oncol,2005,32:S33-36.
    [3]Nusslein-Volhard C, Wieschaus E.Mutations affecting segment number and polarity in Drosophila[J]. Nature.1980,287(5785):795-801.
    [4]Ganguly K, Schinder AF, Wong ST, et al. GABA itself promotes the developmental switch of neuronal GABA ergic responses from excitation to inhibition[J]. Cell.2001,105(4):521-32.
    [5]Ruel L, Rodriguez R, Gallet A, et al. Stability and association of Smoothened, Costal2 and Fused with Cubitus interruptus are regulated by Hedgehog[J]. Nat Cell Biol.20035(10):907-13.
    [6]Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance[J]. Nat Rev Cancer.2003,3(12):903-11.
    [7]McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling[J]. Curr Top Dev Biol.2003,53(1):1-114.
    [8]Li Y, Zhang H, Choi SC, et al. Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis[J]. Dev Biol.2004,270(l):214-31.
    [9]Freestone SH, Marker P, Grace OC, et al Sonic hedgehog regulates prostatic growth and epithelial differentiation[J]. Dev Biol.2003,264(2):352-62.
    [10]Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles[J]. Genes Dev.2001,15(23):3059-87.
    [11]Berman DM, Karhadkar SS, Hallahan AR, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade[J]. Science.2002,297(5586):1559-61.
    [12]Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours[J]. Nature.2003 425(6960):846-51.
    [13]Karhadkar SS, Bova GS, Abdallah N, et al Hedgehog signalling in prostate regeneration, neoplasia and metastasis[J]. Nature.2004,431(7009):707-12.
    [14]Thayer SP, di Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis[J]. Nature.2003,425(6960):851-6.
    [15]Watkins DN, Berman DM, Baylin SB, et al. Hedgehog signaling: progenitor phenotype in small-cell lung cancer[J]. Cell Cycle.2003,2(3):196-8.
    [16]Watkins DN, Berman DM, Burkholder SG, et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer[J]. Nature.2003, 422(6929):313-7.
    [17]Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome[J]. Cell. 1996,85(6):841-51.
    [18]Incardona JP, Gaffield W, Kapur RP, et al. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction[J]. Development. 1998,125(18):3553-62.
    [19]Dahmane N, Sanchez P, Gitton Y, et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis[J]. Development.2001, 128(24):5201-12.
    [20]Kubo M, Nakamura M, Tasaki A, et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer[J]. Cancer Res.2004, 64(17):6071-4.
    [21]Taipale J, Chen JK, Cooper MK, et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine[J]. Nature.2000, 406(6799):1005-9.
    [22]Chen JK, Taipale J, Young KE, et al. Small molecule modulation of Smoothened activity[J]. Proc Natl Acad Sci U S A.2002,99(22):14071-6.
    [23]Williams JA, Guicherit OM, Zaharian BI, et al. Identification of a small molecule inhibitor of the hedgehog signaling pathway:effects on basal cell carcinoma-like lesions[J]. Proc Natl Acad Sci U S A.2003,100(8):4616-21.
    [24]Sanchez P, Hernandez AM, Stecca B,et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling[J]. Proc Natl Acad Sci U S A.2004,101 (34):12561-6.
    [25]Chen XL, Cao LQ, She MR, et al. Gli-1 siRNA induced apoptosis in Huh7 cells[J]. World J Gastroenterol.2008,14(4):582-9.
    [26]Kim Y, Yoon JW, Xiao X, et al. Selective down-regulation of glioma-associated oncogene 2 inhibits the proliferation of hepatocellular carcinoma cells. Cancer Res.2007,67(8):3583-93.
    [27]Lenz HJ,Pharmacogenomics and colorectal cancer[J]. Ann Oncol,2004; 15(SuppM):173-177.
    [28]Sharp L, Little J. Polymorphisms in genes involved in folate metabolism and colorectal neoplasia:a huge review[J]. Ame J Epidemiol,2004,159(5):423-443.
    [29]Belvedere O, Puglisi F, Di Loreto C, et al. Lack of correlation between immunohistochemical expression of E2F-1, thymidylate synthase expression and clinical response to 5-fluorouracil in advanced colorectal cancer[J]. Ann Oncol,2004, 15(1):55-58.
    [30]Mattiso LK,,iohnson MR, Diasio RB. A comparative analysis of translated dihydropyrimidine dehydropgenase cDNA; conservation of Functional domains and relevance to genetic. polymorphisms[J]. Pharmadogenetics,2002,12(2):133-144.
    [31]姜浩,江骥,胡蓓.二氢嘧啶脱氢酶和胸腺嘧啶核苷激酶的研究进展[J].中国临床药理学杂志,2002,18(4):317-320.
