二氮杂萘酮结构聚醚酮的改性及其用于燃料电池聚电解质膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含二氮杂萘酮结构的聚醚酮(PPEK)是一种全新的高性能聚合物,具有优良的机械性能、热稳定性、化学稳定性和抗氧化性能。本论文目的是通过对PPEK磺化、氯甲基化/季铵化,以及将磺化PPEK与无机粒子如磷钨酸(PWA)、磷酸氢锆(ZrP)和硫酸氢铯(CS)掺杂等方法对PPEK进行改性。研究了燃料电池用聚电解质膜制备及其结构与性能的关系。
     首先,将PPEK在80~100℃的浓硫酸或氯磺酸和浓硫酸混合液中磺化,制备了磺化PPEK(SPPEK)膜,红外光谱、核磁共振谱和X-射线能量色散谱分析表明磺酸基团被成功引入PPEK分子主链。优化的PPEK磺化反应条件是:5g PPEK溶解于70ml浓硫酸和10ml氯磺酸溶液中,在90℃下反应3h。由SPPEK制备的SPPEK膜具有良好的阻甲醇渗透性,渗透系数为1.07×10~(-7)cm~2/s,比Nafion117膜的甲醇渗透率(2.38×10~(-6)cm~2/s)低20倍以上;SPPEK膜质子传导率在95℃时最大,为3.12×10~(-2)S/cm,基本满足聚电解质膜燃料电池的应用要求。
     其次,SPPEK与PWA掺杂所制备的PWA/SPPEK杂化膜热性能和机械性能未因磷钨酸粒子的引入而明显劣化,PWA含量为10wt%的PWA/SPPEK杂化膜(MP10)具有良好的阻甲醇渗透性,渗透系数为1.02×10~(-7)cm~2/s,比Nafion117膜的甲醇渗透率低20倍以上,MP10质子传导率在80℃时具有最大值0.17S/cm,高于Nafion117膜的0.11S/cm。溶胀-浸渍法制备的α-ZrP/SPPEK杂化膜(Mz5)和直接混合法制备的α-ZrP/SPPEK杂化膜(Mz10)的甲醇渗透系数分为1.52×10~(-7)cm~2/s和1.74×10~(-7)cm~2/s,杂化膜Mz5的质子传导率比Mz10高一倍以上,Mz5和Mz10膜的质子传导率在95℃时最高,分别为7.65×10~(-2)S/cm和3.26×10~(-2)S/cm。同时研究还发现,硫酸氢铯的引入对SPPEK杂化膜性能有负面影响,硫酸氢铯含量为10%的CS/SPPEK杂化膜甲醇渗透系数力1.40×10~(-7)cm~2/s,质子传导率最大为2.25×10~(-2)S/cm,这两种性能都比SPPEK相应的性能差。
     最后,由氯甲基化/季铵化改性的PPEK得到的碱性QPPEK膜甲醇渗透系数为7.21×10~(-7)cm~2/s,比Nafion117膜的甲醇渗透系数低3倍,阴离子传导率最大为1.14×10~(-2)S/cm,基本满足低温碱性聚电解质膜燃料电池的工作需要。
Poly(phthalazinone ether ketone) (PPEK) is a new kind of high performance polymer and has excellent mechanical properties, thermal stability, chemical and oxidative resistance. The aim of this work is to modify PPEK by means of sulfonation, chloromethylation/quaternization, doping sulfonated PPEK with inorganic particles such as cesium hydrogen sulfate (CS), zirconium hydrogen phosphate hydrate (ZrP) and 12-phosphotungstic acid (PWA), to prepare polymer electrolyte membranes (PEM) for fuel cells, and to study the relationship between structure and properties of the polymer electrolyte membranes.
    Firstly, the sulfonated PPEKs (SPPEKs) were synthesized by reacting PPEK with 98% concentrated sulfuric acid or 98% concentrated sulfuric acid and chlorosulfonic acid mixture under 80~100℃. The presence of sulfonic acid groups in SPPEKs was confirmed by Fourier transform infrared analysis, Energy Dispersive X-Ray and ~1H NMR spectrum. The optimum reaction conditions was 5g PPEK in the mixture of 70ml concentrated sulfuric acid of 98% and 10ml chlorosulfonic acid at 90℃ for 3h. The methanol permeability of SPPEK membrane was 1.07×10~(-7) cm~2/s, which was about 20 times lower than that of Nafion 117 (2.38×10~(-6) cm~2 s(-1)) under similar condition. The SPPEK membrane showed the highest proton conductivity of 3.12×10~(-2) S/cm at 95℃, which was in the range needed for the high performance fuel cell PEM.
    Secondly, the incorporation of the PWA into the SPPEK membrane did not damage the thermal stability and mechanical properties of the PWA/SPPEK hybrid membranes badly. The methanol permeability of the hybrid membrane containing 10 wt% PWA (MP10) was 1.02×10~(-7) cm~2/s, which was about 20 times lower than that of Nafion 117 under similar condition. MP10 showed the highest proton conductivity of 0.17 S/cm at 80℃, which was higher than that of Nafion 117 (0.11 S/cm). The methanol permeabilities of a-ZrP/SPPEK hybrid membrane prepared from swell-dipping method (Mz5) and direct blending method (Mz10) were 1.52×10~(-7) and 1.74×10~(-7) cm~2 s~(-1) respectively. The highest proton conductivities of Mz5 and Mz10 were 7.65 ×10~(-2) S/cm and 3.26×10~(-2) S/cm at 95℃. Doping CS into SPPEK membrane had a negative impact on the properties of CS/SPPEK hybrid membranes. The methanol permeability and the
    highest proton conductivity of the hybrid membrane containing 10% CS were 1.40× 10~(-7) cm~2/s and 2.25×10~(-2) S/cm respectively, which were lower than that of membrane SPPEK.
    Lastly, the quaternized PPEKs (QPPEKs) were modified by chloromethylation/ quaternization, and the alkaline QPPEK membrane had a methanol permeability 7.21× 10~(-7) cm~2/s and the highest anion conductivity 1.14×10~(-2)S/cm. It might be suitable for low temperature alkaline polymer electrolyte membrane fuel cells.
引文
[1] 贺华,赵景联.燃料电池的开发现状及其发展前景[J].石油技术与应用,2000,19(3):205.
    [2] 衣宝廉.燃料电池——高效、环境友好的发电方式[M].北京:化学工业出版社,2000.
    [3] 牟旭东.燃料电池的技术进展与市场潜力[J].经济咨询,2000,(2):4~5.
    [4] 付红.燃料电池汽车研发新进展[J].全球科技经济瞭望,2001,(5):63.
    [5] 徐晓玲,张秋埜.燃料电池汽车技术的发展[J].能源工程,2001,(2)24~26.
    [6] 刘翔海.燃料电池及其相关技术在汽车领域的应用与研究[J].汽车研究与开发,2001,4:15~19.
    [7] 何传文,雪亚林.PEMFC,一种卫星适用的电源[J].航天器工程,2000,9(4):34~38.
    [8] 马素卿,陈亚昕.水下推进用高能电池[J].船电技术,1999,(1):13~23.
    [9] G.Cacciola, V. Antonucci, S. Freni.Technology up date and new strategies on fuel cells[J].Power sources,2001 100:67-69.
    [10] 普宏江.美国燃料电池发展现状[JJ.全球科技经济瞭望,1998,(8):22~23.
    [11] 陈军,袁华堂.日本燃料电池的发展状况[J].电源技术,2002,26(1):39~41.
    [12] 卢世应.意大利燃料电池技术的开发应用[J].全球科技经济瞭望,1999,(2):40~41.
    [13] 刘清华.英国燃料电池研究与开发[J].全球科技经济瞭望,1999,(1):28.
    [14] 黄振中.中国的燃料电池技术[J].世界科技研究与发展,24(3):36~39.
    [15] 衣宝廉,韩明,张恩浚等.千瓦级质子交换膜燃料电池[J].电源技术,1999,23(2):120~125.
    [16] B.K.Dattaa, G.Velayutham, A.Prasad Goud. Fuel cell power source for a cold region[J]. Power source, 2002,106:370-376.
    [17] Charles Stone, Anne E. Morrison. From curiosity to "power to change the world"[J].Solid state ionics,2002,152-153:1-13.
    [18] J.Hall, R.Kerr. Innovation dynamics and environmental technologies: the emergence of fuel cell technology [J]. Cleaner Production,2003,11:464-465.
    [19] Chunshan Song. Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21 st century[J].Catalysis Today,2002,77:24-27.
    [20] 许业伟,袁文辉,关建郁等.燃料电池的进展[J].广东化工,2001,(4):9~12.
    [21] 鲁德宏.燃料电池的节能与环保特性分析[J].发电设备,2003,(5):57.
    [22] 李春鸿.稀土元素在燃料电池中的应用[J].电源技术,1992,(3):24~28.
    [23] Kamaruzzaman Sopian, Wan Ramli Wan Daud. Challenges and future developments in proton exchange membrane fuel cells [J]. Renewable Energy,2006, 31: 719-727.
    [24] Claude Lamy, Alexandre Lima, Véronique LeRhun, Fabien Delime, Christophe Coutanceau, Jean-Michel Léger. Recent advances in the development of direct alcohol fuel cell (DAFC)[J]. Power sources, 2002,105:283-296.
    [25] Young-Woo Rhee, Su Y. Ha, Richard I. Masel. Crossover of formic acid through Nafion membranes[J]. Power sources,2003,117:35-38.
    [26] Xin Wang, Ji-Ming Hu, I-Ming Hsing. Electrochemical investigation of formic acid electrooxidation and its crossover through a Nation membrane[J]. Electroanalytical Chemistry, 2004, 562:73-80.
    [27] 杜宇平,陈红雨,冯书丽等.质子交换膜燃料电池发展现状[J].电池工业,2002,7(5):266~271.
    [28] 梁宝臣,田建华.质子交换膜燃料电池(PEMFC)的原理及应用[J].天津理工学院院报,2001,17(3):22.
    [29] 卢婷利,梁国正,宫兆合.燃料电池质子交换膜中物质传导过程探讨[J].化工新型材料,2002,30(11):25.
    [30] 徐洪峰.质子交换膜燃料电池数学模型评述[J].电源技术,1999,23(1):35.
    [31] Kyoung-Hwan Choi, Dong-Hyun Peck, Chang Soo Kim, Dong-Ryul Shin ,Tae-Hee Lee. Water transport in polymer membranes for PEMFC[J]. Power Sources,2000,86:197-201.
    [32] 邢丹敏,杜学忠,于景荣等.燃料电池用质子交换膜研究进展[J].电源技术,2001,增刊:171~174.
    [33] 于景荣,衣宝廉,邢丹敏等.燃料电池用磺化聚苯乙烯降解机理及其复合膜的初步研究[J].高等学校化学学报,2002,23(9):1792~1796.
    [34] Zhigang Qi, Mark C. Lefebvre, Peter G. Pickup. Electron and proton transport in gas diffusion electrodes containing electronically conductive proton-exchange polymers[J]. Electroanalytical Chemistry, 1998,459:9-14.
    [35] R.J.Farrauto, R.M.Heck. Environmental catalysis into the 21 st century[J]. Catalysis Today,5000,55:179-187.
    [36] 万春荣.先进电池与材料化学[J].电池,2001,31(2):52.
    [37] 王凤娥.质子交换膜燃料电池的研究开发及应用新进展[J].电源技术,2002,26(5):384.
    [38] Guo-Qiang Lu, Andrzej Wieckowski.Heterogeneous electrocatalysis: a core field of interfacial science[J]. Current Opinion in Colloid&Interface Science,2000,(5):95-100.
    [39] 王曙中.高分子材料在燃料电池中的应用[J].高科技纤维与应用,2001,26(6):13.
    [40] 徐洪峰,田颖,燕喜强.质子交换膜燃料电池电极制备及评价[J].大连铁道学院学报,2000,21(1):86.
    [41] 韩明,徐洪峰,农宝廉等.离子交换膜燃料电池初步研究[J].电源技术,1996,20(5):239.
    [42] 吴洪,王宇新,王世昌.用于聚合物电解质膜塑料电池中的质子导电膜[J].高分子材料科学与工程,2001,17(4):7~11.
    [43] 于景荣,邢丹敏,刘富强等.燃料电池用质子交换膜的研究进展[J].电化学,2001,7(4):385~395.
    [44] Uwe Beuschern,y, Simon J. C. Cleghorn and William B. Johnson. Challenges for PEM fuel cell membranes [J]. Int. J. Energy Res. 2005,29:1103 - 1112.
    [45] Patric Jannasch. Recent developments in high-temperature proton conducting polymer electrolyte membranes[J]. Current Opinion in Colloid and Interface Science,2003,8:96-102.
    [46] Paola Costamagna, Supramaniam Srinivasan. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part Ⅰ. Fundamental scientific aspects[J]. Power sources,2001,102:242-252.
    [47] 朱科,陈延禧,韩佐青等.质子交换膜燃料电池膜电极活化工艺及机理[J].电源技术,2002,26(4): 267~268.
    [48] 郝德利,韩立明,薛金生等.质子交换膜燃料电池技术进展[J].电源技术,2001,25(6):436~440.
    [49] 衣宝廉.燃料电池的原理、技术状态与展望[J].电池工业,2003,8(1):17.
    [50] Viral Mehta, Joyce Smith Cooper. Review and analysis of PEM fuel cell design and manufacturing [J].Power sources, 2003,114:32-53.
    [51] 于景荣,农宝廉,韩明等.高性能质子交换膜燃料电池[J].电化学,1999,5(4):449.
    [52] K.H. Choi,D.J. Park, Y.W. Rho,Y.T. Kho, T.H. Lee. A study of the internal humidification of an integrated PEMFC stack[J]. Power sources, 1998,74:146-150.
    [53] Duksu Hyun, Junbom Kim. Study of external humidification method in proton exchange membrane fuel cell [J]. Power sources, 2004,126:98-103.
    [54] Kyoung-Hwan Choi, Dong-Hyun Peck, Chang Soo Kim, Dong-Ryul Shin, Tae-Hee Lee. Water transport in polymer membranes for PEMFC[J]. Power Sources,2000,86:197-201.
    [55] G. D'Arrigo, C. Spinella, G. Arena, S. Lorenti. Fabrication ofminiaturised Si-based eleetrocatalytic membranes[j]. Materials Science and Engineering, 2003,23:13-18.
    [56] C.H. Hsu, C.C. Wan. An innovative process for PEMFC electrodes using the expansion of Nation film[J]. Power sources,2003,115:268-273.
    [57] Jeong-Nam Han, Gu-Gon Park, Young-Gi Yoon, Tae-Hyun Yang, Won-Yong Lee, Chang-Soo Kim. A new evaluation method of anode/cathode used for polymer electrolyte membrane fuel cell[J]. Hydrogen Energy, 2003,28:609-613.
    [58] Yotsuyanagi, Junji, Hirata, Motoyuki. Method for laminating solid polymer electrolyte film[P]. US 5972054. 1999-10-26.
    [59] S. Panero, F. Ciuffa, A. D'Epifano, B. Scrosati. New concepts for the development of lithium and proton conducting membranes[J]. Electrochimica Acta,2003,48:2009-2014.
    [60] Iwasaki, Katsuhiko ,Yamamoto et al. Polymer electrolyte for fuel cell[P]. US 5985477. November 16, 1999.
    [61] Sansone,Michael J.,Onorato et al. Process for producing polymeric films for use as fuel cells[P]. US6187231.2001-2-13.
    [62] Shimohira tetsuji,Terada Ichiro, Hommura satoru, et al. Solid polymer electrolyte type fuel cell and method for manufacturing the same[P]. WO0106587. 2001-01-25.
    [63] Shan-Hai Ge, Bao-Lian Yi. A mathematical model for PEMFC in different flow modes[J]. Power sources, 2003,124:1-11.
    [64] F. Gloaguen, P. Convert, S. Gamburzev, O. A. Velev and S. Srinivasan. An evaluation of the macro- homogeneous and agglomerate model for oxygen reduction in PEMFCs[J]. Electrochimica Acta, 1998,43(24):3767-3772.
    [65] D. Singh, D.M. Lu, N. Djilali. A two-dimensional analysis of mass transport in proton exchange membrane fuel cells[J]. International Journal of Engineering Science, 1999,37:431-452.
    [66] K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E.D. Gilles. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis[J]. Chemical Engineering Science,2001,56:333-341.
    [67] Ruy Sousa Jr, Ernesto R. Gonzalez.Mathematical modeling of polymer electrolyte fuel cells[J]. Journal of Power Sources, 2005,147:32-45.
    [68] Atilla B1y1koglu.Reviewof proton exchange membrane fuel cell models[J]. International Journal of Hydrogen Energy, 2005,30:1181-1212.
    [69] 于景荣,衣宝廉,刘富强等.再铸Nafion膜的制备与应用[J].膜科学与技术,2002,22(4):26~29.
    [70] 徐洪峰,燕希强,李璇等.全氟磺酸质子交换膜的溶解及再铸膜性能分析[J].电化学,2001,7(3):367~371.
    
