重组大肠杆菌高效生产具生物活性的人β-防御素和牛肠激酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人β-防御素是近来年发现的具有广谱抗菌活性并在机体抵御外来微生物入侵中起防御作用的一类阳离子抗菌肽。肠激酶是哺乳动物肠道内的一种丝氨酸蛋白水解酶,能够特异性的识别(Asp)_4-Lys序列,起到把胰蛋白酶原转变成胰蛋白酶的作用。
     本论文研究了使用基因工程技术生产人β-防御素3及4(HBD3、HBD4)和牛肠激酶轻链(BEKLC)的方法。建立了从获得HBD3、HBD4和牛肠激酶轻链基因、载体构建、表达优化、产物分离纯化、BEKLC包涵体复性,直到生物活性测定等的完整工艺。
     经过密码子优化全基因合成了HBD3及4的基因,构建了大肠杆菌融合表达HBD3及4的基因工程菌,通过对摇瓶表达条件的研究,获得了如下的优化培养条件:在MBL培养基,培养温度为34℃,在对数生长中期添加终浓度为0.4 mM的IPTG进行诱导的情况下,HBD3和HBD4重组菌分别诱导8 h和6h终止发酵,首次实现了融合蛋白的高水平表达。HBD3融合蛋白的产量为2.55g/L,HBD4融合蛋白的产量达到2.68 g/L。
     经过密码子优化全基因合成了牛肠激酶轻链基因(sBEKLC),采用质粒pET-39b(+)构建了融合表达载体,成功地在大肠杆菌中进行了表达,融合蛋白产量达到151.2 mg/L,i.e.80.6 mg/L sBEKLC。使用渗透冲击技术从细胞周质中提取sBEKLC,经过亲和层析可从每升发酵液中得到6.8mg sBEKLC,在类似的研究工作中处于较高的水平。经检测,sBEKLC具有生物活性。
     部分表达的sBEKLC融合蛋白为不可溶,应用镍离子金属螯地合层析对包涵体进行了纯化和复性研究,优化的复性条件为:50 mM Tris-HCl(pH 8.0),0.3 MNaCl,2 Murea,10 mM Imidazole,3 mM GSH,0.6 mM GSSG条件下,复性6 h结束,复性产物具有生物活性。
     将自制的肠激酶轻链成功地用于人防御素融合蛋白的切割以释放出有生物活性的成熟的产物。对重组菌生产的人β-防御素-3及4的分离纯化工艺进行了研究,分别建立了成熟HBD3总收率为41%、纯度为92%和成熟HBD4总收率为44%、纯度为95%的分离提纯工艺;测定了成熟产物的生物活性,所得重组蛋白经测定具有抑菌活性。
Human β-defensins are a group of cationic antibiotic peptides with broad antibacterial spectrum discovered in recent years, which play important roles in the self-defense against microbial invasion. Enterokinase is a serine Proteinase of the intestinal brush border that exhibits specificity for the sequence (Asp)4-Lys and converts trypsinogen into its active form trypsin.
    In this dissertation, a process of recombinant expression of human β-defensin-3 and -4(HBD3, HBD4) as well as bovine enterokinase light chain (BEKLC) was proposed, which includes the codon optimization of the genes, the construction of expression vectors, the optimization of the expression conditions, the purification of the target protein, refolding the inclusion bodies of BEKLC and bioactivity determination of the product.
    The codon optimized sequences coding HBD3 and HBD4 gene were synthesized, which were fused with TrxA to construct the expression vector. The resulting vector was finally transformed into E. coli BL21 (DE3) for expression. The optimal culture conditions of HBD3 and HBD4 production strain were determined as following: cultivation at 28℃ in MBL medium, induction at middle stage of exponential growth with 0.4 mM IPTG, and post-induction expression for 8 h of HBD3 and 6 h of HBD4. The high level expressions of HBD3 and HBD4 fusion protein were realized and never reported before. The volumetric productivity of fusion proteins were 2.55 g/l and 2.68 g/l for HBD3 and HBD4, respectively.
    A codon optimized sequence coding light chain of bovine enterokinase gene (sBEKLC) was synthesized, and it was fused with DsbA to construct the expression vector. Then the plasmid was transformed into E. coli BL21 (DE3) for expression, the volumetric productivity of fusion protein reached 151.2 mg/L, i.e. 80.6mg/L sBEKLC. The cold osmotic shock technique was successfully used to extract sulale sBEKLC from periplasmic space, and nickel affinity chromatography was employed to obtain mature sBEKLC. Finally, about 6.8mg of sBEKLC was purified from 1 liter fermentation broth and the enzyme activity of sBEKLC was well demonstrated.