    [32]Sekine I, Saijo N. Polymorphisms of metabolizing enzymes and transporter proteins involved in the clearance of anticancer agents[J]. Ann Oncol,2001,12(11): 1515-1525.
    [33]Ochoa L, Hurwitz HI, Wilding G, et al. Pharmacokinetics and bioequivalence of a combined oral formulation of eniluracil. an inactivator of dihydropyrimidine dehydrogenase, and 5-fluorouracil in patients with advanced solid malignancies[J]. Ann Oncol,2000,11(10):1313-1322.
    [34]Donnelly JG. Pharmacogenetics in Cancer Chemotherapy:Balancing Toxicity and Response[J]. Ther Drug Monit,2004,26(2):231-235.
    [35]Sohn KJ, Smirnakis F, Moskoritz DN, et al. Efects off(?)ypOlyglutamates synthetase modulation on chemosensitivity of colon cancer cells to 5-fluorouracil and methotrexate[J]. Gut,2004,53(12):1825-1831.
    [36]De Bono,IS. Rowinsk, EIC Therapeutics targeting signal transduction for patients with colorectal carcinoma[J]. Br Med Bull,2002,64:227-254.
    [37]Starting N, Cunninsham D. Monocolonal antibodies against vascularendotheKal growth factor and epiderm al growth factor receptor in advanced colorectal cancers:present and future directions[J]. Cur Opin Oncol,2004,16[4): 385-390.
    [38]Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L., Stem cells, cancer, and cancer stem cells[J]. Nature.2001,414 (6859):105-111.
    [39]Aubele, M. and Werner, M., Heterogeneity in breast cancer and the problem of relevance of findings[J]. Anal Cell Pathol 1999,19 (2):53-58.
    [40]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hem atopoietic cell[J]. Nat Med,1997,3: 730-737.
    [41]. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature 2004;432:396-401.
    [42]. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumoorigenic breast cancer cells[J]. Proc Natl Acad Sci USA 2003,100:3983-8.
    [43]. Collins, A. T. et al., Prospective identification of tumorigenic prostate cancer stem cells[J]. Cancer Res,2005,65 (23),10946-51.
    [44]. Suetsugu, A. et al., Characterization of CD 133+ hepatocellular carcinoma cells as cancer stem/progenitor cells[J]. Biochem Biophys Res Commun 2006,351 (4), 820-4.
    [45]. Kim C, Jackson E, Woolfenden A,et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell 2005;121:823-35.
    [46]. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature 2007;445:106-10
    [47]. Ricci-Vitiani L, Lombardi D, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells[J]. Nature 2007;445:111-5
    [48]. Li C, Heidt D, Dalerba P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res 2007;67:1030-7
    [49]. Hermann P, Huber S, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell 2007,1:313-23.
    [50]Shi, X., Liu, S., Kleeff, J., Friess, H., and Buchler, M.W. Acquired resistance of pancreatic cancer cells towards 5-Fluorouracil and gemcitabine is associated with altered expression of apoptosis-regulating genes[J]. Oncology 2002, 62,354-362.
    [51]Kasuya, H., Nishiyama, Y., Nomoto, S., et al. Suitability of a US3-inactivated HSV mutant (L1BR1) as an oncolytic virus for pancreatic cancer therapy[J]. Cancer Gene Ther 2007,14:533-542.
    [52]Zhao, Y.P., Chen, G., Feng, B., et al. Microarray analysis of gene expression profile of multidrug resistance in pancreatic cancer[J]. Chin Med J (Engl) 2007,120, 1743-1752.
    [53]Rauchwerger D.R, Firby, P.S, Hedley, D.W, et al. Equilibrative sensitive nucleoside transporter and its role in gemcitabine sensitivity[J]. Cancer Res,2000,60, 6075-6079.
    [54]Dell'Erba, C., Chiavarina, B., Fenoglio, C., et al. Inhibition of cell proliferation, cytotoxicity and induction of apoptosis of 1,4-bis(1-naphthyl]-2,3-dinitro-1,3-butadiene in gastrointestinal tumour cell lines and preliminary evaluation of its toxicity in vivo[J]. Pharmacol Res.2005,52,271-282.
    [55]Hofmann, C., Buttenschoen, K., Straeter, J., et al. Pre-clinical evaluation of the activity of irinotecan as a basis for regional chemotherapy[J]. Anticancer Res 2005, 25,795-804.
    [56]Ma G, Xiao Y, He L. et al. Recent progress in the study of Hedgehog signaling[J]. J Genet and Genomics,2008,35(3):129-137.