    [71] Gilles P. Robertson, Serguei D. Mikhailenko, Keping Wang, Peixiang Xing, Michael D. Guiver, Serge Kaliaguine. Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication[J]. Journal of Membrane Science,2003,219:l 13-121.
    
    [72] Zyun Siroma, Tsutomu Ioroi, Naoko Fujiwara, Kazuaki Yasuda. Proton conductivity along interface in thin cast film of Nafion[J]. Electrochemistry Communications,2002,4:143-145.
    
    [73] N. Yoshida, T. Ishisaki, A. Watakabe and M. Yoshitake. Characterization of Flemion membranes for PEFC[J]. Electrochimica Acta,1998,43(24):3749-3754.
    
    [74] Leslie Jones, Peter N. Pintauro, Hao Tang. Coion exclusion properties of polyphosphazene ion-exchange membranes[J]. Journal of Membrane Science, 1999,162:135-143.
    
    [75] Tatiana J.P. Freire, Ernesto R. Gonzalez. Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells[J].J. Electroanalytical Chemistry,2001,503: 57-68.
    
    [76] T. Susaia,M. Kaneko, K. Nakato, T. Isono, A. Hamada, Y. Miyake. Optimization of proton exchange membranes and the humidifying conditions to improve cell performance for polymer electrolyte fuel cells[J]. Hydrogen Energy,2001,26:631-637.
    
    [77] Tanja Kallio, Christopher Slevin, Goran Sundholm , Peter Holmlund ,Kyosti Kontturi. Proton transport in radiation-grafted membranes for fuel cells as detected by SECM[J]. Electrochemistry Communications,2003,5:561-565.
    
    [78] Elena Vallejo, Gerald Pourcelly, Claude Gavach, Regis Mercier, Michel Pineri. Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H~+/M~(z+) By electrodialysis comparison with a perfluorosulfonic membrane[J]. Journal of Membrane Science,1999,160:127-137.
    
    [79] Yang Wang, Li Li, Ling Hu, Lin Zhuang, Juntao Lu, Boqing Xu. A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages[J]. Electrochemistry Communications,2003,5:662-666.
    