    The inclusion bodies of sBEKLC fusion protein were purified under denaturing
    conditions and refolded by using refolding buffer in Ni-NTA column. The optimal refolding conditions were determined as following: 50 mM Tris-HCl (pH 8.0), 0.3 M NaCl, 2 M urea, 10 mM Imidazole, 3 mM GSH, 0.6 mM GSSG and refolding for 6 h. The enzyme activity of the product was detected.
    The self-made sBEKLC was successfully applied to split fusion protein and to release the mature bioactive HBD3 or HBD4. The purification procedure was established to obtain the recombinant HBD3 and HBD4. The overall recovery ratio of HBD3 was 41% with a purity of 92%, and which of HBD4 reached 44% with a purity of 95%. The antimicrobial activitis of the products were well determined.
引文
1 Ganz T, and Weiss J. Antimicrobial peptides of phagocytes and epithelia. Seminars in Hematology. 1997, 34(4): 343-354.
    2 Lehrer R.I., and Ganz T. Antimicrobial peptides in mammalian and insect host defence. Current Opinion in Immunology. 1999, 11:23-27.
    3 Ganz T, Selsted ME, and Lehrer RI. Defensins. European Journal of Haematology. 1990, 44: 1-8.
    4 Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, and Oppenheim JJ. β-Defensins: Linking innate and adaptive immunity through dendritic and T cell CCR6. Science, 1999, 286: 525-528.
    5 Rodriguez-Jimenez FJ, Krause A, Schulz S, Forssmann WG, Conejo-Garcia JR, Schreeb R, and Motzkus D. Distribution of new human beta-defensin genes clustered on chromosome 20 in functionally different segments of epididymis. Genomics, 2003, 81: 175-183.
    6 Ganz T, Selsted ME, Szldarek D, Harwig SS, Daher K, Bainton DF, and Lehrer RI. Defensins: natural peptide antibiotics of human neutrophils. Journal of Clinical Investigation. 1985, 76: 1472-1435.
    7 Selsted ME, Harwig SS, Ganz T, Schilling JW, and Lehrer RI. Primary structures of three human neutrophil defensins. Journal of Clinical Investigation. 1985, 76: 1436-1439.
    8 Singh A, Bateman A, Zhu QZ, Shimasaki S, Esch F, and Solomon S. Structure of a novel human granulocyte peptide with anti-ACTH activity. Biochemical and Biophysical Research Communications. 1988, 155: 524-529.
    9 Wilde CG, Griffith JE, Marra MN, Snable JL, and Scott RW. Purification and characterization of human neutrophil peptide 4, a new member of the defensin family. The Journal of Biological Chemistry. 1989, 264: 11200-11203.
    10 Jones DE, and Bevins CL, Paneth cells of the human small intestine express an antimicrobial peptide gene. The Journal of Biological Chemistry. 1992, 267: 23216-23225.
    11 Jones DE, and Bevins CL, Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Letters. 1993, 315: 187-192.
    12 Bensch KW, Raida M, Magert HJ, Schulz-Knappe P, and Forssmann WG. The HBD-1: A novel beta-Defensin from human plasma. FEBS Letters. 1995, 368: 331-335.
    13 Harder J, Bartels J, Christophers E, and Schroder JM. A peptide antibiotic from human skin. Nature. 1997, 387: 861.
    14 Harder J, Bartels J, Christophers E, and Schroder JM. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. The Journal of Biological Chemistry. 2001, 276 (8): 5707-5713.
    15 Jia HP, Schutte BC, Schudy A, Linzmeier R, Guthmiller JM, Johnson GK, Tack BF, Mitros JP, Rosenthal A, Ganz T, and McCray PB Jr. Discovery of new human beta-defensins using a genomics-based approach. Gene, 2001, 263: 211-218.
    16 Garcia JR, Krause A, Schulz S, Rodriguez-Jimenez FJ, Kluver E, Adermann K, Forssmann U, Frimpong-Boateng A, Bals R, and Forssmann WG. Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB Journal 2001, 15: 1819-1821.
    17 Yamaguchi Y, Nagase T, Makita R, Fukuhara S, Tomita T, Tominaga T, Kurihara H, and Ouchi Y. Identification of multiple novel epididymis-specific beta-defensin isoforms in the humans and mice. The Journal of Immunology. 2002, 169: 2156-2523.
    18 Ganz T and Lehrer RI. Defensins. Current Opinion in Immunology, 1994, 6: 584-589.
    19 Quayle AJ, Porter EM, Nussbaum AA, Wang YM, Brabec C, Yip KP, and Mok SC. Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. American Journal of Pathology, 1998, 152: 1247-1258.
    20 Valore EV, Park CH, Quayle AJ, Wiles KR, McCray PB Jr, and Ganz T. Human. beta-defensin-1: an antimicrobial peptide of urogenital tissues. Journal of Clinical Investigation. 1998, 101(8): 1633-1642.
