水稻叶鞘基部的负向重性反应及拟南芥和水稻的空间搭载实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物的向重性反应主要是指重力反应器官响应重力刺激而发生的不对称生长的过程。生长素、乙烯、赤霉素等植物激素以及Ca2+、质子、IP3等信号分子参与了植物的向重性反应。有学者曾采用基因芯片技术来研究向重性对拟南芥基因表达的影响,虽然分离到很多与重力相关的基因,但由于向重性弯曲是一个不对称生长的过程,而拟南芥株形较小不易纵切,所以并不清楚这些基因在向重性弯曲中的作用。我们采用株形较大的水稻为材料,采用RT-PCR、SSH、基因芯片、Realtime PCR等技术进行相关的研究,克隆了在水稻叶鞘负向重性反应中上下两半部不对称表达的基因,对这些基因的功能进行了研究,并测定了相关的生理指标。另外,我们利用一次空间搭载的机会,在我国的一颗返回式科学实验卫星上搭载了水稻和拟南芥种子,并进行相关的实验。
     我们的研究发现扩张蛋白OsEXPA4和水孔蛋白OsRWC3参与了水稻叶鞘的负向重性弯曲。在水稻叶鞘的负向重性反应中,OsEXPA4和OsRWC3在水稻叶鞘基部的下半部特异表达,它们也都被GA3诱导,而且OsEXPA4的不对称表达早于OsRWC3的不对称表达。此外我们又采用转有OsRWC3启动子-GUS的水稻植株,对负向重性反应中OsRWC3的表达进行了验证,GUS活性在重力刺激的水稻叶鞘的下半部明显增高,并且GUS染色主要分布在微管束。GA合成抑制剂Ancymidol能够减弱OsEXPA4和OsRWC3在上下两半部的不对称表达。研究还发现,负向重性反应中下半部的渗透势明显降低,水孔蛋白抑制剂HgCl2和phloretin也都能抑制水稻的负向重性反应。这些结果表明水稻叶鞘基部负向重性反应中不对称分布的GA诱导了OsEXPA4和OsRWC3的不对称表达,促进了水稻叶鞘基部下半部的细胞壁松弛和通过水孔蛋白的水分内流,最终导致了下半部细胞膨胀,使叶鞘向上弯曲。
     综合运用抑制差减杂交法(SSH)和基因芯片等技术,以负向重性反应中的水稻叶鞘基部上下两半部互为对照,并采用Realtime PCR进行验证,我们发现有11个基因在负向重性反应中水稻叶鞘基部的下半部特异表达,其中包括乙醛脱氢酶( Aldehyde dehydrogenase,ALDH1)、反复糖基化多肽(Reversibly glycosylated polypeptide,RGP1)、蔗糖合成酶(Sucrose synthase,SUS)、己糖转运蛋白(Hexose transporter)、核糖体结合蛋白(Ribophorin II)、染色体结构维持蛋白(Structural maintenace of chromosomes 3,SMC3)、尿卟啉原脱羧酶(Uroporphyrinogen decarboxylase,UROD)、鲨烯合酶(Squalene synthase,SQS)等,以及3个未知功能的基因。而胱硫醚γ-合成酶(cystathionine gamma-synthase,CGS1)在水稻叶鞘基部的上半部特异表达。我们研究了这些基因在负向重性反应中的不对称表达是否受到不对称分布的生长素的诱导,IAA处理实验结果表明RGP1、SUS、UROD、SMC3等基因的不对称表达受到了IAA的诱导,而且IAA对这几个基因的调控呈现剂量依赖效应,TIBA处理能够抑制RGP1、SUS、SMC3、UROD等基因在负向重性反应中4小时和6小时的不对称表达,说明水稻叶鞘负向重性反应中这4个基因的不对称表达受到生长素的诱导。另外我们测定负向重性反应中水稻叶鞘基部上下两半部己糖含量,结果证明负向重性反应中下半部积累了较多的己糖,并且上下两半部的己糖含量出现差异是在蔗糖合成酶和己糖运输蛋白的不对称表达出现之后,说明负向重性反应中这种己糖的不对称分布是由于蔗糖合成酶和己糖运输蛋白的不对称表达造成的。向重性过程中表达的基因参与了细胞壁物质的代谢,己糖合成和己糖的运输,能量物质的合成,甾醇类物质的代谢,蛋氨酸的合成,以及蛋白质的翻译等重要过程。
     利用空间搭载的机会,我们在我国于2003年11月3日发射的一颗返回式科学与技术试验卫星上搭载了拟南芥和水稻的种子。在水稻中发现了1棵个体矮小的致死型突变体,而在拟南芥中发现了3株稳定遗传的突变体,1株第1代出现表型突变的突变体,第2代表型恢复正常的突变体。在拟南芥的3株稳定遗传的突变体中,有1株呈伞房花序(Corymb-like inflorescence),而拟南芥野生型植株是总状花序(raceme),所以我们将这个突变体命名为cli,并对cli突变体进行了相关的研究。与野生型拟南芥相比,cli突变体的叶子向下卷曲,果荚末端圆滑,植株高度较低,茎和花序轴较为粗壮。黑暗处理能够显著促进野生型拟南芥下胚轴的生长,但是我们发现黑暗处理对cli突变体下胚轴生长的促进作用较弱。在未来的工作中,我们打算进行图位克隆,最终确定其中发生突变的基因。
Gravitropism results from the asymmetric growth or curvature of plant organs in response to gravistimulation. Differential growth of plants in response to changes in the gravity vector requires a complex signal transduction cascade. Ca2+, proton, IP3, auxin, Gibberellin and ethylene involved in the process. Using the whole seedlings or root tips as material, many gravitropism-regulated genes in Arabidopsis are identified by microarray. Because there is asymmetric growth between upper side and lower side in the gravitropic bending, the function of these genes in the gravitropism is not clear. Using rice as material, we identified genes related with asymmetrical growth in the gravitropism by RT-PCR, SSH, Microarray, Realtime PCR, etc. The function of genes in the gravitropism are explored, related physiological research are done. In addition, we sent the dry seeds of rice and Arabidopsis to the space on board of a recoverable satellite, and did related experiments after landing.