    [80] R. Mohr, V. Kudela, J. Schauer, K. Richau. Comparison of different cells for resistance determination of freely standing polymer membranes developed for direct methanol fuel cell (DMFC) applications[J] . Desalination, 2002,147:191-196.
    [81] A. Panchenko, H. Dilger, E. Moller,et al. In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications[J].Power sources,2004,127:325-330.
    [82] Felix N. BUchi, GUnther G. Scherer. In-situ resistance measurements ofNafion 117 membranes in polymer electrolyte fuel ceils[J]. Electroanalytical Chemistry, 1996,404:37-43.
    [83] C.A. Edmondson, P.E. Stallworth, M.E. Chapman,et al. Complex impedance studies of protonconducting membranes[J]. Solid State Ionics,2000,135:419-423.
    [84] Shanna D. Knights, Kevin M. Colbow, Jean St-Pierre,et al. Aging mechanisms and lifetime of PEFC and DMFC[J].Power sources,2004,127:127-134.
    [85] 蒋淇忠,马紫峰,刘振泰等.液相进样直接甲醇燃料电池性能研究[J].高校化学工程,2001,15(1):46~51.
    [86] H. Chang, J.R. Kim, J.H. Cho, H.K. Kim, K.H. Choi. Materials and processes for small fuel ceils[J]. Solid State Ionics,2002,148:601-606.
    [87] K. Sundmacher, T.Schultz, S. Zhou, K. Scott, M. Ginkel, E.D. Gilles. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis[J]. Chemical Engineering Science,2001,56:333-341.
    [88] 侯士法,高连勋.聚合物电解质燃料电池研究进展[J].承德石油高等专科学校学报,2002,4(3):1~5.
    [89] K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger and A. B. Bocarsly. Silicon Oxide Nation Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140℃[J]. Electrochemical Society,2002, 149(3):A256.
    [90] 俞红梅,衣宝廉,毕可万等.重整气为燃料的质子交换膜燃料电池性能研究[J].电源技术,2001,25(4):275~278.
    [91] Dong-Wook Lee, Yoon-Gyu Lee, Seong-Eun Nam, Bongkuk Sea, Kew-Ho Lee. Preparation and characteri -zation of SiO_2 composite membrane for purification of hydrogen from methanol steam reforming as an energy carrier system for PEMFC[J]. Separation and Purification Technology, 2003,32:45-50.
    [92] 李建玲,毛宗强.直接甲醇燃料电池研究现状及主要问题[J].电池,2001,31(1):36~39.
    [93] R. Dillon, S. Srinivasan, A.S. Aricb,et al. International activities in DMFC R&D: status of technologies and potential applications[J]. Power sources,2004,127:112-126.
    [94] A. Heinzel, V.M. Barragán. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells[J].Power sources,1999,84:70-74.
    [95] Ronald K.A.M. Mallant. PEMFC systems: the need for high temperature polymers as a consequence of PEMFC water and heat management[J]. Power sources, 2003, 118:424-429.
    [96] 李文峰,辛文利,吕玲等.直接甲醇燃料电池的研究进展[J].材料导报,2000,14(12):36~39.
    [97] 刘建国,衣宝廉,魏昭彬.直接甲醇燃料电池的原理、进展和主要技术问题[J].电源技术,2001,25(5):363~366.
    [98] 王凤娥.直接甲醇燃料电池的研究现状及技术进展[J].稀有金属,2002,26(6):497~501.
    [99] 有村智朗[日].燃料电池用的高分子膜片的研究[J].轻型汽车技术,2001,142(6):15~17.
    [100] 河村和宏[日].甲醇燃料电池用的电解质膜片的超质子传导玻璃的研究[J].轻型汽车技术,2001,142(6):18~21.
    [101] 卢婷利,梁国正,辛文利等.燃料电池用质子交换膜的研究进展[J].化工新型材料,2002,30(4):9~12.
    [102] 杨洪迁,钱晓良,索进平.燃料电池用质子交换膜[J].化学通报,2003,66:1~7.
    [103] 候士法,何耀春,丁孟贤等.非氟质子传导聚合物膜的制备与性能[J].高分子通报,2003,(5):7~16.
    [104] 付宏伟,杨勇,王猛等.燃料电池用的含氟质子交换膜的研发现状[J].有机氟工业,2002,(4):16~19.
    [105] 陈羚,程璇,彭程等.新型燃料电池用质子交换膜研究进展[J].材料科学与工程学报,2003,21(5):736,740.
    [106] 沈春晖,杨新胜,潘牧等.燃料电池用全氟磺酸型复合质子交换膜的研究[J].化工新型材料,2002,30(8):10~12.
    [107] 王文瀚,侯结民,桑佩培等.全氟磺酰树脂研究进展[J].有机氟工业,2002,(3):18~22.
    [108] 侯结民,桑佩培,王文瀚等.全氟磺酰树脂的分析表征[J].有机氟工业,2002,(4):36-38.
    [109] Anne-Laure Roller, Olivier Diat, and Gérard Gebel. A New Insight into Nafion Structure[J]. The Journal of Physical Chemistry (B),2002,106:3033-3036.
    [110] Yu Seung Kim, Limin Dong, Michael A. Hickner, Thomas E. Glass, Vernon Webb, and James E. McGrath. State of Water in Disulfonated Poly(arylene ether sulfone) Copolymers and a Perfluorosuifonic Acid Copolymer (Nation) and Its Effect on Physical and Electrochemical Properties[J]. Macromolecules,2003,36(17):6281-6285.
    [111] Ta-Yung Chen and Johna Leddy. Ion Exchange Capacity of Nation and Nation Composites[J]. Langmuir,2000,16:2866-2871.
    
    [112] Marc Doyle, Mark E. Lewittes(?) and Mark G. Roelofs, Stephen A. Perusich. Ionic Conductivity of Nonaqueous Solvent-Swollen Ionomer Membranes Based on Fluorosulfonate, Fluorocarboxylate, and Sulfonate Fixed Ion Groups [J]. J. Phys. Chem. B, 2001, 105:9387-9394.
    [113] Kristi J. Oberbroeckling, Drew C. Dunwoody, Shelley D. Minteer, and Johna Leddy. Density of Nafion Exchanged with Transition Metal Complexes and Tetramethyl Ammonium, Ferrous, and Hydrogen Ions: Commercial and Recast Films[J]. Analytical Chemistry,2002,74(18): 4794-4799.
    [114] Aleksey Vishnyakov and Alexander V. Neimark. Molecular Dynamics Simulation of Microstructure and Molecular Mobilities in Swollen Nafion Membranes[J]. J. Phys. Chem. B, 2001, 105:9586-9594.
    
    [115] Y. Yang and P. N. Pintauro. Multicomponent Space-Charge Transport Model for Ion- Exchange Membranes with Variable Pore Properties[J]. Ind. Eng. Chem. Res. 2004, 43:2957-2965.
    [116] Admira Bosnjakovic and Shulamith Schlick. Nafion Perfluorinated Membranes Treated in Fenton Media: Radical Species Detected by ESR Spectroscopy [J]. J. Phys. Chem. B, 2004,108: 4332-4337.
    
    [117] Laurent Rubatat, Anne Laure Rollet,Gerard Gebel, and Olivier Diat. Evidence of Elongated Polymeric Aggregates in Nafion [J]. Macromolecules, 2002, 35:4050-4055.
    [118] Tao Li, Aaron Wlaschin, and Perla B. Balbuena. Theoretical Studies of Proton Transfer in Water and Model Polymer Electrolyte Systems [J]. Ind. Eng. Chem. Res. 2001, 40:4789-4800.
    [119] Brian H. Thomas, Gregory Shafer, Jing Ji Ma, Ming-Hu Tu, Darryl D. DesMarteau. Synthesis of 3,6-dioxa- △~7-4-trifluoromethyl perfluorooctyl trifluoromethyl sulfonimide: bis[(perfluoroalkyl)- sulfonyl] superacid monomer and polymer [J]. Journal of Fluorine Chemistry, 2004,125:1231-1240.
    [120] Dennis E. Curtin, Robert D. Lousenberg, Timothy J. Henry, Paul C. Tangeman, Monica E. Tisack. Advanced materials for improved PEMFC performance and life [J]. Journal of Power Sources, 2004, 131:41-48.
    
    [121] F. BAUER, S. DENNELER, M. WILLERT-PORADA. Influence of Temperature and Humidity on the Mechanical Properties of Nafion(?) 117 Polymer Electrolyte Membrane [J]. Journal of Polymer Science: Part B, 2005,43:786-795.
    
    
    [122] M.A.Hickner, B.S.Pivovar. The Chemical and Structural Nature of Proton Exchange Membrane Fuel Cell Properties [J]. Fuel cells,2005,5:214-229.
    [123] Junichi Kawamura, Kazuki Hattori, Takahiro Hongo, Ryo Asayama,Naoaki Kuwata, Takeshi Hattori, Junichiro Mizusaki. Microscopic states of water and methanol in Nation membrane observed by NMR micro imaging [J]. Solid State lonics, 2005, 176:2451-2456.
    [124] 于景荣,衣宝廉,韩明等.高功率密度质子交换膜燃料电池研究[J].电源技术,2000,24(3):131~134.
    [125] 何燕,周震涛.燃料电池用质子交换膜的研究进展[J].电池,2002,32(3):168~170.
    [126] O. Savadogo. Emerging membranes for electrochemical systems Part lI. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications[J]. Power sources, 2004,127:135-161.
    [127] 李文峰,辛文利,吕玲等.直接甲醇燃料电池MEA材料的研究及制作进展[J].材料导报,2001,15(3):54~56.
    [128] 史萌,邱新平,朱文涛Nafion膜在直接甲醇燃料电池中的应用及改进[J].化学通报,2001,(8):488~491.
    [129] V. Ramani, H.R. Kunz, J.M. Fenton. Investigation of Nafion(?)/HPA composite membranes for high temperature/low relative humidity PEMFC operation[J]. Journal of Membrane Science, 2004,232:31-44.
    [130] Tatiana J.P. Freire, Ernesto R. Gonzalez. Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells[J]. Electroanalytical Chemistry,2001,503:57-68.
    [131] Mirane Corp(JP), Kimoto Kyoji(JP). Phosphorus atom-containing fluorinated cation exchange membrane and production type fuel cell using the same[P]. WO 0063991. 2000-10-26.
    [132] Nakamura Takayuki(JP), Oka Noritoshi(JP), Araki Takayuki(JP) et. al. Material for solid polyelectrolyte suitable for use in fuel cell[P]. WO 9959216. 1999-11-18.
    [133] Ki-Hwan Kim, Sang-Yeoul Ahn, In-Hwan Oh,Heung Yong H, Seong-Ahn Hong, Moon-Sun Kim,Youngkwan Lee, Yong-Chul Lee. Characteristics of the Nation -impregnated polycarbonate composite membranes for PEMFCs [J]. Electrochimica Acta, 2004, 50: 577-581.
    [134] 刘富强,农宝廉,邢丹敏等.燃料电池的复合质子交换膜研究——不同多孔聚四氟乙烯底膜对复合膜性能的影响[J].电源技术,2002,26(增刊):210~213.
    [135] Fuqiang Liu, Baolian Yi, Danmin Xing,et al. Nafion/PTFE composite membranes for fuel cell applications [J]. Journal of Membrane Sc ience ,2003,212:213-223.
    [136] Joongpyo Shim, Heung Yong Ha, Seong-Ahn Hong,et al. Characteristics of the Nafion ionomer- impregnated composite membrane for polymer electrolyte fuel cells[J].Power sources, 2002,109:412-417.
    