    21 Zhao CQ, Wang I, and Lehrer RI. Widespread expression of beta-defensin HBD-1 in human secretory glands and epithelial cells. FEBS Letters. 1996, 396: 319-322.
    22 Krisanaprakornkit S, Weinberg A, Perez CN, and Dale BA. Expression of the peptide antibiotic human beta-defensin 1 in cultured gingival epithelial cells and gingival tissue. Infection and Immunity. 1998, 66: 4222-4228.
    23 Mathews M, Jia HP, Guthmiller JM, Losh G, Graham S, Johnson GK, Tack BF, and McCray PB Jr. Production of beta-defensin antimicrobial peptides by oral mucosa and salivary glands. Infection and Immunity 1999, 67: 2740-45.
    24 Schutte BC, Mitros JP, Bartlett JA, Waiters JD, Jia HP, Welsh MJ, Casavant TL, and McCray PB Jr. Discovery of five conserved β-defensin gene clusters using a computational search strategy. Proceedings of the National Academy of Sciences USA,2002, 99: 2129-2133.
    25 Ganz T, and Lehrer RI. Antimicrobial peptides of vertebrates. Current Opinion in Immunology. 1998,10: 41-44.
    26 Ihi T, Nakazato M, Mukae H, and Matsukura S. Elevated concentrations of human neutrophil peptides in plasma, blood, and body fluids from patients with infections. Clinical Infectious Diseases. 1997,25: 1134-1140.
    27 GenBank, http://www.ncbi.nlm.nih.gov
    28 Ganz T. Biosynthesis of defensins and other antimicrobial peptides. Antimicrobial peptides. Wiley, Chichester (Ciba Foundation Symposium 1994,186, 62-76.
    29 Linzmeier R, Michaelson D, Liu L, and Ganz T. The structure of neutrophil defensin genes. FEBS Letters. 1993,321: 267-273.
    30 Jones DE, and Bevins CL. Paneth cells of the human small intestine express an antimicrobial peptide gene. The Journal of Biological Chemistry. 1992, 267: 23216-23225.
    31 Mallow EB, Harris A, Salzman N, Russell JP, DeBerardinis RJ, Ruchelli E, and Bevins CL. Human Enteric defensins. The Journal of Biological Chemistry. 1996, 271: 4038-4045.
    32 Liu L, Zhao C, Heng HH, and Ganz T. The human β-defensin-1 and α -defensins are encoded by adjacent genes: two pepide families with differing disulfide topology share a common ancestry. Genomics. 1997, 43: 316-320.
    33 Liu L, Wang L, Jia HP, Zhao C, Heng HH, Schutte BC, McCray PB Jr, and Ganz T. Structure and mapping of the human β-defensin HBD-2 gene and its expression at sites of inflammation. Gene. 1998,222: 237-244.
    34 Schroder JM, and Harder J. Human Beta-Defensin 2. International Journal of Biochemistry & Cell Biology. 1999,31: 645 - 651.
    35 Lehrer RI, Lichtenstein AK, and Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annual Review of Immunology. 1993,11: 105-128.
    36 Porter EM, Poles MA, Lee JS, Naitoh J, Bevins CL, and Ganz T. Isolation of human intestinal defensins from ileal neobladder urine. FEBS Letters. 1998,343: 272-276.
    37 Robert B. Epithelial antimicrobial peptides in host defense against infection Respir Res 2000,1:141-150.
    38 Zhang L, Rozek A and Hancock RE. Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem , 2001,276: 35714-35722
    39 Tam JP, Wu C and Yang JL. Membranolytic selectivity of cystine-stabilized cyclic protegrins. Eur J Biochem. 2000, 267: 3289-3300
    40 Unger T, Oren Z and Shai Y. The effect of cyclization of magainin 2 and melittin analogues on structure, function and model membrane interactions: implication to their mode of action. Biochemistry. 2001,40: 6388-6397.
    41 Wieprecht T, Dathe M, Beyermann M, Krause E, Maloy WL, MacDonald DL and Bienert M. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry. 1997, 36: 6124-6132.
    42 Michael R. Y. Nannette YY, Mechanisms of Anti microbial peptide action and resistance Pharmacol Rev. 2003, 55: 27-55.
    43 Hancock RE, Peptide antibiotics. Lancet, 1997, 349:418-422.
    44 Edgerton M, Koshlukova SE, Lo TE, Chrzan BG, Straubinger RM and Raj PA, Candidacidal activity of salivary histatins: identification of a histatin 5-binding protein on Candida albicans. J. Biol. Chem, 1998, 273: 20438-20447.
    45 Lehrer RI, and Ganz T. Endogenous vertebrate antibiotics: defensins, protegrins, and other cysteine-rich antimicrobial peptides. Annals of the New York Academy of Sciences. 1996, 797: 228-239.