    [57]Feldmann, G., Dhara, S., Fendrich, V., et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases:a new paradigm for combination therapy in solid cancers[J]. Cancer Res 67,2187-2196.
    [58]Cooper, M.K., Porter, J.A., Young, K.E., et al. Teratogen-mediated inhibition of target tissue response to Shh signaling[J]. Science 1998,280,1603-1607.
    [59]胡伟国,熊炯听,刘涛,等.环杷明抑制胰腺癌细胞系ASPC - 1增殖和促凋亡作用[J].中华实验外科杂志,2008,25(5):554-556.
    [60]Yang Y, Tian X, Xie X, et al. Expression and regulation of hedgehog signaling pathway in pancreatic cancer. Langenbecks Arch Surg.2009 Apr 25. [Epub ahead of print]
    [61]Clarke MF, Morrison SJ, Wicha MS, et al. inventors; Regents of the University of Michigan, assignee. Isolation and use of solid tumor stem cells. United States Patent Application 2002119565.2001 Aug 1
    [62]Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci.U S A 2003; 100:3983-3988
    [63]Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiatingcells[J]. Nature 2004; 432:396-401
    [64]Gibbs CP, Kukekov VG, Reith JD, et al. Stem-like cells in bone sarcomas: implications for tumorigenesis[J]. Neoplasia 2005; 7:967-976
    [65]Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells[J]. Proc Natl Acad Sci U S A 2007; 104:10158-10163
    [66]O'Brien CA, Pollett A, Gallinger S, et al. human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature 2007; 445:106-110
    [67]Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells[J]. Nature 2007; 445:111-115
    [68]Prince ME, Sivanandan R, Kaczorowski A, et al Identification of a subpopulation ofcells with cancer stem cell properties in head and neck squamous cell carcinoma[J]. Proc Natl Acad Sci US A 2007; 104:973-978
    [69]Ma S, Chan KW, HuL, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells[J]. Gastroenterology 2007; 132:2542-2556
    [70]Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007; 120:1444-1450
    [71]Suetsugu A, Nagaki M, Aoki H, et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells[J]. Biochem Biophys Res Commun 2006; 351:820-824
    [72]Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell 2005; 121: 823-835
    [73]Fang D, Nguyen TK, Leishear K, et al. A tumorigenic subpopulation with stem cell properties in melanomas[J]. Cancer Res 2005; 65:9328-9337
    [74]Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells[J]. Cancer Res 2005; 65:10946-10951
    [75]Zhang S, Balch C, Chan MW, Lai HC, Matei D, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors[J]. Cancer Res 2008; 68:4311-4320
    [76]Bussolati B, Bruno S, Grange C, et al. Identification of a tumor-initiating stem cell population in human renal carcinomas[J]. FASEBJ 2008; 22:3696-3705
    [77]Yin, A.H., Miraglia, S., Zanjani, E.D., et al AC133, a novel marker for human hematopoietic stem and progenitor cells[J]. Blood 1997,90:5002-5012.
    [78]Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature,2004,432:396-401.
    [79]Hermann PC, Huber SL, Herder T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity inhuman pancreatic[J]. Cancer Cell Stem Cell,2007,1(3):313-323.
    [80]Jacob J, Bellach J, Grutzmann R. Expression of CD24 in adenocarcinomas of the pancreas correlates with higher tumor grades[J]. Pancreatology,2004,4(5): 454-460.
    [81]Olempska M, Eisenach PA,Amm erpohl O,et al. Detection of tumor stem cell markers in pancreatic carcinoma cell lines[J]. Hepatobiliary Pancreat Dis Int, 2007,6(1):92-97
    [82]Dembinski, J.L., and Krauss, S. o. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma[J]. Clin Exp Metastasis,2009,26,611-623.
    [1]Clarke MF, Dick JE, Dricks PB,et al Cancer Stem Cells-Perspectives on Current Status and Future Directions:AACR Workshop on Cancer Stem Cells[J]. Cancer Res, 2006,66(19):9339-9344.
    [2]Dalerba P, Cho RW, Clarke MF. Cancer stem cells:models and concepts[J]. Annu Rev Med.2007,58:267-84.
    [3]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hem atopoietic cell[J]. Nat Med,1997,3:730-737.
    [4]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008. CA Cancer J Clin, 2008,58(2):71-96.
    [5]Rothenberg ML, Moore MJ, Cripps MC, et al. A phase Ⅱ trial of gemcitabine in patients with 5-FU-refractory pancreas cancer[J]. Ann Oncol 1996,7:347-53.
    [6]. Hamburger, AW. and Salmon, SE. Primary bioassay of human tumor stem cells[J]. Science,1977,197 (4302),461-3.