    [137] Satoru Hommura, Yasuhiro Kunisa, Ichiro Terada,et al. Characterization of fibril reinforced membranes for fuel cells[J]. Fluorine Chemistry,2003,120:151-155.
    
    [138] Shimohira tetsuji(JP), Terada ichiro(JP), Asahi Glass Co LTD(JP). Solid polymer electrolyte type fuel cell and method for manufacturing the same[P]. WO 0106586. 2001-01-25.
    [139] M.A. Smit, A.L. Ocampo, M.A. Espinosa-Medina, et al. A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell[J]. Power sources,2003,124:59-64.
    [140] Brandi L. Langsdorf, Brian J. MacLean, John E. Halfyard, Jeremy A. Hughes, and Peter G. Pickup. Partitioning and Polymerization of Pyrrole into Perfluorosulfonic Acid (Nafion) Membranes [J]. J. Phys. Chem. B 2003, 107:2480-2484.
    
    [141] F.Xu,C.Lnnocent,B.Bonnet,D.J.Jones and J.Roziere. Chemical Modification of Perfluoro- sulfonated Membranes with Pyrrole for Fuel Cell: Application Preparation, Characterisation and Methanol Transport [J]. Fuel cells,DOI:10.1002/fuce.200400077:l-8.
    [142] F. Kadirgan, and O. Savadogo. Methanol Crossover through Modified Nafion Proton Exchange Membrane [J]. Russian Journal of Electrochemistry, 2004,40: 1141-1145.
    [143] Fuqiang Liu, Baolian Yi, Danmin Xing,et al. Development of novel self-humidifying composite membranes for fuel cells[J]. Power sources,2003,124:81-89.
    
    [144] Tae-Hyun Yang, Young-Gi Yoon, Chang-Soo Kim,et al.A novel preparation method for a self-humidifying polymer electrolyte membrane[J].Power sources,2002,106:328-332.
    [145] Sang-Hee Kwak,Tae-Hyun Yang, Chang-Soo Kim,et al.The effect of platinum loading in the self-humidifying polymer electrolyte membrane on water uptake[J]. Journal of Power sources, 2003,118:200-204.
    
    [146] Z.Q. Ma, P. Cheng, T.S. Zhao. A palladium-alloy deposited Nafion membrane for direct methanol fuel cells [J]. Journal of Membrane Science,2003,215:327-336.
    
    [147] Min-Kyu Song, Young-Taek Kim, James M. Fenton,et al.Chemically-modified Nafion/poly- (vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells[J].Power sources, 2003,117:14-21.
    
    
    [148] F. Finsterwalder, G. Hambitzer. Proton conductive thin films prepared by plasma polymerization [J]. Journal of Membrane Science ,2001,185:105-124.
    
    
    [149] Rong Zeng, Zhicheng Pang, Hesun Zhu. Modification of a Nafion(?) ion exchange membrane by a plasma polymerization process[J]. Electroanalytical Chemistry ,2000,490:102-106.
    [150] C. Yang, P. Costamagna, S. Srinivasan,et al. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells[J].Power sources,2001,103:l-9.
    [151] P. Costamagna, C. Yang, A.B. Bocarsly,et al. Nafion(?) 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 ℃[J]. Electrochimica Acta,2002,47:1023-1033.
    [152] K..T. Adjemian, S. Srinivasan, J. Benziger,et al.Investigation of PEMFC operation above 100 ℃ employing perfluorosulfonic acid silicon oxide composite membranes[J].Power sources,2002, 109:356-364.
    
    [153] Sang-Hee Kwak, Tae-Hyun Yang, Chang-Soo Kim,et al. Nafion/mordenite hybrid membrane for high- temperature operation of polymer electrolyte membrane fuel cell[J]. Solid State Ionics, 2003,160:309-315.
    
    [154] Zhi-Gang Shao, Prabhuram Joghee, I-Ming Hsing. Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells[J]. Journal of Membrane Science,2004,229:43-51.
    [155] B. Baradie, J.P. Dodelet, D. Guay. Hybrid Nafion~(?)-inorganic membrane with potential applications for polymer electrolyte fuel cells[J]. Electroanalytical Chemistry,2000,489:101-105.
    [156] B. Tazi, O. Savadogo. Parameters of PEM fuel-cells based on new membranes fabricated from Nafion~(?), silicotungstic acid and thiophene[J]. Electrochimica Acta,2000,45:4329-4339.
    [157] Jiazeng Sun, L.R. Jordan, M. Forsyth,et al. Acid-Organic base swollen polymer membranes[J]. Electrochimica Acta,2001,46:1703-1708.
    
    [158] Paul D. Beattie, Francesco P. Orfino, Vesna I. Basura,et al. Ionic conductivity of proton exchange membranes[J]. Electroanalytical Chemistry ,2001,503:45-56.
    
    [159] Ballard power systems(CA). alpha, beta , beta -trifluorostyrene-based composite membranes [P]. US 5985942. 1999-11-16.
    
    [160] V.I. Basura, C. Chuy, P.D. Beattie,et al. Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonated a,b,b- trifluorostyrene (BAM~(?)) and sulfonated styrene-(ethylene-butylene)-styrene triblock (DAIS- analytical) copolymers[J]. Electroanalytical Chemistry,2001,501:77-88.
    [161] L.Gubler,S.A.Gursel, G.G.scherer. Radiation Grafted Membranes for Polymer Electrolyte Fuel Cells [J]. Fuel cells,DOI:10.1002/fuce.200400078:l-19.
    
    [162] R.Souzy,B.Ameduri,BBoutevin,P.Capron,D.Marsacq and G.Gebel. Proton-Conducting Polymer Electrolyte Membranes Based on Fluoropolymers Incorporating Perfluorovinyl Ether Sulfonic Acids and Fluoroalkenes Synthesis and Characterization [J]. Fuel cells,DOI:10.1002/ fuce.200400071:l-15.
    
    [163] T. Kallio, K. Jokela, H. Ericson, R. Serimaa, G. Sundholm, P. Jacobsson and F. Sundholm. Effects of a fuel cell test on the structure of irradiation grafted ion exchange membranes based on different fluoropolymers [J]. Journal of Applied Electrochemistry 33: 505 - 514,2003.
    [164] Yunsong Yang, Zhiqing Shi, and Steven Holdcroft. Synthesis of Sulfonated Polysulfone- block-PVDF Copolymers: Enhancement of Proton Conductivity in Low Ion Exchange Capacity Membranes [J]. Macromolecules 2004, 37: 1678-1681.
    
    [165] D.M.Xing,B.L.Yi,F.Q.Liu,Y.Z.Fu and H.M.Zhang. Characterization of Sulfonated Poly(Ether Ether Ketone)-Polytetraftuoroethylene Composite Membranes for Fuel Cell Applications [J]. Fuel cells, 2005,5:406-411.
    
    [166] Cabasso; Israel (Syracuse, NY); Yuan; Youxin (Syracuse, NY); Mittelsteadt; Cortney (Syracuse, NY). Blend membranes based on sulfonated poly(phenylene oxide) for polymer electrochemical cells[P]. US 6103414. 2000-8-15.
    
    [167] Narang; Subhash C. (Redwood City, CA); Ventura; Susanna C. (Los Alto, CA). Single-ion conducting solid polymer electrolytes, and conductive compositions and batteries made therefrom[P]. US 5998559.1999-12-07.
    
    [168] L. Wang,Y. Z. Meng,S. J. Wang, X. Y. Shang, L. Li, and A. S. Hay. Synthesis and Sulfonation of Poly(aryl ethers) Containing Triphenyl Methane and Tetraphenyl Methane Moieties from Isocynate-Masked Bisphenols [J]. Macromolecules 2004, 37: 3151-3158.
    
    [169] Kenji Miyatake, Kenichi Oyaizu, Eishun Tsuchida, and Allan S. Hay. Synthesis and Properties of Novel Sulfonated Arylene Ether/Fluorinated Alkane Copolymers [J]. Macromolecules 2001, 34: 2065-2071.
    
    [170] R.Souzy,B.Ameduri,B.Boutevin,P.Capron,D.Marsacq and G.Gebel. Proton-Conducting Polymer Electrolyte Membranes Based on Fluoropolymers Incorporating Perfluorovinyl Ether Sulfonic Acids and Fluoroalkenes Synthesis and Characterization [J]. Fuel cells,DOI:10.1002/ fuce.200400071:l-15.
    
    [171] You Mee Kim, Seong Ho Choi, Heung Chan Lee,Ming Zi Hong, Keon Kim, Ho-In Lee. Organic-inorganic composite membranes as addition of SiO_2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs) [J]. Electrochimica Acta ,2004, 49: 4787-4796.
    
    [172] Heung Chan Lee, Hyun Sil Hong, You-Mee Kim, Sung Ho Choi,Ming Zi Hong, Hyun Suk Lee, Keon Kim. Preparation and evaluation of sulfonated-fluorinated poly (arylene ether)s membranes for a proton exchange membrane fuel cell (PEMFC) [J]. Electrochimica Acta, 2004, 49:2315-2323.
    
    [173] Mikael Paronen , Franciska Sundholm, Denis Ostrovskii ,Per Jacobsson, Gunnar Jeschke, Eero Rauhala and Pertti Tikkanen. Preparation of Proton-Conducting Membranes by Direct Sulfonation. 1. Effect of Radicals and Radical Decay on the Sulfonation of Poly(vinyl fluoride) Films [J]. Chem. Mater. 2003, 15:4447-4455.
    
    [174] Md. Khalilur Rahman, Gentaro Aiba, Md. Abu Bin Hasan Susan, Masayoshi Watanabe. Proton exchange membranes based on sulfonimide for fuel cell applications [J]. Electrochimica Acta, 2004,50: 633-638.
    
