真空管集热和卵石层贮热转换系统的研究及其热性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了适应国家提出的“十一五”期间单位国内生产总值能源消耗降低百分之二十左右,主要污染物排放总量减少百分之十的目标要求,各地政府、研究机构以及开发企业等都在不同层面、不同区域、不同建筑上做了大量细致的研究工作,特别是在太阳能建筑领域进行积极的研究与实践,已成为实现可持续发展的热门课题。
     我国农村人口约占全国人口的80%,农村住宅在我国住宅建设中占有重要地位。目前农村住宅空气温度调节主要用燃煤和燃柴来控制室温,这种温度调节消耗的能量要占住宅总能量的70%以上。这种传统的控制室温方式不仅带来外界环境的污染,而且为了燃柴可能造成生态环境的破坏。农村住宅配套太阳能地热储能系统技术,是针对我国广大农村冬季寒冷时调节室内温度而采取的一项有效的太阳能利用技术,热能的交换自然循环,树龄能源消耗建筑技术。研究的成果将对建设和谐、环境、节约型社会主义新农村具有深远的历史意义。具体研究内容如下:
     (1) 通过沈阳地区30年的气象数据资料分析了冬季采暖期(11月~3月)与非采暖期(4月~10月)太阳能辐射量变化的规律,同时分析比较了光辐射与水平面不同角度时的辐射量历史数据。结果表明,在冬季采暖期集热管与光辐射垂直时总日射月平均日辐射量的最小辐射量、平均辐射量、最高辐射量分别为与光辐射水平时总日射月平均日辐射量的2.0倍,1.8倍和1.9倍。在此基础上确定了太阳能集热器与地水平线的定位角度为56度,同时依月平均气温的历史资料明确了集热器,贮存与用能匹配关系。
     (2) 太阳能地热储能系统主要由太阳能集热器、地热储能用的卵石层及传热介质循环所需的管道等组成。其中太阳能集热器的集热面积为3.5m~2;卵石层储热部分的卵石层铺设厚度为190mm,其体积为2m~3,为了提高传递介质的热转换速率增大了以往的进出口直径,同时考虑热能的自然循环交换,室内的热储能的卵石层水平高度高于室外集热器的高度,属零能源消耗建筑技术。
     (3) 以气体传热为介质进行了储能试验。储热的卵石直径为50~100mm,卵石之间的空隙为45.7%。试验结果表明:当室外环境最高、最低、平均温度分别为1.4℃、-15.9℃、-6.6℃时热水箱的温度分别为46.6℃、-4.7℃、17.5℃:卵石温度分
In order to decrease energy depletion and emission of the main contamination in the central government, local government, research institute and enterprise in China have paid more attention to the development of renewable energy.
    In China, 80% of the population is in the country, so the configuration of rural buildings is very important to decrease the depletion of energy. Now, the villagers use the coal and fuel wood to control the temperature of the house. This can cause the environment pollution and is bad for ecosystem. So the researchers are now providing new technologies to use solar energy as a thermal storage system for the rural buildings. This technology can exchange the heat mass by the natural circulation without an energy consumption. If we can succeed in this research, it is an instructive technology for us to build a harmonious socialistic country in environment and energy. The main contents of this research are as follows:
    (1) The solar radiation was analyzed in the heating period (from November to March) and none heating period (from April to October) according to the weather data of Shenyang city for the past of 30-year periods. And the incident solar radiations in the different angle of incident solar radiation (horizontal solar radiation, vertical solar radiation and normal solar radiation) were analyzed and compared. When the vacuum tube solar collectors are vertical against the incident radiation, the minimum incident solar radiation, average incident solar radiation and maximum incident solar radiation of the daily mean solar radiation within a month of the gross solar radiation were 2.0 times, 1.8 times and 1.9 times as big as those of horizontal solar radiation. So the orientation angle is 56 degrees between solar collector and terra horizontal line, and given the matching connection between the solar thermal conversion
引文
1. Moonki Jang, Liu Ronghou, Piao Zailin. 2005. Experimental study on the Thermal Characteristics of Gravel Layer in a Solar Thermal Energy Conversion System for House Heating. Transactions of the CSAE, 21(12): 121-126.
    
    2. Moonki Jang. 2005. Characteristics of Heat Storage and Release of Gravel Layer in Solar Collectors by Hot Air Natural Circulation. Transactions of the CSAE, 21(8): 126-131.
    
    3. Moonki JANG, PIAO Zai-lin, LIU Rong-hou. 2005. Comparison of Thermal Characteristics of Heat Circulation Medium in Solar Collectors, Journal of Shenyang Agricultural University, 36(6): 699-704.
    