     We find that an expansin gene (OsEXPA4) and a plasma membrane aquaporin (OsRWC3) are involved in gravitropic bending of rice leaf sheath bases. Expression of OsEXPA4 and OsRWC3 were induced in the lower side of rice leaf sheath bases during gravitropism. Expression of both of these genes was induced by GA3.β-glucuronidase (GUS) activity in transgenic rice expressing a GUS reporter gene under the control of the gibberellin (GA)-responsive OsRWC3 promoter was investigated during gravitropic curvature and found to be enhanced in the lower side of graviresponding leaf sheath bases. Ancymidol, a GA biosynthesis inhibitor, reduced the expression gradient of OsEXPA4 and OsRWC3. The osmotic potential was transiently lower on the lower side of gravistimulated leaf sheath bases, and the gravitropic curvature was inhibited by HgCl2 and phloretin, two known inhibitors of aquaporins. These data suggest that asymmetric GA redistribution following gravistimulation results in the localized expression of OsEXPA4 and OsRWC3, which in turn might bring about differential cell wall loosening, cell expansion and water influx via aquaporins, thus leading to gravitropic bending.
     In order to further study the molecular mechanism in the gravitropic bending, we identify 12 genes differently expressed between upper and lower halves of rice leaf sheath bases by combination of the suppressive subtractive hybridization (SSH) and cDNA microarray techniques. 11 genes specially expressed in the lower side of rice leaf sheath bases, which included Aldehyde dehydrogenase(ALDH1),Reversibly glycosylated polypeptide(RGP1), Sucrose synthase(SUS), Hexose transporter, Ribophorin II, Structural maintenace of chromosomes 3(SMC3), Uroporphyrinogen decarboxylase(UROD), Squalene synthase(SQS) and 3 unknown protein. Cystathionine gamma-synthase (CGS1) specially expressed in the upper side. In addion, IAA treatment could induce the expression of RGP1, SUS, UROD and SMC3. TIBA (an inhibitor of auxin transport) could abolish the differential expression of these genes in the gravitropism. These results suggested that asymmetrical auxin induced the asymmetrical expression of RGP1, SUS, UROD and SMC3 in gravitropic bending of rice leaf sheath beases. The hexose content of rice leaf sheath base was measured, and there was more hexose in the lower halves after 12h gravi-stimulation. The asymmetrical hexose content occurred later than that of SUS and Hexose transporter. It suggested that the higher hexose content in the lower side of rice leaf sheath bases results from the higher expression of SUS and Hexose transporter. These gravitropism-regulated genes involved in some important process: metabolism of cell wall substance, hexose synthesis and hexose transport, energy substance synthesis, metabolism of steroids, the methionine synthesis and protein translation, etc.
     Dry seeds of rice and Arabidopsis were carried to the space on board of a recoverable satellite for 18 days.Some related experiments were done after landing. There was one dwarfish lethal mutant in rice, and three mutants in Arabidopsis. In addtiton, the aberrance of one Arabidopsis plant occured in SP1, and resumed normal in SP2. In the three Arabidopsis mutants, one had the phenotype of corymb-like inflorescence, different from raceme of Arabidopsis wild type, so this mutant was nominated cli (Corymb-like inflorescence). Compared with wild type, cli mutant had curled leaf, circinal pod bottom, strong inflorescence stem, lower plant height. Compared with Arabidopsis wild type, dark treatment had less effect on growth of cli mutant’s hypocotyls. In further study, we plan to clone the mutant gene in cli mutant by map-based cloning strategy.