    [175] M.J. Sumner, W.L. Harrison, R.M. Weyers, Y.S. Kim, J.E. McGrath,J.S. Riffle, A. Brink, M.H. Brink. Novel proton conducting sulfonated poly(arylene ether) copolymers containing aromatic nitriles [J]. Journal of Membrane Science, 2004, 239 : 199-211.
    
    [176] Takahiko Nakano, Shoji Nagaoka and Hiroyoshi Kawakami. Preparation of novel sulfonated block copolyimides for proton conductivity membranes [J].Polym. Adv.Technol.2005,16: 753-757.
    
    [177] L. Wang, Y. Z. Meng, S. J. Wang, X. H. Li, M. Xiao. Synthesis and Properties of Sulfonated Poly(arylene ether) Containing Tetraphenylmethane Moieties for Proton-Exchange Membrane [J]. Journal of Polymer Science: Part A, 43, 2005: 6411 - 6418.
    
    [178] K. Scott, W.M. Taama, P. Argyropoulos. Performance of the direct methanol fuel cell with radiation-grafted polymer membranes[J]. Journal of Membrane Science,2000,171:119-130.
    
    [179] Tatsuya Hatanaka, Naoki Hasegawa, Atsushi Kamiya,et al. Cell performances of direct methanol fuel cells with grafted membranes[J].Fuel,2002,81:2173-2176.
    
    [180] Tetsuya Yamaki, Masaharu Asano, Yasunari Maekawa,et al. Radiation grafting of styrene into crosslinked PTEE films and subsequent sulfonation for fuel cell applications[J]. Radiation Physics and Chemistry,2003,67:403-407.
    [181] Kohei Sato, Shigetoshi Ikeda, Minoru Iida, et al. Study on poly-electrolyte membrane of crosslinked PTFE by radiation-grafting[J]. Nuclear Instruments and Methods in Physics Research B,2003,208:424-428.
    [182] Takeo Yamaguchi, Fusae Miyata, Shin-ichi Nakao. Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell[J]. Journal of Membrane Science,2003,214:283-292.
    [183] B. Bae, B.-H. Chun, H.-Y. Ha, et al. Preparation and characterization of plasma treated PP composite electrolyte membranes[J]. Journal of Membrane Science,2002,202:245-252.
    [184] S. Hietala, E. Skou, F. Sundholm. Gas permeation properties of radiation grafted and sulfonated poly- (vinylidene fluoride) membranes[J].Polymer, 1999,40:5567-5573.
    [185] T. Lehtinen, G. Sundholm, S. Holmberg,et al. Electrochemical characterization of PVDFbased proton conducting membranes for fuel cells[J]. Electrochimica Acta, 1998,43:1881-1890.
    [186] Ningping Chen, Liang Hong. Proton-conducting membrane composed of sulfonated polystyrene microspheres, poly(vinylpyrrolidone) and poly(vinylidene fluoride)[J]. Solid State lonics,2002, 146:377-385.
    [187] B. Soresi, E. Quartarone, P. Mustarelli,et al. PVDF and P(VDF-HFP)-based proton exchange membranes [J]., Solid State Ionics,2004,166:383-389.
    [188] G. Zukowska, M. Rogowska, A. Wojda, et al. The effect of solvent and proton donor type on the conductivity and physico-chemical properties of poly(vinylidene fluoride)-based proton-conducting gel electrolytes[J]. Solid State Ionics,2000,136-137:1205-1209.
    [189] 李磊,张军,吴洪等.直接甲醇燃料电池新型聚合物膜的研究[J].电化学,2002,8(2):177~181.
    [190] 吴洪,王宇新,王世昌.聚偏氟乙烯—Nafion共混膜的制备及阻醇质子导电性能研究[J].高分子学报,2002,(4):540~543.
    [191] 吴洪,王宇新,王世昌.新型阻醇质子导电聚合物膜——PVA—Nafion共混膜的制备及性能研究[J].高校化学工程学报,2002,16(3):326~330.
    [192] Qingfeng Li, Ronghuan He, Jens Oluf Jensen, and Niels J. Bjerrum. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100℃ [J]. Chem. Mater. 2003, 15: 4896-4915.
    [193] Y.Yang and S.Holdcroft. Synthetic Strategies for Controlling the Morphology of Proton Conducting Polymer Membranes [J]o Fuel cells, 2005,5:171-186.
    [194] P.Jannasch. Fuel Cell Membrane Materials by Chemical Grafting of Aromatic Main-Chain Polymers [J].2005,5: 248-260.
    
    [195] Md. Khalilur Rahman, Gentaro Aiba, Md. Abu Bin Hasan Susan, Yuko Sasaya, Ken-ichiro Ota, and Masayoshi Watanabe. Synthesis, Characterization, and Copolymerization of a Series of Novel Acid Monomers Based on Sulfonimides for Proton Conducting Membranes [J]. Macromolecules, 10.1021/ma0498058:l-6.
    
    [196] C.Lojoiu,M.Marechal,F.Chabert,J.-Y.Sanchez. Mastering Sulfonation of Aromatic Polysulfones: Crucial for Membranes for Fuel Cell Application [J]. Fuel cell,2005,5:344-354.
    [197] Formato, Richard M. (Shrewsbury, MA),Kovar,et al. Composite solid polymer electrolyte membranes[P]. US 6248469.2001-07-19.
    
    [198] Narang; Subhash (Palo Alto, CA); Ventura; Susanna (Los Altos, CA). High temperature polymer electrolytes[P] .US6248480.2001 -07-19.
    
    [199]Tang Hao(CA),Pintauro Petern(US). Sulfonated polyphosphazenes for proton-exchange membrane fuel cells[P]. US 6365294.2002-04-02.
    
    [200] Datz Armin(DE),Gebhardt Ulrich(DE),Waidhas Manfred(DE).Membrane electrolyte for a high temperature membrane fuel cell and method for producing the same[P]. WO 0063988.2000-10-29.
    [201] Kerres Jochen(DE),Haering Thomas(DE),Ullrich Andres(DE).Composites and composite membranes[P]. WO0074827.2000-12-14.
    
    [202] Kerres Jochen(DE),Nicoloso Norbert(DE).Proton-conducting ceramics/polymer composite membrane for the temperature range up to 300°C [P]. WO 0077080.2000-12-21.
    [203] Biegert; Hubertus (Ulm, DE); Britz; Peter (Kirchheim, DE); Lamm; Arnold (Oberelchingen, DE). Fuel cell with polymer electrolyte membrane[P]. U S6706435.2004-03-16.
    [204] Bridges Richard Frank(GB),Charnock Peter(GB),Wilson Brian(GB),et al.Ion-exchange materials[P]. WO 0170857.2001-09-27.
    
    [205] Bridges Richard Frank(GB),Charnock Peter(GB),Wilson Brian(GB). Composite Ion exchange materiais[P]. WO 0170858.2001-09-27.
    
    [206] Bridges Richard Frank(GB), Lockley John Edward(GB),Charnock Peter(GB),et al.Ion exchange materials [p]. WO 0171839.2001-09-27.
    
    [207] Genesis Group Inc(CA),Pichup Peter Graham(CA),Qi Zhigang(US).A fuel cell incorporating a modified ion exchange membrane[P]. WO 0193361.2001-12-06.
    
    [208] Wang feng, Hickner Michael,Kim Yu-seung,et al.Ion-exchange sulfonated polymeric material[P]. WO 0225764.2002-03-28.
    
    [209] Jacques Roziere, Deborah J. Jones, Mathieu Marrony,et al. On the doping of sulfonated polybenzimidazole with strong bases[J]. Solid State Ionics,2001,145:61-68.
    
    [210] Hongting Pu, Qizhi Liu, Lei Qiao, Zhenglong Yang. Studies on Proton Conductivity of Acid Doped Polybenzimidazole/Polyimide and Polybenzimidazole/ Polyvinylpyrrolidone Blends [J]. Polymer Engineering and Science,2005:1395-1400.
    
    [211] David Mecerreyes, Hans Grande, Oscar Miguel, Estibalitz Ochoteco,Rebeca Marcilla, and Igor Cantero. Porous Polybenzimidazole Membranes Doped with Phosphoric Acid: Highly Proton-Conducting Solid Electrolytes [J]. Chem. Mater. 2004, 16: 604-607.
    
    [212] Q.Li,R.He,J.O.Jensen,N.J.Bjerum. PBI-Based Polymer Membranes for High Temperature Fuel Cells - Preparation, Characterization and Fuel Cell Demonstration [J]. 2004,4:147-159.
    
    [213] Savinell Robert F(US),Litt Morton H(US). Proton conducting solid polymer electrolytes prepared by direct acid casting[P]. US 6025085.2000-02-15.
    
    [214] Masanori Yamada, Itaru Honma. Proton conducting acid-base mixed materials under water-free condition [J]. Electrochimica Acta,2003,48:2411-2415.
    
    [215] Alex Schechter, Robert F. Savinell. Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells[J]. Solid State Ionics,2002,147:181-187.
    [216] Qunhui Guo, Peter N. Pintauro, Hao Tang,et al. Sulfonated and crosslinked polyphosphazene- based proton- exchange membranes[J]. Journal of Membrane Science,1999,154:175-181.
    [217] Akita; Hiroshi (Wako, JP); Ichikawa; Masao (Wako, JP); Nosaki; Katsutoshi (Wako, JP),et al. Solid polymer electrolytes[P]. US6124060.2000-09-26.
    
    [218] J.-M. Bae, I. Honma, M. Murata,et al. Properties of selected sulfonated polymers as proton- conducting electrolytes for polymer electrolyte fuel cells[J]. Solid State Ionics,2002,147:189-194.
    [219] Juan Antonio Asensio, Salvador Borros, Pedro Gomez-Romero. Enhanced conductivity in polyanion- containing polybenzimidazoles. Improved materials for proton-exchange membranes and PEM fuel cells[J]. Electrochemistry Communications,2003,5:967-972.
    [220] Mitsuyasu Kawahara, Masahiro Rikukawa, Kohei Sanui,et al. Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) films[J]. Solid State Ionics,2000, 136-137:1193-1196.
    