    46 Porter EM, van Dam E, Valore EV, Ganz T. Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infection and Immunity. 1997, 65: 2396-2401
    47 Bals R, Wang X, Wu Z, Freeman T, Bafna V, Zasloff M, and Wilson JM. Human β-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. Journal of Clinical Investigation. 1998, 102: 874-880.
    48 Sehroder JM. Epithelial peptide antibiotics. Biochemical Pharmacology. 1999, 57: 121-134.
    49 Epand RM, and Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta. 1999, 1462: 11-28.
    50 Schibli DJ, Hunter HN, Aseyev V, Starner TD, Wiencek JM, McCray PB Jr, Tack BF, and Vogel HJ. The solution structures of the human β-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. The Journal of Biological Chemistry. 2002, 277: 8279-8289.
    51 Schroder JM. Epithelial antimicrobial peptides: innate local host response elements. CMLS Cellular and Molecular Life Sciences. 1999, 56: 32-46.
    52 Ganz T. Defensins and host defense. Science. 1999, 286: 420-421.
    53 Hoover DM, Rajashankar KR, Blumenthal R, Purl A, Oppenheim JJ, Chertov O, and Lubkowski J. The structure of human β-defensin-2 shows evidence of higher order oligomerization. The Journal of Biological Chemistry. 2000, 275: 32911-32918.
    54 Liu L, Wang L, Jia HP, Zhao C, Heng HH, Schutte BC, McCray PB Jr, and Ganz T. Structure and mapping of the human beta-defensin HBD-2 gene and its expression at sites of inflammation. Gene. 1998, 222: 237-244.
    55 Zhang LQ, Yu WJ, He T, Yu J, Caffrey RE, Dalmasso EA, Fu S, Pham T, Mei J, Ho JJ, Zhang W, Lopez P, and Ho DD. Contribution of Human α-Defensin 1, 2, and 3 to the Anti-HIV-1 Activity of CD8 Antiviral Factor. Science, 2002, 298: 995-1000.
    56 Wang W, Owen SM, Rudolph DL, Cole AM, Hong T, Waring AJ, Lal RB, and Lehrer RI. Activity of alpha- and theta-defensins against primary isolates of HIV-1. The Journal of Immunology, 2004, 173(1): 515-20.
    57 Piers KL, Brown MH, and Hancock REW. Recombinat DNA procedures for producing small natimcrobial cationic peptides in bacteria. Gene. 1993, 134: 7-13.
    58 Feng Z, Jiang B, Chandra J, Ghannoum M, Nelson S, and Weinberg. Human Beta-defensins: Differential activity against Candidal species and Regulation by Candida albicans. J Dent Res, 2005, 84: 445-50.
    59 Cipakova I, Hostinova E, and Gasperik J. High-level expression and purification of a recombinant hBD1 fused to LMM protein in E.coli. Protein expression and purification, 2004, 37(1):207.
    60 Cai SH, Du J, Huang N, and Wang BY. Transfection and Expression of Recombinant Human β-defensin-2 Gene in Insect Cells. Journal of Sichuan University, 2004, 35(6): 832-5.
    61 张满朝,郑国锠.在大肠杆菌中表达人防御素-1.生物化学杂志 1997,13:264-269.
    62 张满朝,郑国锠.人防御素-1转基因烟草的获得及其抗TMV的初步观察.植物学报.1997,39:574-576.
    63 张满朝,郑国锠.人防御素-1(HNP-1)在烟草原生质体中的瞬间表达.实验生物学报.1997,30:209-211.
    64 唐彬,黄宁,吴琦,王伯瑶,人α-防御素HNP1基因在气管上皮细胞传染的表达研究.中华微生物学和免疫学杂志.1999,19:481-484.
    65 蔡绍辉,杜军,陈新年,黄宁,王伯瑶,重组人β-防御素基因在COS-7细胞的转染表达.华西医科大学学报.2000,31:433-437.
    66 Tuo XY, Chai JK, Xu MD, Chen B, and Sheng ZY. Expression of human beta-defensin-3 in COS-7 cell line. Bull Acad Mil Med Sci, 2004, 28: 344-6.
    67 Fang X, Peng L, Xu ZN, Wu JM, and Cen PL. Cloning and expression of human beta-defensin-2 gene in Escherichia coli. Protein Pept. Lett. 2002, 9: 31-37.
    68 Peng L, Xu ZN, Fang XM, Wang F, Yang S, and Cen PL. Preferential codons enhancing the expression level of human beta-defensin-2, Protein Pept. Lett. 2004, 11: 339-344.
    69 Peng L, Xu ZN, Fang XM, Wang F, and Cen PL. High-level expression of soluble human beta-defensin-2 in E. coli. Process Biochem. 2004, 39: 2199-2205.