引文
Allan E, Trewavas AJ (1985) Quantiative changes in calmodulin and NAD kinase during early cell development in the root apex of Pisum sativum. Planta 165: 493-501
    Anne Vieten, Steffen Vanneste, Justyna Wis′niewska, Eva Benková, René Benjamins, Tom Beeckman, Christian Luschnig and Jirí Frim (2005) Functional redundancy of PIN proteins is accompanied by auxin dependent cross-regulation of PIN expression. Development 132:4521-4531
    Blancaflor EB, Fasano JM, Gilroy S (1998) Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116: 213–222
    Blancaflor Elison B and Masson Patrick H (2003) Plant Gravitropism. Unraveling the Ups and Downs of a Complex Process. Plant Physiol 133:1677–1690
    Blancaflor EB, Fasano JM ,Gilroy S (1998) Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116: 213–222
    Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson PH (2003) ARG1 is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15: 2612-2625
    Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126: 524–535
    Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid ynthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16: 1191-1205
    Caroline G,Michael R, Axel M, Petra D, Weiler EW,Peter Nick (2005) Cholodny–Went revisited: a role for jasmonate in gravitropism of rice coleoptiles. Planta 222(4): 575-585
    Chandra S, Chabot JF, Morrison GH, Leopold AC (1982) Localisation of calcium in amyloplasts of root cap cells using ion microsocopy. Science 216: 1221-1223
    Chen RJ (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Plant Biol 95(25):15112-15117
    Daisuke N, Akimitsu I, Tadao A, Kotaro TY (2006) Inhibition of brassinosteroid biosynthesis by either a dwarf4 mutation or a brassinosteroid biosynthesis inhibitor rescues defects in tropic responses of hypocotyls in the Arabidopsis mutant nonphototropic hypocotyl. Plant Physiol 141:456-464
    Darwin C (1880) The power of movement in plants. John Murray,London
    Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312(5777):1218-1220
    Edelmann HG (2002) Ethylene perception generates gravicompetence in gravi-incompetent leaves of rye seedlings. J Exp Bot 53(375):1825-1828
    Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB,Liscum E (2006)A gradient of auxin and auxin-dependent transcription precedes tropic growth responses Proc Natl Acad Sci USA 103:236-241
    Evans ML, Ishikawa H (1997) Cellular specificity of the gravitropic motor response in roots. Planta Suppl 203: 115–122
    Evans ML, Stinemetz CL, Young LM, Fondren WM (1990) The role of calcium in the response of roots to auxin and gravity. In: Pharis RP, Rood SB (eds) Plant Growth Subst 1988 Fasano J, Swanson S, Blancaflor E, Dowd P, Kao T, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13:907–921
    Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806–809
    Geldner N, Friml J, Stierhof YD (2001)Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425-428
    Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003). The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219-230
    Pharis RP, Legge RL, Noma M, Kaufman PB, Ghosheh NS, Lacroix JD, Heller K. (1981) Changes in endogenous gibberellins and the metabolism of 3H-GA4 after geostimulation in shoots of the oat plant (Avena sativa). Plant Physiol 67, 892–897
    Harper R M. Stowe-Evans EL, Luesse DR, Muto H (2000) The NPH4 Locus Encodes the Auxin Response Factor ARF7, a Conditional Regulator of Differential Growth in Aerial Arabidopsis Tissue . Plant Cell 12(5): 757–771
    Harrison MA,Pickard BG (1986) Evaluation of Ethylene as a Mediator of Gravitropism by Tomato Hypocotyls. Plant Physiol 80:592-595
    Hasenstein KH, Evans ML (1986) Calcium dependance of rapid auxin action in maize roots. Plant Physiol 81: 439-443
    Hidehiro F,Masao T (1998) SLR, a novel genetic locus involved in auxin signaling in Arabidopsis thaliana. 9th International Conference on Arabidopsis Research University of Wisconsin – Madison ,396
    Hou G, Kramer VL, Wang YS, Chen R, Perbal G, Gilroy S, Blancaflor EB (2004) The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant J 39: 113-125
    Hu XY, Neill SJ, Tang ZC, Cai WM (2005) Nitric Oxide Mediates Gravitropic Bending in Soybean Roots. Plant Physiol 137:663-670
    Hye SY, Joo SH, Kaufman PB, KiM TW, Kim SK, Chang SC (2006) Changes in starch and inositol 1,4,5-trisphosphate levels and auxin transport are interrelated in graviresponding oat(Avena sativa ) shoots. Plant Cell Environ 29:2100–2111
    Joo JH, Bae YS,Lee JS (2001) Role of Auxin-Induced Reactive Oxygen Species in Root Gravitropism. Plant Physiol 126:1055-1060
    Kim D, Kaufman PB (1995) Basis for changes in the auxin-sensitivity of Avena sativa (oat) leaf-sheath pulvini during the gravitropic response. J Plant Physiol. 145(1/2):113-120 Kiss JZ, Jonathan W, Caspar T (1996) Gravitropism in roots of intermediate starch mutants of Arabidopsis. Physiol Plant 97: 237–244
    Knight T (1806) On the direction of the radicle and germen during the vegetation of seeds. Philos. Trans. R. Soc 99:108– 128
    Konings H (1995) Gravitropism of roots: an evaluation of progress during the last three decades. Acta Bot Neerl 44: 195-223
    Kuznetsov O, Hasenstein K (1996) Intracellular magnetophoresis of amyloplasts and induction of root curvature. Planta 198:87–94
    Leyser HM, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M (1993). Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1.Nature 346: 161–164
    Li Y, Hagen G, Guilfoyle TJ (1991) An Auxin-Responsive Promoter Is Differentially lnduced by Auxin Gradients during Tropisms. Plant Cell 3: 1167-1175
    Lomax TL (1997) Molecular genetic analysis of plant gravitropism. Gravit Space Biol Bull 10(2):75-82
    Long JC, Zhao W, Rashotte AM, Muday GK, Huber SC (2002) Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells.Plant Physiol 128(2):591-602
    Luschnig C, Gaxialo RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12: 2175–2187
    MacDonald IR, Hart JW (1987) Tropisms as indicators of hormone-mediated growth phenomena. In GV Hoad, JR Lenton, MB Jackson, RK Atkin, eds, Hormone Action in Plant Development: A Critical Approach. Butterworths, London, pp 231–249
    Madlung A, Behringer FJ, Lomax TL (1999) Ethylene plays multiple nonprimary roles in modulating the gravitropic response in tomato. Plant Physiol 120(3): 897 – 906
    Marchant A, Kargul J,May ST,Muller P,Delbarre A,Perrot-Rechenmann C,Bennett MJ(1999)AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues EMBO J 18, 2066–2073
    Masson PH (1995) Root gravitropism. Bioessays 17: 119-127
    Mongshausen GB, Zieschang HE, Sievers A (1996) Differential proton secretion in the apical elongation zone caused by gravistimulation is induced by a signal from the root cap. Plant Cell Environ 19:1408-1414
    Monshausen GB, Sievers A (2002) Basipetal propagation of gravityinduced surface pH changes along primary roots of Lepidium sativum L. Planta 215: 980–988
    Monshausen GB, Zieschang HE, Sievers A (1996) Differential proton secretion in the apical elongation zone caused by gravistimulation is induced by a signal from the root cap. Plant Cell Environ 19: 1408–1414
    Muday, GK (2001). Auxin and tropisms. J Plant Growth Regul 20:226-243
    Mulkey Timothy J,Evans ML,Kuzmanoff KM (1983) The kinetics of abscisic acid action on root growth and gravitropism. Planta 157(2): 150-157
    Ottenschla¨ger I, Wolff P, Wolverton C, Bhalero RP, Sandberg G, Ishikawa H, Evans ML, Palme K (2003) Gravity-regulated differential auxin trans-port from columella to lateral root cap cells. Proc Natl Acad Sci USA 100:2987–2991
    Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH, Murphy AS (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16: 1898–1911
    Perera IY, Hung CY, Brady S, Muday GK and Boss WF (2005) A Universal Role for Inositol 1,4,5-Trisphosphate-Mediated Signaling in Plant Gravitropism. Plant Physiol 140:746-760
    Phillips IDJ (1972) Endogenous giberellin transport and biosynthesis in relation to geotropic induction of excised sunflower shoottips.Planta 105:234–244.
    Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the Earth's gravitational field induces cytosolic calcium transients. Plant Physiol 129: 786-796
    Punita N, Loni M.(2000)AXR2 Encodes a Member of the Aux/IAA Protein Family. Plant Physiol 123 (2): 563–574
    Rashotte A, DeLong A, Muday G (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response and lateral root growth. Plant Cell 13: 1683–1696
    Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response and lateral root growth. Plant Cell 13: 1683–1696
    Rood SB, Kaufman PB, Abe H, Pharis RP (1987) Gibberellins and gravitropism in maize shoots: endogenous gibberellin-like substances and movement and metabolism of [3H]gibberellin A20. Plant Physiol 83, 645–651
    Rorabaugh PA, Salisbury FB (1989) Gravitropism in high plant shoots VI.Changing sensitivity to auxin in gravistimulasted soybean hypocotyls.Plant Physiol 91:1329-1338
    Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279: 1371–1373
    Sack FD (1991) Plant gravity sensing. Int Rev Cytol 127: 193–252
    Salisbury FB., Gillespie L, Rorabaugh P (1988) Gravitropism in Higher Plant Shoots V. Changing Sensitivity to Auxin. Plant Physiol 88(4): 1186–1194
    Scott A, Allen N (1999) Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism. Plant Physiol 121: 1291–1298
    Sievers A, Buchen B, Volkmann D, Hejnowicz Z (1991) Role of the cytoskeleton in gravity perception. In CW Lloyd, ed, The cytoskeletal basis of plant growth and form. Academic Press, London, pp 169–182
    Sievers A, Kruse S, Kuo-Huang L, Wendt M (1989) Statoliths and microfilaments in plant cells. Planta 179: 275–278
    Tang W, Brady SR, Sun Y, Muday GK, Roux SJ (2003) Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. Plant Physiol 131(1):147-54
    Timpte C, Wilson A, Estelle M (1994) The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138: 1239–1249
    Timpte CS, Wilson AK, Estelle M (1992) Effects of the axr2 mutation of Arabidopsis on cell shape in hypocotyl and inflorescence. Planta 188: 271–278
    Utsuno K, Shikanai T, Yamada Y, Hashimoto T (1998) AGR, an Agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol 39: 1111-1118
    Watahiki MK, Tatematsu K, Fujihira K, Yamamoto M (1999) The MSG1 and AXR1 genes of Arabidopsis are likely to act independently in growth-curvature responses of hypocotyls. Planta 207(3):362 – 369
    Wheeler RM, White RG, Salisbury FB (1986) Gravitropism in higher plant shoots IV. further studies on participation of ethylene. Plant Physiol 82:534-542
    Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222: 377–383
    Woltering EJ, Balk PA, Nijenhuis-deVries MA,Faivre M, Ruys G, Somhorst D, Sonia PH,
    Haya F (2004) An auxin-responsive 1-aminocyclopropane-1-carboxylate synthase is responsible for differential ethylene production in gravistimulated Antirrhinum majus L. flower stems. Planta 220:403–413
    Young L, Evans M, Hertel R (1990) Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays. Plant Physiol 92:792–796
    Young LM, Evans ML (1994) Calcium-dependent asymmetric movement of 3H-indole-3-acetic acid across gravistimulated isolated root caps of maize. Plant Growth Regul 14: 235-242
    Young LS, Harrison BR, Narayana Murthy UM, Moffatt BA, Gilroy S and Masson PH (2006) Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis.Plant Physiol 142:564-573
    Zhuang XL, Jiang JF, Li JH, Ma QB, Xu YY, Xue YB, Xu ZH,Chong K (2006) Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Plant J 48:581–591
    Abas L, Benjamins R, Malenica N, Paciorek T, Wisniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8: 249-256
    Akamatsu T, Hanzawa Y, Ohtake Y, Takahashi T, Nishitani K, Komeda Y (1999) Expression of endoxyloglucan transferase genes in acaulis mutants of Arabidopsis. Plant Physiol 121: 715-722
    Bao Y, Kost B, Chua NH (2001) Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28: 145-157
    Bjorkman T, Leopold AC (1987) Effect of inhibitors of auxin transport and of calmodulin on a gravisensing-dependent current in maize roots. Plant Physiol 84: 847-850
    Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson PH (2003) ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15: 2612-2625
    Buchanan GW, McManus G, Jarrell HC (2000) Solid state molecular motion in sucrose octapalmitate as studied by deuterium NMR spectroscopy. Chem Phys Lipids 104: 23-34
    Burstin J (2000) Differential expression of two barley XET-related genes during coleoptile growth. J Exp Bot 51: 847-852
    Campbell P, Braam J (1998) Co- and/or post-translational modifications are critical for TCH4 XET activity. Plant J 15: 553-561
    Chandra S, Chabot JF, Morrison GH, Leopold AC (1982) Localisation of calcium in amyloplasts of root cap cells using ion microsocopy. Science 216: 1221-1223
    Chen R, Rosen E, Masson PH (1999) Gravitropism in higher plants. Plant Physiol 120: 343-350
    Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6: 850-861.