    4. Moonki Jang, Liu Ronghou, Piao Zailin, Rhee, Shin-Ho. 2005. Experimental Study on the Thermal Characteristics of House Heating System for Hot Water Natural Circulation Using Solar Collectors and Gravels. Proceeding of the Internationa] Symposium on Agricultural Engineering. Shenyang: Shenyang Agricultural University, 19-31.
    
    5. J. M. Oh. 2005. Introduction to solar Heating, Cooling & Hot Water Systems: concepts, Design Methods & Economic Analysis I-Passive Solar Buildings. Korea: Yeil Plan, 1-38.
    
    6. Resident House Institute. 2003. Echo-housing Living Together with nature. BalEon. Korea, 50-51.
    
    7. Choi S. H. 2002. A study on optimized design decision of building service system based on a Life Cycle Cost Analysis, Korea Society of Air conditioning and Refrigeration Engineers. 14(2): 134-142.
    
    8. Baeck, N. C. 2001. A study on the field test and simulation of active solar system for residential house, Solar energy. 21(1): 93-100.
    
    9. G H. Lee. 2002. Characteristics of Sensible Heat Storage for Gravel, Proceeding of Korean Agricultural Machinery, 14(5): 564-572.
    
    10. Jin Hong Kim. 2004. Verification Experiment and Economic Analysis for Solar Hot Water Heating System. Solar Energy, 8(15): 28-37.
    
    11. Lee S K. 2001. Thermal Storage Performance of Underground Rock Storage System for Heating of Greenhouse. Proceeding of the Korean Society for Bio-Environment Control, 86-87.
    
    12. Suat Canbazoglu. 2005. Enhancement of solar thermal energy storage performance using sodium hyposulfite pent hydrate of a conventional solar water-heating system. Energy and Buildings, 37: 235-242.
    
    13. X. Q. Zhai. 2005. Experimental investigation on air heating and natural ventilation of a solar air collector. Energy and Buildings, 37: 373-381.
    
    14. J. Karlssou. 2005. Evaluation of window energy rating models for different houses and European climates. Energy and Buildings, 37: 135-142.
    
    15. Virel Badescu, Benoit Sicre. 2003. Renewable energy for passive house heating Part I. Building description. Energy and Buildings, 35: 1077-1084.
    
    16. Viorel Basescu. 2005. Simulation analysis for the active solar heating system of a passive house. Appied Thermal Engineering: 1-10.
    
    17. J. A. Duffie, W. Beckman. 1991. Solar Engineering of Thermal Process. Wiley. New York.
    
    18. S. Kalogirou. 2004. Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30: 231-295.
    
    19. Kalogirou. 2003. The potential of solar industrial process heat applications. Applied Energy, 76: 337-361.
    
    20. Y. Tripanagnostopoulos, M. souliotis. 2000. Solar collectors with colored absorbers. Solar Energy, 68: 343-356.
    21. Karl W, Gunnnar Tamim. 2003. Solar conversion under consideration of energy and entropy. Solar Energy, 74: 525-528.
    
    22. Giti Taleghaui, Akbar Shabni Kia. 2005. Technical-economical analysis of the Save biogas power plant. Renewable Energy, 30: 441-446.
    
    23. Choi, Dong-Ho. 2001. A Study on the Estimation of Indoor Thermal Environment and the Heating characteristics of Electric Hot Air Heating System with or Without Thermal Storage heating System Using Off-peak Electricity. Korean Architecture, 17(11): 223-232.
    
    24. X. Q. Zhai, Y. J. Dai, R. Z. Wang. 2005. Comparison of heating and natural ventilation in a solar house induced by two roof solar collectors. Applied Thermal Engineering, 25: 741-757.
    
    25. Khalid, Qussai J. Abdul-Ghafour. 2003. Development of design charts for solar cooling systems. Part I computer simulation for a solar cooling system and development of solar cooling design charts. Energy Conversion and Management, 44: 313-339.
    
    26. Khalid, Qussai J. Abdul-Ghafour. 2003. Development of design charts for solar cooling systems. Part II Application of the cooling f-chart. Energy Conversion and Management, 44: 341-355.
    
    27. R. Posorski, M. Bussmann, C. Menke. 2003. Does the use of Solar Home Systems (SHS) contribute to climate protection. Renewable Energy, 28:1061-1080.
    
    28. T.R. NIELSEN, K. DUER and S. SVENDSEN. 2000. Energy performance of glazing and windows. Solar Energy, 69: 1-6,137-143.
    