    70 Wang F, Fang XM, Xu ZN, Peng L, and Cen PL. Fusion expression of human beta-defensin-2 from multiple jointed genes in E. coli. Prep. Biochem. Biotech. 2004, 34, 215-225.
    71 Xu ZN, Peng L, Zhong ZX, Fang XM, and Cen PL. High-level expression of a soluble functional antimicrobial peptide, human beta-defensin 2, in Escherichia coli. Biotechnol Prog. 2006, 22(2):382-6.
    72 Zhong ZX, Xu ZN, Peng L, Huang L, Fang XM, and Cen PL. Tandem repeat mHBD2 gene enhance the soluble fusion expression of HBD2 in Escherichia coli. Applied microbiology and biotechnology. 2006, in press.
    73 Chen HQ, Xu ZN, Xu NZ, Cen PL, and Peng L. Efficient expression of soluble fusion protein containing human beta-defensin-2 in E. coli cell-free system. J. Biotechnol. 2005, 115(3): 307-315.
    74 Huang L, Wang JF, Zhong ZX, Peng L, Chen HQ, Xu ZN, and Cen PL. Production of bioactive human beta-defensin-3 in Escherichia coli by soluble fusion expression. Biotechnology Letters. 2006, 28: 627-632.
    75 Xu ZN, Zhong ZX, Huang L, Peng L, Wang F, Cen PL. High-level production of bioactive human beta-defensin-4 in Escherichia coli by soluble fusion expression. Applied Microbiology Biotechnology, in press.
    76 Sheibani N. Prokaryotic gene fusion expression systems and their use in structural and functional studies of proteins. Prep. Biochem. Biotechnol. 1999, 29(1): 77-90.
    77 Nagai K and Thogersen HC. Generation of β-globin by sequence specific proteolysis of a hybrid protein in Escherichia coli. Nature. 1984, 309: 810-812.
    78 Chang JY. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur. J. Biothem. 1985, 151: 217-224.
    79 Collins-Racle LA, Mccolgan JM, Grant KL, Diblasio-Smith EA, Mccoy J, and Lavallie ER. Production of recombinant bovine enteropeptidase catalytic subunit in Escherichia coli using the novel secretory fusion partner DsbA. Biotechnology, 1993, 13: 982-987.
    80 Pavlov IP. The work of the digestive glands, 1st ed., 1902, Charles Griffin & Co., London.
    81 Kunitz M. Formation of trypsin from crystalline trysinogen by means of enterokinase. J. Gen. Physiol. 1939,22: 429-446.
    82 Kunitz M. Purification and concentration of enterokinase. J. Gen. Physiol. 1939, 22: 447-450.
    83 Maroux S, Baratti J, and Desnuelle P. Purification and specificity of porcine enterokinase. J. Boil. Chem. 1971,246: 5031-5039.
    84 Anderson LE, Walsh KA, and Neurath H. Bovine enterokinase.Purification, specificity, and some molecular properties. Biochemistry. 1977,16: 3354-3360.
    85 Liepnieks JJ and Light A. The preparation and properties of bovine enterokinase. The Journal of biological chemistry. 1979,254(5): 1677-1683.
    86 Fonseca P and Light A. The purification and characterization of bovine enterokinase from membrane fragment in the duodenal mucosal fluid. The Journal of biological chemistry. 1983,258(23): 14516-14520.
    87 Light A and Fonseca P. The preparation and properties of the catalytic subunit of bovine enterokinase. The Journal of biological chemistry. 1984, 259(21): 13195-13198.
    88 Grant DAW and Hemon-Taylor J. The purification of human enterokinase by affinity chromatography and immunoadsorption. Biochem. J. 1976, 155: 243-254.
    89 Magee AI, Grant DA, and Taylor JH. Further studies on the subunit structure and oligosaccharide moiety of human enterokinase. Clin. Chim. Acta. 1981, 115: 241-254.
    90 Lu D, Yuan X, Zheng XL, and Sadler JE. Bovine proenteropeptidase is activated by trypsin, and the specificity of enteropeptidase depends on the heavy chain. Journal of biological Chemistry, 1997, 272:31293-31300.
    91 Light A and Janska H. The amino-terminal sequence of the catalytic subunit of bovine enterokinase. J. Protein. Chem, 1991,10(5): 475-480.
    92 Song H, Choi S, and Seong BL. Engineered recombinant enteropeptidase catalytic subunit : effect of N-terminal modification. Arch. Biochem. Biophys. 2002,400:1-6.
    93 Kitamoto Y, Yuan X, and Wu Q. Enterokinase, the initiator of intestinal digestion, is a mossic protease composed of a distinctive assortment of domains. J. Proc Natl Acad Sci USA, 1994, 91: 7588-7592.