    Cui D, Neill SJ, Tang Z, Cai W (2005) Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending. J Exp Bot 56: 1327-1334
    Cyr RJ, Palevitz BA (1995) Organization of cortical microtubules in plant cells. Curr Opin Cell Biol 7: 65-71
    Daye S, Biro RL, Roux SJ (1984) Inhibition of gravitropism in oat coleoptiles by the calcium chelator, ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid. Physiol Plant 61: 449-454
    Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312: 1218-1220
    Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132: 4563-4574
    Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA 103: 236-241
    Fukaki H, Fujisawa H, Tasaka M (1996) SGR1, SGR2, SGR3: novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana. Plant Physiol 110: 945-955
    Fukaki H, Fujisawa H, Tasaka M (1997) The RHG gene is involved in root and hypocotyl gravitropism in Arabidopsis thaliana. Plant Cell Physiol 38: 804-810
    Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29: 153-168
    Fukaki H, Taniguchi N, Tasaka M (2006) PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. Plant J 48: 380-389
    Fukaki H, Tasaka M (1999) Gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana. Adv Space Res 24: 763-770
    Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14: 425-430
    0'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007—4021
    Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, Tan KH, Xu ZH, Chong K (2004) Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol 135: 1502-1513
    Gibeaut DM, Karuppiah N, Chang SR, Brock TG, Vadlamudi B, Kim D, Ghosheh NS, Rayle DL, Carpita NC, Kaufman PB (1990) Cell wall and enzyme changes during the graviresponse of the leaf-sheath pulvinus of oat (Avena sativa). Plant Physiol 94: 411-416
    Goddard RH, Wick SM, Silflow CD, Snustad DP (1994) Microtubule components of the plant cell cytoskeleton. Plant Physiol 104: 1-6
    Guan C, Rosen ES, Boonsirichai K, Poff KL, Masson PH (2003) The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway. Plant Physiol 133: 100-112
    Han Y, Wang X, Jiang J, Xu Y, Xu Z, Chong K (2005) Biochemical character of the purified OsRAA1, a novel rice protein with GTP-binding activity, and its expression pattern in Oryza sativa. J Plant Physiol 162: 1057-1063
    Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12: 757-770
    Hou LP, Li ML (2001) Progress of Studies on the Plant Growth Promoting Mechanism of Brassinolide (BR). Chin Bulletin Bot 18: 560-566
    Imin N, Kerim T, Rolfe BG, Weinman JJ (2004) Effect of early cold stress on the maturation of rice anthers. Proteomics 4: 1873-1882
    Kamada M, Higashitani A, Ishioka N (2005) Proteomic analysis of Arabidopsis root gravitropism. Biol Sci Space 19:148-154
    Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M (2002a) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14: 33-46
    Kato T, Morita MT, Tasaka M (2002b) Role of endodermal cell vacuoles in shoot gravitropism. J Plant Growth Regul 21: 113-119
    Kerim T, Imin N, Weinman JJ, Rolfe BG (2003) Proteome analysis of male gametophyte development in rice anthers. Proteomics 3: 738-751
    Kimbrough JM, Salinas-Mondragon R, Boss WF, Brown CS, Sederoff HW (2004) The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol 136: 2790-2805
    Laxalt AM, Munnik T (2002) Phospholipid signalling in plant defence. Curr Opin Plant Biol 5: 332-338
    Lee HY, Bahn SC, Kang YM, Lee KH, Kim HJ, Noh EK, Palta JP, Shin JS, Ryu SB (2003) Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in Arabidopsis. Plant Cell 15: 1990-2002
    Legrain P (2000) Genome-wide protein interaction maps using two-hybrid system. FEBS Letter 480: 32-36
    Leyser HM, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10: 403-413
    Li N, Xu HT (2000) Progress on proteome reseach. Lett Biotechnol 11: 281-285
    Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2: 1071-1080
    Liu YL, Du KJ, Pei D (2006) Proteomics and its application in plant. Hebei J For Orchard Res 21: 263-268
    Long JC, Zhao W, Rashotte AM, Muday GK, Huber SC (2002) Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells. Plant Physiol 128: 591-602
    Macdonald IR, Hart JW (1987) New Light on the Cholodny-Went Theory. Plant Physiol 84: 568-570
    Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33: 435-445
    Matsui A, Yokoyama R, Seki M, Ito T, Shinozaki K, Takahashi T, Komeda Y, Nishitani K (2005) AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements. Plant J 42: 525-354
    May C, Preisig-Muller R, Hohne M, Gnau P, Kindl H (1998) A phospholipase A2 is transiently synthesized during seed germination and localized to lipid bodies. Biochim Biophys Acta 1393: 267-276
    McQueen-Mason S (1997) Plant cell walls and the control of growth. Biochem Soc Trans 25: 204-214