    29. B O NORDELL. 2000. High temperature solar heated seasonal storage system for low temperature heating of buildings. Solar Energy, 69(6): 511-523.
    
    30. G C. Bakes. 2002. Improved energy management method for auxiliary electrical energy saving in a passive-solar-heated residence. Energy and Buildings, 34: 699-703.
    
    31. B. L. P. Peuportier. 2001. Life cycle assessment applied to the comparative evaluation of single family houses in the French context. Energy and Buildings, 33: 443-450.
    
    32. G A. Florides, S. A. Tassou, S. A. Kalogirou. 2002. Measures used to lower building energy consumption and their cost effectiveness. Applied Energy, 73: 299-328.
    
    33. Kaus Kaae and Ersen, Henrik Madsen. 2001. Modelling of a thermosiphon solar water heating system and simple model validation. Energy and Building, 31: 13-24.
    
    34. Jongjit Herunlabh, Sopin Wachirapu Wadon. 2001. New configurations of a roof solar collector maximizing natural ventilation. Building and Environment, 36: 383-391.
    
    35. M. Bojie, N. Lukie. 2000. Numerical evaluation of solar-energy use through passive heating of weekend houses in Yugoslavia. Renewable Energy: 207-222.
    
    36. Junji Qnishi, Haruo Soeda. 2001. Numerical study on a low energy architecture based upon distributed heat storage system. Renewable Energy, 22: 61-66.
    
    37. S. Kkalogirou, Y. Tripanagnostopoulos. 2005. Performance of solar systems employing collectors with colored absorber. Energy and Buildings, xxx, xxx-xxx: 1-12.
    
    38. Viorel Badescu, Benoit Sicre. 2003. Renewable energy for passive house heating II. Model. Energy and Building, 35: 1085-1096.
    
    39. Lee S B. 2001. A Study on Energy Performance Analysis of Radiant Cooling System Using Ondol Structures. Korean Architecture, 17(10): 257-264
    
    40. Lee, Seo yong. 2002. A Study on combination Technique for the Sustainable Office Building Envelope. Korea: Master thesis of Graduate school of Konkuk University.
    
    41. Woo Seungku. 2002. A Study on the Space of zero-energy based on the paradigm of ecology. Korea: Master thesis of Graduate school of Konkuk University.
    42. Adelman, D. 1988. Some control strategies for radiant floor heating. Radiant Times. 4-5.
    43. Friedlander, M. 1986. Premium heating with radiant slabs. Solar Age. 66-71.
    44. Leigh, S.B. 1991. An experimental study of the control of radiant floor heating systems. ASHRAE Transactions, 97(2): 800-808.
    45. Leigh, S.B. 1991. An experimental approach for evaluating control strategies of hydraulic radiant floor systems. America: Doctoral Dissertation of The University of Michigan.
    46. MacCiuer, C.R. 1989. The control of radiant slabs. ASHRAE Journal. 28-33.
    47. Stetiu, C. and H.E. Feustel. 1994. Development of a Model to Simulate the Performance of Hydronic-Radiant Cooling Ceiling. LBL- Report, LBL-36636.
    48. Yeo, M. S. 1997. A Study on the Separated Heating Surface Control of Radiant Floor Heating System in an Apartment House. Korea: Ph.D. thesis of Seoul National University.
    49. Kim, S. W., Lee, D. W. and Park, H. S. 1996. Development of a Improved Ondol System. Korea National Housing Corpora ion.
    50. Kang, Y. H. 1998. Development of solar technology in Korea. Solar energy. 18(2): 1-7.
    51. Leigh, Seung-Bok. 1995. An Experimental Study of the Control Performance of Radiant Floor Heating System. Korean Architecture. 15(12): 237-244.
    52. Lee S. S. 1998. Installation of Solar hot water heater. Solar energy. 18(2): 51-66.
    53. Ahn B W. 1997. Heating Space and Thermal Environment of Ondol heating. Korean Life and Environment, 4(3): 2-10.
    54. Bjurstrom, H. 1985. An energy analysis of sensible and latent heat storage, heat recovery systems, 5(3): 233-250.
    55. Aceves Sabofio, S. H. 1994. Optimum efficiencies and phase change temperature in latent heat storage system. Energy Resources Technology, 115(2): 79-86.
    56. Baruch Givon. 1985. Temperature and Under Ground Buildings. Energy and building, 8(3): 111-119.
    57. Choi, Dong-Ho. 1999. The Characteristics of Indoor Thermal Environment with Thermal Storage Heating System Using Off-peak Electricity. Korean Architecture, 15(11): 235-244.
    58. Kim, Dong-Young. 1998. A Semantic Study on the Image of the Traditional Architecture Appearance. Korean Architecture, 14(10): 11-19.
    59. Go, Seong-Seok. 1998. An Experimental Study on the Crack Prevention of the Surface Finishing Mortar in Ondol Floor Structure. Korean Architecture, 14(4): 25-34.
    60. Siegel, R. and Howell, J. R. 1981. Thermal Radiation Heat Transfer. McGraw Hill.
    61. Holman, J. P. 1981. Heat Transfer. McGraw Hill.
    62. Lee, Bum-Youl. 2000. A Study on Environmental Performance of Double-Skin System. Proceeding of Korean Architecture, 20(2): 15-19.
    63. William A. 1994. Solar engineering of thermal process. McGraw Hill, 251-278.
    64. Kim, Hyeon-Soo. 1998. A Study on the Definition and goals of Environmentally Friendly Architecture. Korean Architecture, 14(2): 207-216.
    65. Choi. Dong-Ho. 1998. An Experimental Study on the Indoor Thermal Environment of a Green House without Heating in Winter Season. Korean Architecture, 14(5): 56-64.
    66. Cho, Sung-Hwan. 1998. Thermal Characteristic of Vacuum Window Glazing. Korean Architecture, 14(8): 235-242.
    67. R.E. Collins. 1992. Transparent Evaluated Insulation. Solar Energy, 49(5): 45-53.
    68. D.K. Benson. 1990, Vacuum Window Glazing for Energy Efficient Buildings. SERI report.
    69. Chung, Young-Chul. 1996. A Study on the Anthropocentric Characteristics of the Korean Traditional Architecture. Korean Architecture, 12(2): 99-111.
    