    [7]. Prince M, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma[J]. Proc Natl Acad Sci 2007,104:973-8.
    [8]. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature 2004;432:396-401.
    [9]. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA 2003,100:3983-8.
    [10]. Collins, A. T. et al., Prospective identification of tumorigenic prostate cancer stem cells[J]. Cancer Res,2005,65 (23),10946-51.
    [11]. Suetsugu, A. et al., Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells[J]. Biochem Biophys Res Commun 2006,351 (4), 820-4.
    [12]. Kim C, Jackson E, Woolfenden A,et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell 2005;121:823-35.
    [13]. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature 2007;445:106-10
    [14]. Ricci-Vitiani L, Lombardi D, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells[J]. Nature 2007;445:111-5
    [15]. Li C, Heidt D, Dalerba P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res 2007; 67:1030-7
    [16]. Hermann P, Huber S, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell 2007,1:313-23.
    [17]. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783-92.
    [18]. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer[J]. N Engl J Med 2004;350:2335-42.
    [19]. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer[J]. N Engl J Med 2006;355:2542-50.
    [20]. Minn AJ, Kang Y, Serganova I, et al. Distinct organ-specific metastatic potential of individual breast cancer ceils and primary tumors[J]. J Clin Invest,2005, 115:44-55.
    [21]. Wehler T, Wolfert F, Schimanski CC, et al. Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease[J]. Oncol Rep,2006,16:1159-1164.
    [22]. Jimeno A, Feldmann G, Suarez-Gauthier A, et al. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development[J]. Mol Cancer Ther 2009;8:310-4.
    [23]. Huang E H. Heidt DG, Li CW et al. Cancer stem cells:a new paradigm for understanding tumor progression and therapeutic resistance[J]. Surgery,2007, 141(4):415-419.
    [24]Chumsri S, Phatak P, Edelman MJ, et al. Cancer stem cells and individualized therapy[J]. Cancer Genomics Proteomics,2007,4(3):165-174.
    [25]Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaenfie stem cells[J]. Nature,2003.423(6937):255-260.
    [26]Dontu G, Jackson KW, McNicholas E, et al. Role of Notchsignaling in cell-fate detar mination of human mammalT stem/progenitor cells[J]. Breast Cancer Res, 2004,6(6):R605-615.
    [27]. Liu S, Dantu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells[J]. Cancer Res, 2006,66(12):6063-6071.
    [28]. Yihnaz OH. Valdez R. Theisen BK et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells[J]. Nature,2006, 441(7092):475-482.
    [29]. Berman DM. Karhadkar SS. Maitra A. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours[J]. Nature,2003, 425(6960):846-851.
    [30]. Thayer SP, di Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis[J]. Nature,2003,425(6960):851-856.
    [31]Feldmann G, Fendricb V, McGovern K, et al. An orally bioavailable small molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer[J]. Mol Cancer Ther,2008,7(9):2725-2735.
    [32]Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles[J]. Genes Dev.2001,15(23):3059-87.
    [33]Thayer SP, di Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis[J]. Nature,2003,425(6960):851-856.
    [34]Chen J, Crabbe A, Van Duppen V, et al. The notch signaling system is present in the postnatal pituitary:marked expression and regulatory activity in the newly discovered side population[J]. Mol Endocrinol,2006,20:3293-3307.
    [35]Challen GA, Bertoneello I, Deane JA, et al. Kidney side population reveals muhilineage potential and renal functional capacity but also cellular heterogeneity[J]. J Am So Nephrol,2006,17:1896-1912.
    [36]Androutsellis-Theotokis A, Leker RR, Soldner F, et al. Notch signailing regulates stem cell numbers in vitro and in vivo[J]. Nature,2006,442:823-826
    [37]Dontu G, Jackson KW, MeNicholas E, et ai. Role ofNotch signaling in cell-fate determination of human mammary stem/progenitor cells[J]. Breast Cancer Res,2004,6:R605-615.
    [38]Wang XD, Leow CC, Zha J, et ai. Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation[J]. Dev Biol,2006,290: 66-80.
    [39]Thelu J, Rossio P, Favier B. Notch signalling is linked to epidermai cell differentiation level in basal cell carcinoma, psoriasis and wound healing[J]. BMC Dermatol,2002,2:7.
    [40]Fan X, Matsui W, Khaki L, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors[J]. Cancer Res,2006,66: 7445-7452
    [41]. Cui H. Hn B. Li T. et al. Bmi-1 is essential for the tumorigenicity of neuroblastoma cells[J]. Am J Pathol,2007,170(4):1370-1378.
    [42]. Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells[J]. J Clin Oncol, 2008,26(17):2806-2812.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700