    McQueen-Mason SJ, Fry SC, Durachko DM, Cosgrove DJ (1993) The relationship between xyloglucan endotransglycosylase and in-vitro cell wall extension in cucumber hypocotyls. Planta 190: 327-331
    Monshausen GB, Sievers A (2002) Basipetal propagation of gravity-induced surface pH changes along primary roots of Lepidium sativum L. Planta 215: 980-988
    Monshausen GB, Zieschang HE, Sievers A (1996) Differential proton secretion in the apical elongation zone caused by gravistimulation is induced by a signal from the root cap. Plant Cell Environ 19: 1408-1414
    Morita MT, Sakaguchi K, Kiyose S, Taira K, Kato T, Nakamura M, Tasaka M (2006) A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems. Plant J 47: 619-628
    Moseyko N, Zhu T, Chang HS, Wang X, Feldman LJ (2002) Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol 130: 720-728
    Mullen JL, Turk E, Johnson K, Wolverton C, Ishikawa H, Simmons C, Soll D, Evans ML (1998) Root-growth behavior of the Arabidopsis mutant rgr1. Roles of gravitropism and circumnutation in the waving/coiling phenomenon. Plant Physiol 118: 1139-1145
    Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. Embo J 17: 6903-6911
    Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123: 563-574
    Nishitani K (1997) The role of endoxyloglucan transferase in the organization of plant cell walls. Int Rev Cytol 173: 157-206
    Nishitani K, Tominaga R (1992) Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem 267: 21058-21064
    Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25: 399-406
    Pei LP, Liu ZY, Yin LP (2002 ) Proteinome. J Cap Norm Univ (natural sciences edition) 23: 57-62
    Philippar K, Fuchs I, Luthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Bottger M, Becker D, Hedrich R (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96: 12186-12191
    Pickett FB, Wilson AK, Estelle M (1990) The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiol 94: 1462-1466
    Qian XH, Jia FC (1998) Proteomics Science Press. Beijing.
    Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122: 481-490
    Roos W, Dordschbal B, Steighardt J, Hieke M, Weiss D, Saalbach G (1999) A redox-dependent, G-protein-coupled phospholipase A of the plasma membrane is involved in the elicitation of alkaloid biosynthesis in Eschscholtzia californica. Biochim Biophys Acta 1448: 390-402
    Rorabaugh PA, Salisbury FB (1989) Gravitropism in higher plant shoots. VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls. Plant Physiol 91: 1329-1338
    Roux SJ, Biro RL, Hale CC, 2nd (1983) Calcium movements and the cellular basis of gravitropism. Adv Space Res 3: 221-227
    Salisbury FB, Gillespie L, Rorabaugh P (1988) Gravitropism in higher plant shoots. V. Changing sensitivity to auxin. Plant Physiol 88: 1186-1194
    Scherer GF (2002) Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Mol Biol 49: 357-372
    Scherer GF, Andre B (1989) A rapid response to a plant hormone: auxin stimulates phospholipase A2 in vivo and in vitro. Biochem Biophys Res Commun 163: 111-117
    Shen SH, Jing YX, Liang Y (2004) Advances in plant proteomics. Acta Phytoecologica Sinica 28: 114-125
    Shin H, Shin HS, Guo Z, Blancaflor EB, Masson PH, Chen R (2005) Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases. Plant J 42: 188-200
    Simmons C, Migliaccio F, Masson P, Caspar T, Soll D (1995) A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology. Physiol Plant 93: 790-798
    Soga K, Wakabayashi K, Kamisaka S, Hoson T (2004) Graviperception in growth inhibition of plant shoots under hypergravity conditions produced by centrifugation is independent of that in gravitropism and may involve mechanoreceptors. Planta 218: 1054-1061
    Stepanova AN, Ecker JR (2000) Ethylene signaling: from mutants to molecules. Curr Opin Plant Biol 3: 353-360
    Stinemetz CL, Hasenstein KH, Young LM, Evans ML (1992) Effect of calmodulin antagonists on the growth and graviresponsiveness of primary roots of maize. Plant Growth Regul 11: 419-427
    Stinemetz CL, Kuzmanoff KM, Evans ML, Jarrett HW (1987) Correlation between calmodulin activity and gravitropic sensitivity in primary roots of maize. Plant Physiol 84: 1337-1342
    Stowe-Evans EL, Harper RM, Motchoulski AV, Liscum E (1998) NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis. Plant Physiol 118: 1265-1275
    Stowe-Evans EL, Luesse DR, Liscum E (2001) The enhancement of phototropin-induced phototropic curvature in Arabidopsis occurs via a photoreversible phytochrome A-dependent modulation of auxin responsiveness. Plant Physiol 126: 826-834
    Sun NN, Sun DX, Zhun DX (1999) Molecular Genetics. Nanjing University Press Nanjing
    Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15: 2648-2653
    Takahashi N, Yamazaki Y, Kobayashi A, Higashitani A, Takahashi H (2003) Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiol 132: 805-810.