    70. Kim, Yong-Jin. 1998. Estimation of the Energy Transferred from an Ondol Surface of an Ondol-Heating Room with Partially Transparent Windows. Korean Architecture, 14(8): 215-225.
    
    71. S. A. Kein, W. A. Beckman, J. A. Duffie. 1976. A design procedure for solar heating systems.Solar Energy, 18:113-127.
    
    72. R.D Singh, GN. Tiwari. 1999. Thermal heating of controlled environment greenhouse a transient analysis. Energy Conversion & Management, 41: 505-522.
    
    73. Santamouris M, Balaras CA, Dascalaki E, Vallindras M. 1994. Passive solar agricultural green house- a world wide classification evaluation of technologies and systems use for heating purpose. Solar Energy, 53:411-426.
    
    74. Santamouris M, Agirious A, Vallindras M. 1993. Design and operation of a low energy consumption passive solar greenhouse. Solar Energy, 52: 371-378.
    
    75. Raj, R. V.; Nallusamy, N.; Sampath, S. 2001. Combined Sensible and Latent Heat Storage Solar Water Heating Systems. Solar Energy Conversion Systems, 12: 183-186.
    
    76. Inha Univesity. 1993. Study on characteristics and basic design data for thermal energy storage systems. Korea science and engineering foundation. 111-121.
    
    77. Korea institute of energy research. 1997. Development of seasonal energy storage technology for the integrated energy to agricultural and fishery sectors and construction of demonstration plant. Ministry of commerce. Industry and energy
    
    78. Daewoo construction company. 1997. Development of solar-air heat pump system. Ministry of construction & Transportation.
    
    79. John A. Duffie. 1980. Solar Engineering of Thermal process. John Wiley
    
    80. Yu, Chang-Kyun. 1990. A Study on the Thermal Environment of Passive Solar School Buildings. Korea: Master thesis of Graduate School of Jeju University.
    
    81. Maeng, Y J. 1981. A Study on the solar house. Korea: Master Thesis of Graduate School of Hanyang University.
    
    82. Kwak Roh Yeul. 1987. A Study on the Thermal Performance of the Thermosiphon Air Collectors. Korea: Master thesis of Graduate School of Hanyang University.
    
    83. Cho, Chang ho. 1990. A Study on the thermal zoning of a house building in passive solar system. Korea Architecture, 12(5): 48-57.
    
    84. Won-Hoon Park. 1979. Economic Analysis of Air Type Solar Residential Heating System. Solar Energy. 2(2): 68-76.
    
    85. J. Y. Yu, G Y. Yun. 2002. Life Cycle Cost Analysis of Active Solar System for Residential House. Proceeding of Solar Energy, 146-151.
    