    [221] Mark V. Fedkin, Xiangyang Zhou, Michael A. Hofmann,et al. Evaluation of methanol crossover in proton- conducting polyphosphazene membranes[J]. Materials Letters,2002,52:192-196.
    [222] Xiangyang Zhou, Jamie Weston , Elena Chalkova,et al. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells[J]. Electrochimica Acta,2003,48: 2173-2180.
    
    [223] Harry R. Allcock, Michael A. Hofmann, Catherine M. Ambler,et al. Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells[J]. Journal of Membrane Science, 2002,201:47-54.
    
    [224] Harry R. Allcock, Michael A. Hofmann, and Richard M. Wood. Phosphonation of Aryloxy-phosphazenes [J]. Macromolecules, 2001, 34:6915-6921.
    
    [225] Hofmann Michael A(US),Allcock Harry R(US),Lvov Serguei N(US),et al.Poton conducting polymer membranes[P]. WO 0077874.2000-12-21.
    
    [226] Michael A. Hofmann, Catherine M. Ambler,Andrew E. Maher, Elena Chalkova,Xiangyang Y. Zhou, Serguei N. Lvov, and Harry R. Allcock. Synthesis of Polyphosphazenes with Sulfonimide Side Groups [J]. Macromolecules, 2002, 35: 6490-6493.
    
    [227] Serguei D. Mikhailenko, Keping Wang, Serge Kaliaguine, Peixiang Xing, Gilles P. Robertson, Michael D. Guiver. Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK) [J]. Journal of Membrane Science,2004, 233: 93-99.
    
    [228] E. Drioli, A. Regina, M. Casciola, A. Oliveti, F. Trotta, T. Massari. Sulfonated PEEK-WC membranes for possible fuel cell applications [J]. Journal of Membrane Science,2004, 228:139-148.
    [229] Steven Swier, Yong Sung Chun, Jeffrey Gasa, Montgomery T. Shaw, R.A. Weiss. Sulfonated Poly (ether ketone ketone) Ionomers as Proton Exchange Membranes [J]. Polymer Engineering and Science, 2005,45:1081 - 1091.
    
    [230] Maria Gil, Xiangling Ji, Xianfeng Li, Hui Na, J. Eric Hampsey, Yunfeng Lu. Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications [J]. Journal of Membrane Science, 2004, 234:75-81.
    
    [231] Xianfeng Li, Hui Na, Hui Lu. Novel Sulfonated Poly(ether ether ketone ketone) Derived from Bisphenol S [J]. Journal of Applied Polymer Science, 2004, 94:1569-1574.
    [232] Xianfeng Li, Changpeng Liu, Hui Lu, Chengji Zhao,Zhe Wang, Wei Xing, Hui Na. Preparation and characterization of sulfonated poly(ether ether ketone ketone) proton exchange membranes for fuel cell application [J]. Journal of Membrane Science, 2005, 255:149-155.
    [233] C.Perrof,G.Meyer,L.Gonon, and G.Gebel. Ageing Mechanisms of Proton Exchange Membrane Used in Fuel Cell Applications [J]. Fuel cells,2006,l:10-15.
    
    [234] Liping Shena, Guyu Xiaoa, Deyue Yana, Guoming Sun, Pinfang Zhu,Zhu Na. Comparison of the water uptake and swelling between sulfonated poly(phthalazinone ether ketone ketone)s and sulfonated poly(arylene ether ketone ketone)s [J]. Polymer Bulletin,2005, 54: 57-64.
    
    [235] Peixiang Xing, Gilles P. Robertson, Michael D. Guiver.Serguei D. Mikhailenko, Keping Wang, Serge Kaliaguine. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes [J]. Journal of Membrane Science, 2004,229: 95-106.
    
    [236] Ritter Helmut(DE),NoIte Roland (DE),Osan Frank(DE),et al. Polymer electrolyte membrane and process for the production thereof[P]. US 6214488.2001-04-10.
    
    [237] Carmen Manea, Marcel Mulder. Characterization of polymer blends of polyethersulfone/ sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications[J] . Journal of Membrane Science,2002,206:443-453.
    
    [238] W. Cui, J. Kerres , G. Eigenberger. Development and characterization of ion-exchange polymer blend membranes[J]. Separation and Purification Technology, 1998,14:145-154.
    
    [239] Jochen Kerres, Andreas Ullrich, Frank Meier,et al. Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells[J]. Solid State Ionics, 1999, 125:243-249.
    
    [240] Kerres; Jochen (Stuttgart, DE); Cui; Wei (Stuttgart, DE). Acid-base polymer blends and their application in membrane processes[P]. US 6194474.2001-02-27.
    
    [241] C.A.Linkous,H.R.Anderson,R.W.Kopitzke,et al. Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures[J].Hydrogen Energy, 1998, 23(7):525-529.
    
    [242] S.P. Nunes, B. Ruffmann, E. Rikowski,et al. Inorganic modification of proton conductive polymer membranes for direct methanol fuel celIs[J]. Journal of Membrane Science,2002, 203: 215-225.
    
    [243] B. Ruffmann, H. Silva, B. Schulte,et al. Organic/inorganic composite membranes for application in DMFC[J]. Solid State Ionics,2003,162-163:269-275.
    [244] M.L. Ponce, L. Prado, B. Ruffmann,et al. Reduction of methanol permeability in polyetherketone-heteropolyacid membranesfJ]. Journal of Membrane Science,2003,217:5-15.
    [245] L.Jorissen,V.gogel,J.Kerres,et al. New membranes for direct methanol fuel cells[J].Power sources,2002,105:267-273.
    [246] Jae-Hyuk Chang, Jong Hyeok Park, Gu-Gon Park,et al. Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials[J].Power sources, 2003,124: 18-25.
    [247] S.D. Mikhailenko, S.M.J. Zaidi, S. Kaliaguine. Sulfonated polyether ether ketone based composite polymer electrolyte membranes[J]. Catalysis Today,2001,67:225-236.
    [248] S.M.J. Zaidi, S.D. Mikhailenko, G.P. Robertson,et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications[J]. Journal of Membrane Science,2000,173:17-34.
    [249] 李磊,许莉,王宇新.磺化聚醚醚酮膜的制备及其阻醇和质子导电性能[J].高分子学报,2003,(3):452~455.
    [250] 邢丹敏,刘富强,于景荣等.磺化聚砜膜的燃料电池性能初步研究[J].膜科学与技术,2002,22(5):12~16.
    [251] Iwasaki; Katsuhiko (Ehime, JP); Yamamoto; Taketsugu (Ibaraki, JP); Terahara; Atsushi (lbaraki, JP); et al. Polymer electrolyte and process for producing the same[P]. US 6087031. 2000-07-11.
    [252] Cui Wei(DE),Frank Georg(DE),Soczka-Guth Thomas(DE). Method for producing sulfonated aromatic polymers and use of the process products for producing membranes[P]. WO 0142336. 2001-06-14.
    [253] Benoit Lafitte, Mario Puchner, Patric Jannasch. Proton Conducting Polysulfone Ionomers Carrying Sulfoaryloxybenzoyl Side Chains [J]. Macromol. Rapid Commun. 2005, 26:1464-1468.
    [254] Yu Seung Kim, Feng Wang, Michael Hickner, et al. Fabrication and characterization of heteropolyacid (H_3PW_(12)O_(40))/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications[J]. Journal of Membrane Science,2003, 212:263-282.
    [255] Yu Seung Kim, Limin Dong, Michael A. Hickner,et al. Processing induced morphological development in hydrated sulfonated poly(arylene ether sulfone) copolymer membranes[J]. Polymer, 2003,44:5729-5736.
    [256] Rie Eto ,Akihiko Tanioka. Characteristic Proton Transport through Composite Membrane Composed of Quaternary-Amino Poly(sulfone) and Sulfonated Co-poly(styrene and divinyl- benzene)[J]. Colloid and Interface, 1998,200:59-68.
    
    [257] Lei Zhang, Chengsong Ma, Sanjeev Mukerjee. Oxygen permeation studies on alternative proton exchange membranes designed for elevated temperature operation[J]. Electrochimica Acta,2003,48:1845-1859.
    
    [258] F. Lufrano, I. Gatto, P. Staiti,et al. Sulfonated polysulfone ionomer membranes for fuel cells[J]. Solid State Ionics,2001,145:47-51.
    
    [259] D. Poppe, H. Frey, K. D. Kreuer, A. Heinzel, and R. Mul lhaupt. Carboxylated and Sulfonated Poly(arylene-co-arylene sulfone)s: Thermostable Polyelectrolytes for Fuel Cell Applications [J]. Macromolecules 2002, 35: 7936-7941.
    
    [260] Lei Li, Yuxin Wang. Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell [J]. Journal of Membrane Science, 2005, 246: 167-172.
    
    [261] Guyu Xiao, Guomin Sun, Deyue Yan,et al. Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization[J].Polymer,2002,43:5335-5339.
    
    [262] J.F. Blanco, Q.T. Nguyen, P. Schaetzel. Novel hydrophilic membrane materials: sulfonated polyethersulfone Cardo [J]. Journal of Membrane Science, 2001, 186 :267-279.
    [263] Yan Gao, Gilles P. Robertson, Michael D. Guiver.Xigao Jian,Serguei D. Mikhailenko, Keping Wang, Serge Kaliaguine. Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials [J]. Journal of Membrane Science,2003, 227:39-50.
    [264] Yan Gao,Gilles P. Robertson,Michael D. Guiver, Xigao Jian. Synthesis and Characterization of Sulfonated Poly(phthalazinone ether ketone) for Proton Exchange Membrane Materials [J]. Journal of Polymer Science: Part A, 2003, 41: 497-507.
    
    [265] Yingnan Xuan, Yan Gao, Yong Huang, Xigao Jian. Synthesis and Characterization of a Novel Phthalazinone Poly(Aryl Ether Sulfone Ketone) with Carboxyl Group [J]. J Appl Polym Sci, 2003, 88:1111-1114.
    