    Talbott LD, Pickard BG (1994) Differential changes in size distribution of xyloglucan in the cell walls of gravitropically responding Pisum sativum epicotyls. Plant Physiol 106: 755-761
    Tasaka M, Kato T, Fukaki H (1999) The endodermis and shoot gravitropism. Trends Plant Sci 4: 103-107
    Timpte C, Lincoln C, Pickett FB, Turner J, Estelle M (1995) The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. Plant J 8: 561-569
    Timpte C, Wilson AK, Estelle M (1994) The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138: 1239-1249
    Uozu S, Tanaka-Ueguchi M, Kitano H, Hattori K, Matsuoka M (2000) Characterization of XET-related genes of rice. Plant Physiol 122: 853-859
    Watahiki MK, Tatematsu K, Fujihira K, Yamamoto M, Yamamoto KT (1999) The MSG1 and AXR1 genes of Arabidopsis are likely to act independently in growth-curvature responses of hypocotyls. Planta 207: 362-369
    Watahiki MK, Yamamoto KT (1997) The massugu1 mutation of Arabidopsis identified with failure of auxin-induced growth curvature of hypocotyl confers auxin insensitivity to hypocotyl and leaf. Plant Physiol 115: 419-426
    Winter H, Huber JL, Huber SC (1997) Membrane association of sucrose synthase: changes during the graviresponse and possible control by protein phosphorylation. FEBS Lett 420: 151-155
    Wu LL, Song I, Karuppiah N, Kaufman PB (1993a) Kinetic induction of oat shoot pulvinus invertase mRNA by gravistimulation and partial cDNA cloning by the polymerase chain reaction. Plant Mol Biol 21: 1175-1179
    Wu LL, Song I, Kim D, Kaufman PB (1993b) Molecular basis of the increase in invertase activity elicited by gravistimulation of oat shoot pulvini. J Plant Physiol 142: 179-183
    Xu W, Campbell P, Vargheese AK, Braam J (1996) The Arabidopsis XET-related gene family: environmental and hormonal regulation of expression. Plant J 9: 879-889
    Yamauchi Y, Fukaki H, Fujisawa H, Tasaka M (1997) Mutations in the SGR4, SGR5 and SGR6 loci of Arabidopsis thaliana alter the shoot gravitropism. Plant Cell Physiol 38: 530-535
    Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M (2003) A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc Natl Acad Sci USA 100: 8589-8594
    Yokoyama R, Nishitani K (2001a) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol 42: 1025-1033
    Yokoyama R, Nishitani K (2001b) Endoxyloglucan transferase is localized both in the cell plate and in the secretory pathway destined for the apoplast in tobacco cells. Plant Cell Physiol 42: 292-300
    Yokoyama R, Rose JK, Nishitani K (2004) A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol 134: 1088-1099
    Young LS, Masson PH (2004) Protemics approach identifies adenosine kinase as a component in Arabidopsis root gravitropism. In: ASGSB 2004 Annual Meeting Abstracts.
    Abrami L, Berthonaud V, Deen PMT, Rousselet G, Tacnet F, Ripoche P (1996) Glycerol permeability of mutant aquaporin 1 and other AQP-MIP proteins: inhibition studies. Pflugers Arch 431: 408–414
    Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439-447
    Baiges I, Sch?ffner AR, Affenzeller MJ, Mas A (2002) Plant aquaporins. Physiol Plant 115:175-182
    Betz AL, Drewes LR, Gilboe DD (1975) Inhibition of glucose transport into brain by phlorizin, phloretin and glucose analogues. Biochim Biophys Acta 406:505- 515
    Buchanan BB, Gruissem W, Jones RL (eds) (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Maryland. pp851-865
    Caderas D, Muster M, Vogler H, Mandel T, Rose JKC, McQueen-Mason S, Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30
    Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199: 372-381
    Carvajal M, Cerda A, Martinez V (2000) Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity? New Phytol 145:439–447
    Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125: 1206-1215
    Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749-764
    Chen RJ (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Plant Biol 95:15112-15117
    Chen RJ, Rosen E, Masson PH(1999) Gravitropism in higher plants. Plant Physiol 120: 343-350
    Chen XZ, Shayakul C, Berger UV, Tian W, Hediger MA (1998) Characterization of a rat Na+-dicarboxylate cotransporter. J Biol Chem 273:20972-20981
    Cosgrove DJ (1993) Wall extensibility: its nature, measurement, and relationship to plant cell growth. New Phytol 124: 1-23
    Cosgrove DJ (1997a) Cellular mechanisms underlying growth asymmetry during stem gravitropism. Planta 203 Suppl 1, S130-S135
    Cosgrove DJ (1997b) Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13: 171–201
    Cosgrove DJ (2000b) Expansive growth of plant cells. Plant Physiol Biochem 38: 109-124
    Cui DY, Neill SJ, Tang ZC, Cai WM (2005) Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending. J Exp Bot 56:1327–1334
    Cui DY (2004) Study on plant responses to gravistimulation. Doctoral dissertation. Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1362
    Dordas C, Brown PH (2001) Evidence for channel mediated transport of boric acid in aquash (Cucurbita pepo). Plant Soil 235: 95–103
    Echevarria M, Windhager EE, Frindt G (1996) Selectivity of the renal collecting duct water channel aquaporin-3. J Biol Chem 271: 25079–25082
    Eckert M, Kaldenhoff R (2000) Light-induced stomatal movement of selected Arabidopsis thaliana mutants. J Exp Bot 51: 1435-1442
    Edelmann HG (2002) Ethylene perception generates gravicompetence in gravi-incompetent leaves of rye seedlings. J Exp Bot 53: 1825-1828