    86. Lee, Young Soo. 1986. A Study on the Establishment of Optimum Design Conditions and Economic Evaluation for Hot Water Heating Solar Energy System. Solar Energy, 6(1): 48-59.
    
    87. Ee-Tong Pak. 1982. Optimum Collector Area and Economic Evaluation for the Greenhouse Heating. Solar Energy, 2(1): 49-58.
    
    88. Kwang Seop Chung. 1991. A Study on the Experiments and Transient Simulations of Ondol Heating Floor by Varying Pipe Embedding Depths and Hot Water Supply Conditions. Korea: Graduate School of Hanyang University.
    
    89. Ann, Byung Wook. 1989. Heat Transfer Characteristics of Inside Film in Ondol-Heated Space. Korea: Graduate School of Hanyang University.
    
    90. Lee, Seung-Soo. 2001. A Study on the Characteristics of the Thermal Environment in the Using Radiant Floor Jointly with Convection Cooling and heating at a Living Room. Korea: Graduate School of Kyongil University.
    91. Park, Min Yong. 1988. A Study on Analysis of the Sensible Heat Storage Wall and the paraffin's Latent Heat Storage Wall. Korea: Graduate School of Dong-A University
    92. Kim Kwang Wha. 1989. A Study on the Heat Storage Performance of Passive Solar System by Using Phase Change Materials. Korea: Graduate School of Dong-A University.
    93. P. RAMAN, SAN JAY MANDE. 2001. A Passive Solar System for Thermal Comfort Conditioning of Buildings in Composite Climates. Solar Energy, 70(4): 319-329.
    94. ABDUL-JABBAR N. KHALIFA. 1998. Renewable Energy, 14(4): 29-34.
    95. A. Niachou, K. Papakonstantinou, M. Santamouris. 2001. Analysis of the Green Roof Thermal Properties and Investigations of its Energy Performance. Energy and Buildings, 33: 719-729.
    96. M.T. Aikhalaileh, K. A. Atieh. 1999. Modeling and Simulation of Solar Pond Floor Heating System. Renewable Energy, 18: 1-14.
    97. I. Blasco Lucas, L. Hoese. 2000. Experimental Study of Passive Systems Thermal Performance. Renewable Energy, 19: 39-45.
    98. Yosuhiro Hamada, Makoto Nakamura. 2001. Field Performance of a Japanese Low Energy Home Relying on Renewable Energy. Energy and Buildings, 33: 805-814.
    99. G.C. Bakos. 2002. Improved Energy Management Method for Auxiliary Electrical Energy Saving in a Passive -Solar-heated Residence. Energy and Buildings, 34: 699-703.
    100. A. K. ATHIENITIS, C. Liu. 1997. Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage, Building and Environment, 32(5): 405-410.
    101. ANDREAS K. ATHIENITIS. 1997. Investigation of Thermal Performance of a Passive Solar building with Floor Radiant Heating. Solar Energy, 61(5): 405-410.
    102. ANDREAS K. ATHIENITIS. 1997. Investigation of Thermal Performance of a Passive Solar Building with Floor Radiant Heating. Solar Energy, 61(5): 337-345.
    103. PETER SOBOTKA, HIROSHI YOSHINO. 1996. Thermal Comfort in Passive Solar Earth Integrated Rooms. Building and Environment, 31 (2): 155-166.
    104. Li Yuanzhe. 1989. Principle of passive solar house and design. China: Energy press.
    105. Li Yuanzhe. 1993. Design handbook of passive solar house. China: Tsinghua University press.
    106. World Energy Council (WEC), www.woridenergy.org
    107. http://www.etis.net/welcome.htm
    108. Center for Energy and Environmental Policy, http://ceep.udel.edu/ceep.html
    109. Department for Energy and the Environment (ONRI), http://www.aist.go.jp
    110. Energy & Environmental Research Center (EERC), http://www.eerc.und.nodak.edu
    111. Energy and Environment, http://www.wam.umd.edu
    112. http://www.solarl.co.kr
    113. http://peaceone.net
    114. Korea institute of energy research, http://www.kier.re.kr/main01.html
    115. Korea Energy Management Corporation, http://www.kemco.or.kr/
    116. Energy Conservation through Energy Storage, http://www.lith.se/depts/sb/fo_vatten/projects/iea/
    117. Thermal Energy Storage Systems, http://www.energy.ca.gov/energy/development/OTCOM/thermalenergy.html
    118. http://www.topenergy.org/bbs/index.php
    119. Lee Cheolgu, Ahn Byeonguk. 2003. Architectural heating equipment, Sejin company.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700