    [266] Guyu Xiao, Guomin Sun, Deyue Yan. Polyelectrolytes for Fuel Cells Made of Sulfonated Poly(phthalazinone ether ketone)s [J]. Macromol. Rapid Commun. 2002, 23:488-492.
    [267] Carmen Manea, Marcel Mulder. New polymeric electrolyte membranes based on proton donorproton acceptor properties for direct methanol fuel cells[J].Desalination,2002,147:179-182.
    [268] Feng Wang, Michael Hickner, Yu Seung Kim,et al. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes[J]. Journal of Membrane Science, 2002,197:231-242.
    [269] P. Genova-Dimitrova, B. Baradie, D. Foscallo,et al. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid[J]. Journal of Membrane Science, 2001,185:59-71.
    [270] C. Hasiotis, V. Deimede, C. Kontoyannis. New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole[J]. Electrochimica Acta,2001,46:2401-2406.
    [271] Lina E. Kar[sson, Patric Jannasch. Polysulfone ionomers for proton-conducting fuel cell membranes: sulfoalkylated polysulfones[J]. Journal of Membrane Science,2004,230:61-70.
    [272] Y.Z. Men, S.C. Tjong, A.S. Hay,et al. Proton-exchange membrane electrolytes derived from phosphonic acid containing poly(arylene ether)s[J]. European Polymer Journal,2003,39:627-631.
    [273] Stefan Haufe, Ulrich Stimming. Proton conducting membranes based on electrolyte filled microporous matrices[J]. Journal of Membrane Science,2001,185:95-103.
    [274] 李磊,许莉,王宁新.磺化酚酞型聚醚砜膜的制备及其阻醇性和质子导电性能[J].高分子学报,2003,(4):465~468.
    [275] N. Gourdoupi, A. K. Andreopoulou, V. Deimede, and J. K. Kallitsis. Novel Proton-Conducting Polyelectrolyte Composed of an Aromatic Polyether Containing Main-Chain Pyridine Units for Fuel Cell Applications [J]. Chem. Mater. 2003, 15:5044-5050.
    [276] Yingnan Xuan, Yan Gao, Yong Huang, Xigao Jian. Synthesis and Characterization of a Novel Phthalazinone Poly(Aryl Ether Sulfone Ketone) with Carboxyl Group [J]. J Appl Polym Sci, 2003, 88:1111-1114.
    [277] Guth Thomas(DE),Jordt Frauke(DE),Kiefer Joachim(DE). Novel membranes having improved mechanical properties,for use in fuel cells[P]. WO 0236249.2002-05-10.
    [278] O. Savadogo. Emerging membranes for electrochemical systems Part Ⅱ. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications[J]. Power sources, 2004,127:135-161.
    [279] 高燕,张丽荣,张春庆等.新型磺化聚酰亚胺的合成[J].中山大学学报(自然科学版),2003,42(增刊):88~90.
    [280] Shengbo Qing, Wei Huang, Deyue Yah. Synthesis and Characterization of Thermally Stable Sulfonated Polybenzimidazoles Obtained from 3,3'-Disulfonyl-4,4'-dicarboxyldiphenylsulfone [J]. Journal of Polymer Science: Part A, 2005, 43: 4363 - 4372.
    
    
    [281] Jousse Franck(FR),Mercier Regis(FR),Pineri Michel(FR),et al.Sulphonated polyimides Membranes prepared with same and fuel cell device comprising solid membranes[P]. WO 0125312. 2001-04-12.
    
    [282] C. Genies, R. Mercier, B. Sillion,et al. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes[J].Polymer,2001,42:359-373.
    
    [283] C. Genies, R. Mercier, B. Sillion,et al. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium[J].Polymer,2001,42:5097-5105.
    
    [284] Youngtai Woo, Se Young Oh, Yong Soo Kang,et al. Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell[J]. Journal of Membrane Science,2003, 220:31-45.
    
    [285] Tatsuya Watari, Jianhua Fang, Kazuhiro Tanaka,et al. Synthesis, water stability and proton conductivity of novel sulfonated polyimides from 4,4'-bis(4-aminophenoxy)biphenyl-3,3'-disulfonic acid[J]. Journal of Membrane Science, 2004,230:111-120.
    
    [286] Choonkeun Lee,Salmani Sundar, Jinuk Kwon, Haksoo Han. Structure - Property Correlations of Sulfonated Polyimides. I. Effect of Bridging Groups on Membrane Properties [J]. Journal of Polymer Science: Part A, 2004, 42: 3612-3620.
    
    [287] Yan Yin, Jianhua Fang, Yongfang Cui,et al. Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(20,40-diaminophenoxy)propane sulfonic acid[J].Polymer,2003,44:4509-4518.
    
    [288] Kenji Miyatake, Hua Zhou, and Masahiro Watanabe. Proton Conductive Polyimide Electrolytes Containing Fluorenyl Groups: Synthesis, Properties, and Branching Effect [J]. Macromolecules 2004, 37: 4956-4960.
    
    [289] Naoki Asano, Kenji Miyatake, and Masahiro Watanabe. Hydrolytically Stable Polyimide Ionomer for Fuel Cell Applications [J]. Chem. Mater. Communications, 10.1021/cm049550c, 2004:1-3.
    
    [290] Xiaoxia Guo, Jianhua Fang, Tatsuya Watari, Kazuhiro Tanaka,Hidetoshi Kita, and Ken-ichi Okamoto. Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 2. Synthesis and Proton Conductivity of Polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic Acid [J]. Macromolecules 2002, 35:6707-6713.
    [291] H.Zhou,K.Miyatake, and M.Watanabe. Polyimide Electrolyte Membranes Having Fluorenyl and Sulfopropoxy Groups for High Temperature PEFCs [J]. Fuel cells,2005,5:269-301.
    
    [292] Kenji Miyatake, Yohei Chikashige, and Masahiro Watanabe. Novel Sulfonated Poly(arylene ether): A Proton Conductive Polymer Electrolyte Designed for Fuel Cells [J]. Macromolecules,2003, 36:9691-9693.
    
    [293] Jinhwan Kim, Bokyung Kim, Bumsuk Jung. Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block- poly(ethylene-ran- butylene)-block-polystyrene copolymers[J]. Journal of Membrane Science,2002,207:129-137.
    
    [294] Jongok Won, Sang Wook Choi, Yong Soo Kang,et al. Structural characterization and surface modification of sulfonated polystyrene-(ethylene-butylene)-styrene triblock proton exchange membranes[J]. Journal of Membrane Science, 2003,214:245-257.
    
    [295] Yossef A. Elabd, Eugene Napadensky, James M. Sloan,et al. Triblock copolymer ionomer membranes Part I. Methanol and proton transport[J]. Journal of Membrane Science,2003,217: 227-242.
    
    [296] Yossef A. Elabd, Charles W. Walker, Frederick L. Beyer. Triblock copolymer ionomer membranes Part II. Structure characterization and its effects on transport properties and direct methanol fuel cell performance[J] . Journal of Membrane Science,2004,231:181-188.
    
    [297] Doo Hwan Jung, Young-Bun Myoung, Sung-Young Cho,et al. A performance evaluation of direct methanol fuel cell using impregnated tetraethyl-orthosilicate in cross-linked polymer membrane[J]. Hydrogen Energy,2001,26:1263-1269.
    
    [298] C.A. Edmondson, J.J. Fontanella, S.H. Chung,et al. Complex impedance studies of S-SEBS block polymer proton-conducting membranes[J]. Electrochimica Acta,2001,46:1623-1628.
    
    [299] Sheng-Li Chen, L. Krishnan, S. Srinivasan, J. Benziger,A.B. Bocarsly. Ion exchange resin/polystyrene sulfonate composite membranes for PEM fuel cells [J]. Journal of Membrane Science, 2004, 243:327-333.
    
    [300] Itaru Honma, Hitoshi Nakajima, Shigeki Nomura. High temperature proton conducting hybrid polymer electrolyte membranes[J]. Solid State Ionics,2002,154-155:707-712.
    