    94 Yamashina I. The action of enterokinase on trypsinogen. Acta. Chem. Scand. 1956,10: 739-743.
    95 Abita JP, Delaage M, and Lazdunski M. The mechanism of activation of trypsinogen: The role of the four N-terminal aspartyl residues. Eur. J. Biochem. 1969,9:314-324.
    96 Light A and Janska H. Enterokinase (enteropeptidase): comparative aspects. Trends. Biochem. Sci. 1989,14(3): 110-112.
    97 Hosfield T and Lu Q. Influence of the amino acid residue downstream of (Asp)_4Lys on enterokinase cleavage of a fusion protein. Analytical Biochemistry. 1999,269: 10-16.
    98 Hadorn B, Tarlow MJ, Lioyd JK, and Wolff OH. Intestinal enterokinase deficiency. Lancer. 1969, 1(7599): 812-813.
    99 Haworth JC, Gourley B, Hadorn B, and Sumida C. Malabsorption and growth failure due to intestinal enterokinase deficiency. J. Pediatr. 1971, 78(3): 481-490.
    100 LaVallie ER, Rehemtulla A, Racie LA, Diblasio EA, Ferenz G, Grant K, Light A, and Mccoy JM. Cloning and functional expression of a cDNA encoding the catalytic subunit of bovine enterokinase. J. Boil. Chem. 1993, 268: 23311-23317.
    101 Yuan LD and Hua ZC. Expression, purification, and characterization of a biologically active bovine enterokinase catalytic subunit in Escherichia coli. Protein expression and purification. 2002,25: 300-304.
    102 Gasparian ME, Ostapchenko VG, Schulga AA, Dolgikh DA, and Kirpichnikov. Expression, purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli. Protein expression and purification. 2003, 31: 133-139.
    103 Huang H, Gan YR, and Sun Y. Cloning and fusion expression of bovine enterokinase light gene in Escherichia coli. Hereditas. 2003,25(6): 685-690.
    104 Vozza LA, Wittwer L, Higgins DR, Purcell TJ, Bergseid M, and Collins-racle. Production of a recombinant bovine enterokinase catalytic subunit in the methylotrophic yeast Pichia Pastoris. Biotechnology, 1996,14:77-81.
    105 Choi S, Song HW, Moon JW, and Seong B. Recombinant enterokinase light chain with affinity tag: expression from Saccharomyces cerevisiae and its utilities in fusion protein technology. Biotechnology and bioengineering. 2001, 75(6): 718-724.
    106 Kim HJ, Kim YH, Roh YH, Seong BL, and Shin CS. Optimization of enterokinase fermentation using a recombinant Saccharomyces cerevisiae. Process Biochemistry. 2005, 40: 717-722.
    107 Svetina M, Krasevec N, Gaberc-Porekar V, and Komel R. Expression of catalytic subunit of bovine enterokinase in the filamentous fungus Aspergillus niger. Journal of Biotechnology, 2000, 76: 245-251.
    108 Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotech, 1995, 6: 494-500.
    109 Hu XY, Shi QW, Yang T, and Jackowski G. Specific replacement of consecutive AGG codons results in high-level expression of human cardiac troponin T in Escherichia coli. Protein Expres Purif. 1996, 7: 289-293.
    110 Spanjaard RA, Chen K, Walker JR, and van Duin J. Frameshift suppression at tandem AGA and AGG codons by cloned tRNA genes: assigning a codon to argU tRNA and T4 tRNA~(Arg). Nucleic. Acids. Res. 1990,18: 5031-5036.
    111 Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological Reviews. 1996, 60: 512-538.
    112 Hannig G and Makrides SC. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol, 1998 16: 54-60
    113 Kapust RB and Waugh DS. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Science. 1999,8: 1668-1674
    114 GST Gene Fusion System Handbook, Amersham Pharmacia Biotech Inc.
    115 Sachdev D and Chirgwin JM. Fusion to maltose-binding protein: control of folding and solubility in protein purification. Methods in Enzymology. 2000, 326: 312-321.
    116 Bach H, Mazor Y, Shaky S, Shoham-Lev A, Berdichevsky Y, Gutnick DL, and Benhar I. Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. Journal, of Molecular. Biology. 2001,312: 79-93.
    117 pMAL~(TM) Protein Fusion and Purification System Instruction Manual (Version 5.01), New England Biolabs, Inc.
    118 LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, and McCoy JM. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E.coli cytoplasm. Bio/Technology. 1993,11: 187-193.
    119 LaVallie ER, Lu Z, Diblasio-Smith EA, Collins-Racie LA, and McCoy JM. Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods in Enzymology. 2000,326: 322-340.
    120 Novy R, Berg J, Yaeger K, and Mierendorf R. pET trxA fusion system for increased solubility of protein expressed in E.coli. Novagen, Inc.
    121 Guddat LW, Bardwell JC, and Martin JL. Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization. Structure 1998, 6:757-767.