    [301] Yong-il Park, Masayuki Nagai. Proton exchange nanocomposite membranes based on 3-glycidoxypropyl- trimethoxysilane, silicotungstic acid and a-zirconium phosphate hydrate[J]. Solid State Ionics,2001,145:149-160.
    [302] H.Y. Chang, C.W. Lin. Proton conducting membranes based on PEG/SiO_2 nanocomposites for direct methanol fuel cells[J]. Journal of Membrane Science,2003,218.
    [303] I. Honma, H. Nakajima, O. Nishikawa, et al. Organic/inorganic nano-composites for high temperature proton conducting polymer electrolytes[J].Solid State Ionics,2003,62-63:237-245.
    [304] Je-Deok Kim, Itaru Honma. Proton conducting polydimethylsiloxane/zirconium oxide hybrid membranes added with phosphotungstic acid[J]. Electrochimica Acta,2003,483:633-3638.
    [305] Laurent Depre, Jürgen Kappei and Michael Popall. Inorganic-organic proton conductors based on alkylsulfone functionalities and their patterning by photoinduced methods[J]. Electro- chimica Acta, 1998,43:1301-1306.
    [306] Stéphane Jacob, Sébastien Cochet, Christiane Poinsignon,et al. Proton conducting inorganic-organic matrices based on sulfonyl- and styrene derivatives functionalized polycondensates via sol-gel processing[J]. Electrochimica Acta,2003,48:2181-2186.
    [307] Hitoshi Nakajima, Itaru Honma. Proton-conducting hybrid solid electrolytes for intermediate temperature fuel cells[J]. Solid State lonics,2002,148:607-610.
    [308] I. Honma, S. Nomura, H. Nakajima. Protonic conducting organic/inorganic nanocomposites polymer electrolyte membrane[J]. Journal of Membrane Science,2001,185:83-94.
    [309] I. Honma, Y. Takeda, J.M. Bae. Protonic conducting properties of sol-gel derived organic / inorganic nanocomposite membranes doped with acidic functional molecules[J]. Solid State lonics, 1999,120:255-264.
    [310] I. Honma, S. Hirakawa, K. Yamada, et al. Synthesis of organic / inorganic nanocomposites protonic conducting membrane through sol-gel processes[J]. Solid State Ionics, 1999,118:29-36.
    [311] A. Ktlver, and K. Potje-Kamloth. Comparative study of methanol crossover across electropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell[J]. Electrochimica Acta, 1998,43:2527-2535.
    [312] Helmer-Metzmann; Freddy (Essenheim, DE); Schleicher, et al. Polymer electrolytes and process for their production[P]. US 6096856.2000-08-01.
    [313] B. Smitha, S. Sridhar, A.A. Khan. Synthesis and characterization of proton conducting polymer membranes for fuel cells[J]. Journal of Membrane Science,2003,225:63-76.
    [314] 吴洪,王宇新,王世昌.直接甲醇燃料电池用阻醇质子导电聚乙烯醇—聚本乙烯磺酸共混膜[J].功能高分子学报,2002,15(1):6~10.
    [315] 吴洪,王宇新,王世昌.聚乙烯醇—聚丙烯酸共混膜的阻醇及质子导电性能研究[J].膜科学与技术,2002,22(6):1~3.
    [316] 吴洪,王宇新,王世昌.聚乙烯醇膜的阻醇及导电性能研究(Ⅰ)热处理聚乙烯醇膜[J].高分子材料科学与工程,2003,19(2):172~175.
    [317] 吴洪,王宇新,王世昌.聚乙烯醇膜的阻醇及导电性能(Ⅱ)戊二醛交联聚乙烯醇膜[J].高分子材料科学与工程,2003,19(5):131~133.
    [318] Hong Wu, Yuxin Wang and Shichang Wang. A methanol barrier polymer electrolyte membrane in direct methanol fuel cells[J]. New Materials for Electrochemical Systems,2002, 5:251-254.
    [319] B. Smitha, S. Sridhar, and A. A. Khan. Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells [J]. Macromolecules, 2004, 37: 2233-2239.
    [320] P. Mukoma, B.R. Jooste, H.C.M. Vosloo. Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells [J]. Journal of Power Sources,2004, 136:16-23.
    [321] M. Rikukawa, K. Sanui. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers[J].Progress in polymer science,2000,25:1463-1502.
    [322] Jianhua Zou, Yongbin Zhao, Wenfang Shi. Preparation and properties of proton conducting organic-inorganic hybrid membranes based on hyperbranched aliphatic polyester and phosphoric acid [J]. Journal of Membrane Science, 2004, 245:35-40.
    [323] Truls Norby. Solid-state protonic conductors: principles, properties, progress and prospects[J]. Solid State lonics,1999,125:1-11.
    [324] Calum R.I. Chisholm, Sossina M. Haile. Superprotonic behavior of Cs_2 (HSO_4)(H_2 PO_4) - a new solid acid in the CsHSO_4-CsH_2PO_4 system[J]. Solid State Ionics,2000,136-137:229-241.
    [325] Giulio Alberti, Mario Casciola. Solid state protonic conductors, present main applications and future prospects[J]. Solid State Ionics,2001,145:3-16.
    [326] Yong-il Park, Masayuki Nagai. Proton exchange nanocomposite membranes based on 3-glycidoxypropyl- trimethoxysilane, silicotungstic acid and a-zirconium phosphate hydrate[J]. Solid State lonics,2001,145:149-160.
    [327] Shinji Hara, Hiroaki Sakamoto, Masaru Miyayama,et al. Proton-conducting properties of hydrated tin dioxide as an electrolyte for fuel cells at intermediate temperature[J]. Solid State Ionics,2002,154-155:679-685.
    [328] P. Mukoma, B.R. Jooste, H.C.M. Vosloo. Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells [J]. Journal of Power Sources,2004, 136:16-23.
    [329] N. Cornet, G. Beaudoing, G. Gebel. Influence of the structure of sulfonated polyimide membranes on transport properties[J]. Separation and Purification Technology,2001,22-23:681-687.
    [330] Faure; Sylvain (Air-en-Provence, FR); Pineri,et al. Sulphonated polyimides, membranes and fuel cell[P]. US 6245881.2001-06-12.
    [331] G.F. McLean, T. Niet, S. Prince-Richard, N. Djilali. An assessment of alkaline fuel cell technology[J]. International Journal of Hydrogen Energy, 2002 (27):507-526.
    [332] 夏朝阳,黄爱宾,汪洋,卢善富,庄林,陆君涛,肖超渤.碱性电解质膜直接甲醇燃料电池[J].电池,2004,34(3):227-228.
    [333] Karl Kordesch, Viktor Hacker, Josef Gsellmann, Martin Cifrain, Gottfried Faleschini, Peter Enzinger, Robert Fankhauser, Markus Ortner, Michael Muhr, Robert R. Aronson. Alkaline fuel cells applications[J]. Journal of Power Sources, 2000(86): 162-165.
    [334] Erich Gülzow. Alkaline fuel cells: a critical view[J]. Journal of Power Sources, 1996(61):99-104.
    [335] Trygve Burchardta, Pascal Gouérec, Emilio Sanchez-Cortezon,Zia Karichev, James H. Miners. Alkaline fuel cells: contemporary advancement and limitations[J]. Fuel,2002 (81):2151-2155.
    [336] J.R.Varcoe, R.C.T.Slade. Prospects for Alkaline Anion-exchange Membranes in Low Temperature Fuel Ceils[J]. Fuel cells,2005(2), 187-200.
    [337] Robert C.T. Slade, John R. Varcoe. Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes[J]. Solid State Ionics, 2005 (176): 585-597.
    [338] Koji Yamada, Kazuaki Yasuda, Naoko Fujiwara, Zyun Siroma, Hirohisa Tanaka, Yoshinori Miyazaki, Tetsuhiko Kobayashi. Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte[J]. Electrochemistry Communications, 2003 (5) :892-896.
    [339] Abdulah Elattar, Azzedine Elmidaoui, Natalia Pismenskaia, Claude Gavach, Gerald Pourcelly. Comparison of transport properties of monovalent anions through anion-exchange membranes[J]. Journal of Membrane Science, 1998 (143) :249-261.
    [340] Lei Li, Yuxin Wang. Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells[J]. Journal of Membrane Science,2005 (262):1-4.
    [341] 蹇锡高,陈平,廖功雄,朱秀玲,张守海,王锦艳.含二氮杂萘酮结构聚芳醚系列高性能聚合物的合成与性能.高分子学报,2003,(4):469~475.
    [342] S. J. Wang, Y. Z. Meng, A. R. Hlil, and A. S. Hay. Synthesis and Characterization of Phthalazinone Containing Poly(arylene ether)s, Poly(arylene thioether)s, and Poly(arylene sulfone)s via a Novel N-C Coupling Reaction [J]. Macromolecules, 2004, 37: 60-65.
    [343] 李允明.高分子物理实验[M].杭州:浙江大学出版社,1996.
    [344] 操建华.锂离子电池中聚合物电解质多孔膜的制备及其结构与性能研究[D].浙江大学博士学位论文,2005.
    [345] 李磊.直接甲醇燃料电池聚合物电解质的研究[D].天津大学博士论文,2003.
    [346] Li-Qiang Shen, Zhi-Kang Xu, Zhen-Mei Liu, You-Yi Xu. Ultrafiltration hollow fiber membranes of sulfonated polyetherimide/polyetherimide blends: preparation, morphologies and anti-fouling properties [J]. Journal of Membrane Science ,2003,218:279-293.
    [347] Jun Yang, Michael J. Janik, Ding Ma, Anmin Zheng, Mingjin Zhang, Matthew Neurock, Robert J. Davis, Chaohui Ye, and Feng Deng. Location, Acid Strength, and Mobility of the Acidic Protons in Keggin 12-H_3PW_(12)O_(40): A Combined Solid-State NMR Spectroscopy and DFT Quantum Chemical Calculation Study [J]. J. AM. CHEM. SOC. 2005, 127: 18274-18280.
    [348] Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions [J].Chem Rev, 1995, 95 (3): 559-614.
    [349] Merrifield R B. Solid phase peptide synthesis I: The synthesis ofa tetrapeptide[J].J Am Chem Soc,1963,85:2149.
    [350] Perez M, Ronda J C, Reina J A, et al. Synthesis of functional polymers by chemical modification of PECH and PECH-PEO with substituted phenolates [J].Polymer,2001,42:1-8.
    [351] Jones R G, Benfield R E, Swain A C, et a l. Chloromethylation of poly (methylphenylsilane) [J]. Polymer, 1995, 36:393-398.
    [352] Zhan C, Zeng H, Qin J, et al. Synthesis, photoconduction and electro-optical effect of a polysilane with disperse red-1 as side chain[J]. Synthetic Metals, 1997, 84: 397.
    [354] Avram E, Brebu M A, Warshawsky A, et al. Polymers with pendent functional groups V: thermooxidative and thermal behavior of chloromethylated polysulfones[J]. Polym Deg & Sta, 2000, 69:175-181.
    [355] 张爱清,李香丹,青志保,Lee Myong-Hoon.光敏聚酰亚胺合成的新途径(Ⅰ)聚酰胺的氯甲基化反应[J].中南民族大学学报(自然科学版),2002,21(4):5-9.
    [356] 苏仪,蹇锡高,张守海.季铵化聚醚砜酮的制备及其膜性能[J].功能材料,2004,35(3):385-387.
    [357] 张守海,蹇锡高,苏仪,张丽荣.氯甲基化/季铵化新型聚芳醚砜酮超滤膜的研制[J].水处理技术,2004,30(3):125-127.
    [358] Xu Tongwen, F.F. Zha. Fundamental studies on a new series of anion exchange membranes: effect of simultaneous amination-crosslinking processes on membranes ion-exchange capacity and dimensional stability [J]. Journal of Membrane Science, 2002 (199): 203-210.
    [359] 范云鸽,肖国林.耐高温强碱阴离子交换树脂研究进展[J].离子交换与吸附,2005,21(4):376-348.
    [360] 田秀枝.有机物优先透过的烯烃共聚物渗透蒸发膜的结构与性能[D].浙江大学博士学位论文,2005.
    [361] W.H.J. Hogarth, J.C. Diniz da Costa, G.Q.(Max) Lu. Solid acid membranes for high temperature (>140℃) proton exchange membrane fuel cells[J]. Journal of Power Sources, 2005 (142) : 223-237.
    [362] Yu Seung Kim, Michael A. Hickner, Limin Dong, Bryan S. Pivovar, James E. McGrath. Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability [J]. Journal of Membrane Science, 2004 (243) 317-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700