    122 Zhang Y, Olsen DR, Nguyen KB, Olson PS, Rhodes ET, and Mascarenhas D. Expression of eukaryotic proteins in soluble form in Escherichia coli. Protein Expression and Purification. 1998,12: 159-165.
    123 Ejima D, Watanabe M, Sato Y, Date M, Yamada N, and Takahara Y. High yield refolding and purification process for recombinant human interleukin-6 expressed in Escherichia coli. Biotechnology and Bioengineering. 1999, 62(3): 301-310.
    124 De Bernardez CE, Schwarz, and Rudolph R. Inhibition of aggregation side reactions during vitro protein folding. Methods Enzymol. 1999,309: 217-236.
    125 De Bernardez CE. Protein refolding for industrial processes. Current Opinion in Biotechnology. 2001,12:202-207.
    126 Gavit P and Better M. Production of antifungal recombinant peptides in Escherichia coli. J. Biotechnol. 2000, 79: 127-136.
    127 Mukhpadhyay A. Inclusion bodies and purification of proteins in biologically active forms. Adv. Biochem. Eng. Biotechnol. 1997, 56: 61-109.
    128 De Bernardez CE. Refolding of recombinant proteins. Current Opinion in Biotechnology. 1998, 9: 157-163.
    129 Futami J, Tsushima Y, and Tada H. Convenient and efficient in vitro folding of disulfide-containing globular protein from crude bacterial inclusion bodies. Journal of Biochemistry. 2000, 127: 435-441.
    130 Rudolph R and Lilie H. In vitro folding of inclusion body proteins. FASEBJ. 1996, 10(1): 49-56.
    131 Kurucz I, Titus JA, Jost CA, and Segal DM. Correct disulphide pairing and efficient refolding of detergent-solubilized single-chain Fv proteins from bacterial inclusion bodies. Mol/Immunol. 1995, 12: 1443-1452.
    132 Stockal J, Doring K, Malotka J, Jahnig F, and Dornmair K. Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimer class II major histocompatibility complex (MHC) molecules. Eur. J. Biochem. 1997, 248:684-691.
    133 Cleland JL, Builder SE, Swartz JR, Winkler M, Chang JY, and Wang DIC. Polyethylene glycol enhanced protein refolding. Bio/Technol. 1992, 10(9): 1013-1019.
    134 Manukhov IV, Eroshnikov GE, and Vyssokikh YM. Folding and refolding of thermolabile and thermostable bacterial luciferases: the role of DnaKJ heat-shock proteins. FEBS Letters, 1999, 448: 265-268.
    135 Tanaka N and Fersht A R. Identification of substrate binding site of GroEL minichaperone in solution. Journal of Molecular Biology. 1999,292:173-180.
    136 Hagen AJ, Hatton TA, and Wang DIC. Protein refolding in reverse micelles. Biotechnology and Bioengineering. 1989,35: 955-965.
    137 Werner MH, Clore GM, and Gronenborn AM. Refolding proteins by gel filtration chromatography. FEBS Letter. 1994,345(2): 125-130
    138 Batas B and Chaudhuri JB. Considerations of sample application and elution during size-exclusion chromatography-based protein refolding, J. Chromatography A. 1999, 864: 229-236.
    139 Suttnar J, Dyr JE, Hamsikova E, Novak J, and Vonka VJ. Procedure for refolding and purification of recombinant proteins from Escherichia coli inclusion bodies using a strong anion exchanger. J. Chromatography B. 1994, 656(1): 123-126.
    140 Hamaker KH, Liu J, Seely RJ, Ladisch CM, and Ladisch MR. Chromatography for rapid buffer exchange and refolding of secretory leukocyte protease inhibitor, Biotech. Prog. 1996,12(2): 184-189.
    141 Geng XD and Chang XQ. High-performance hydrophobic interaction chromatography as a tool for protein refolding. J. Chromatography. 1992, 599: 185-194.
    142 Han B, Hallf L, and Nimnim E. Refolding of a recombinant collagon-targeted TGF-beta2 fusion protein expressed in Escherichia coli. Protein Expr Purif. 1997,11(2): 169-178.
    143 Smith VR and Walker JE. Purification and folding of recombinant bovine oxoglutarate/malate carrier by immobilized metal-ion affinity chromatography. Protein Expr Purif. 2003,29(2): 209-216.
    1 Sambrook J,Fritsh EF,and Maniatis T.分子克隆实验指南(第二/三版),1992/2002,科学出版社,北京
    2 Ausubel F,Brent R,Kingston RE,Moore DD,Seidman JD,Smith JA,and Struhl K,精编分子生物学实验指南,1998,科学出版社,北京。
    1 Fang X, Peng L, Xu ZN, Wu JM, and Cen PL. Cloning and expression of human beta-defensin-2 gene in Escherichia coli. Protein Pept. Lett. 2002, 9: 31-37.
    2 Peng L, Xu ZN, Fang XM, Wang F, Yang S, and Cen PL. Preferential codons enhancing the expression level of human beta-defensin-2, Protein Pept. Lett. 2004, 11:339-344.
    3 Peng L, Xu ZN, Fang XM, Wang F, and Cen PL. High-level expression of soluble human beta-defensin-2 in E. coli. Process Biochem. 2004, 39: 2199-2205.
    4 Wang F, Fang XM, Xu ZN, Peng L, and Cen PL. Fusion expression of human beta-defensin-2 from multiple jointed genes in E. coli. Prep. Biochem. Biotech. 2004, 34, 215-225.
    5 Xu ZN, Peng L, Zhong ZX, Fang XM, and Cen PL. High-level expression of a soluble functional antimicrobial peptide, human beta-defensin 2, in Escherichia coli. Biotechnol Prog. 2006, 22(2): 382-6.
    6 Zhong ZX, Xu ZN, Peng L, Huang L, Fang XM, and Cen PL. Tandem repeat mHBD2 gene enhance the soluble fusion expression of HBD2 in Escherichia coli. Applied microbiology and biotechnology. 2006, in press.
    7 Codon usage table of Escherichia coli, Pichia pastoris, and Bacillus subtilis: http://www.kazusa.or.jp/codon/.
    8 http://www.entelechon.com/eng/backtranslation.htmL
    9 Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 1995, 6: 494-500.
    10 Spanjaard RA, Chen K, Walker JR, and van Duin J. Frameshift suppression at tandem AGA and AGG. codons by cloned tRNA genes: Assigning a codon to argU tRNA and T4 tRNAarg. Nucleic Acids Res 1990; 18:5031-5036.
    11 Hu XY, Shi QW, Yang T, and Jackowski G.. Specific replacement of consecutive AGG codons results in high-level expression of human cardiac troponin T in Escherichia coli. Protein Expres Purif. 1996, 7: 289-293.
    1 Peng L, Xu ZN, Fang XM, Wang F, and Cen PL. High-level expression of soluble human beta-defensin-2 in E. coli. Process Biochem. 2004, 39:2199-2205.
    2 Sambrook J, and Russell DW. Molecular Cloning: A Laboratory Manual, 3rd edition. Cold Spring Harbor Laboratory Press. 2001, New York
    3 Sivakesava S, Xu ZN, Chen YH, Hackett J, Huang RC, Lam E, Lam TL, Siu K.L, Wong RSC, and Wong WKR. Production of excreated human epidermal growth factor (hEGF) by an efficient recombinant Escherichia coli system. Process. Biochem. 1999, 34, 893-900.
    1 Collins-Racle LA, Mccolgan JM, Grant KL, Diblasio-Smith EA, Mccoy J, and Lavallie ER. Production of recombinant bovine enteropeptidase catalytic subunit in Escherichia coli using the novel secretory fusion partner DsbA. Biotechnology, 1993, 13: 982-987.
    2 Liepnieks JJ and Light A. The preparation and properties of bovine enterokinase. The Journal of biological chemistry. 1979, 254(5): 1677-1683.
    3 Light A and Fonseea P. The preparation and properties of the catalytic subunit of bovine enterokinase. The Journal of biological chemistry. 1984, 259(21): 13195-13198.
    4 Lu D, Yuan X, Zheng XL, and Sadler JE. Bovine proenteropeptidase is activated by trypsin, and the specificity of enteropeptidase depends on the heavy chain. Journal of biological Chemistry, 1997, 272: 31293-31300.
    5 Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 1995, 6: 494-500.
    6 Spanjaard RA, Chen K, Walker JR, and van Duin J. Frameshift suppression at tandem AGA and AGG. codons by cloned tRNA genes: Assigning a codon to argU tRNA and T4 tRNAarg. Nucleic Acids Res 1990; 18: 5031-5036.
    7 Johansson AS, Bolton-Grob R. and Mannervik B. Use of silent mutations in eDNA encoding human glutathione transferase M2-2 for optimized expression in Escherichia coli. Protein Expres. Purif., 1999,17:105-112.
    8 Hannig G. and Makrides SC. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol., 1998 16: 54-60.
    1 Zotthar J, Nanak E, and Brzobohaty B. Expression, single-step purification, and matrix-assisted refolding of a maize cytokinin glucoside-specific beta-glucosidase. Protein Expression and Purification. 1999, 17:153-162.
    2 Rogl H, Kosemund K, ad Kuhlbrandt Collinson W. Refolding Escherichia coli produced membrane protein inclusion bodies immobilized by nickel chelating chromatography. FEBS Letters, 1998, 432:21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700