    Edelmann HG, Gudi G, Kuhnemann F (2002) The gravitropic setpoint angle of dark-grown rye seedlings and the role of ethylene. J Exp Bot 53: 1627-1634
    Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB,Liscum E (2006)A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA 103:236-241
    Fan HT, Morishima S, Kida H, Okada Y (2001) Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Cl- channels. Br J Pharmacol 133:1096-1106
    Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77-85
    Fleurat-Lessard P, Frangne N, Maeshima M, Ratajczak R, Bonnemain J, Martinoia E (1997) Increased expression of vacuolar aquaporin and H+-ATPase related to motor cell function in Mimosa pudica L. Plant Physiol 114: 827–834
    Ford P, Merot J, Jawerbaum A, Gimeno MAF, Capurro C, Parisi M (2000) Water permeability in rat oocytes at different maturity stages: aquaporin-9 expression. J Membr Biol 176:151–158
    Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806–809
    Frohlich O,Gunn RB (1987) Interactions of inhibitors on anion transporter of human erythrocyte. Am J Physiol 252:C153-C162
    Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112: 219-230
    Gibeaut DM, Karuppiah N, Chang SR, Brock TG, Vadlamudi B, Kim D, Ghosheh NS, Rayle DL, Carpita NC, Kaufman PB (1990) Cell wall and enzyme changes during the graviresponse of the leaf-sheath pulvinus of oat (Avena sativa). Plant Physiol 94:411-416
    Gloria KM (2001) Auxins and tropism. J Plant Growth Regul 20: 226-243
    Hagen MA, Martin G, Li Y, Guilfoyle TJ (1991) Auxin-induced expression of soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol 17: 567-579
    Harper RM, Stowe-Evans EL, Luesse DR, Muto H (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12: 757–771
    Hedden P, Phinney BO, Heupel R, Fujii D, Cohen H, Gaskin P, Macmillan J, Graebe JE (1982) Hormones of young tassels of Zea mays. Phytochemistry 21: 390–393
    Hedden P, Kamiya Y (1997) Gibberellin biosynthesis: Enzymes, Genes and Their Regulation. Annu Rev Plant Physiol Plant Mol Biol 48: 431-460
    Hou G, Kramer VL, Wang YS, Chen R, Perbal G, Gilroy S, Blancaflor EB (2004) The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant J 39: 113-125
    Jefferson RA (1987) Assay for chimeric genes in plants. The GUS fusion system. Plant Mol Biol Rep 5: 387-405
    Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19:456–461
    Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369
    Kaufman PB, Dayanandan P (1984) Hormonal regulation of the gravitropic response in pulvini of grass shoots. In Physiology of Plant Growth Substances, ed SS Purohit. Agro Botanical Publ, Bikaner, pp369–385
    Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, Fleming A, Gehring C, Kramer S, Piotrowski M, Kühnemann F, Edelmann HG (2003) Physiological and biochemical characterization of ethylene-generated gravicompetence in primary shoots of coleoptile-less gravi-incompetent rye seedlings. J Exp Bot 54: 2723-2732
    Leonhardt R, Pekel M, Platt B, Haas HL, Busselberg D (1996) Voltage-activated calcium channel currents of rat DRG neurons are reduced by mercuric chloride (HgCl2) and methylmercury (CH3HgCl). Neurotoxicology 17:85-92
    Li Y, Hagen G, Guilfoyle TJ (1991) An auxin-responsive promoter is differentially induced by auxin gradients during tropisms. Plant Cell 3: 1167-1175
    Lian HL, Yu X, Ye Q, Sang-Soo Kwak, Su WA, Tang ZC (2004) Water channel protein RWC3 is involved in the drought avoidance of rice. Plant Cell Physiol 45: 481-489
    Ludevid D, Hofte H, Himelblau E, Chrispeels MJ (1992) The expression pattern of the tonoplast intrinsic protein γ-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant Physiol 100:1633-1639
    Luschnig C, Gaxialo RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12: 2175–2187
    Malz S, Sauter M (1999) Expression of two PIP genes in rapidly growing internodes of rice is not primarily controlled by meristem activity or cell expansion. Plant Mol Biol 40:985-995 Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312:1218-1220
    Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol 48:399-429
    McCann MC, Roberts K (1991) Architecture of the primary cell wall. In: Lloyd CW (ed) The Cytoskeletal basis of plant growth and form. Academic Press, London, pp 109–129
    McCormick SJ, Tunnicliff G (2004) Irreversible inhibition of [3H]glycine transport into channel catfish erythrocytes by thiol group modifiers. Pharmacology 70:113-117
    McQueen-Mason S (1996) Plant cell walls and the control of growth. Biochem Soc Trans 25: 204–214
    McQueen-Mason SJ, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell-wall extension in plants. Plant Cell 4: 1425-1433
    McQueen-Mason SJ, Cosgrove DJ (1994) Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci USA 91: 6574–6578
    Menachem M, Dirk B, Alexander B, Norbert U, Rainer H, Beate O, Hadas L, Nava M, Ralf K (2002) Plasma membrane aquaporins in the motor cells of Samanea saman. Plant Cell 14: 727-739
    Molz FJ, Boyer JS (1978) Growth-induced water potentials in plant cells and tissues. Plant Physiol 62: 423-429
    Nagelhus EA, Veruki ML, Torp R, Haug FM, Laake JH, Nielsen S, Agre P, Ottersen OP (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Muller cells and fibrous astrocytes. J Neurosci 18: 2506–2519
    Nishi R, Hashimoto H, Kidou S, Uchimiya H, Kato A (1993) Isolation and characterization of a rice cDNA which encodes a ubiquitin protein and a 52 amino acid extension protein. Plant Mol Biol 22:159–161
    Park JH, Saier MJ (1996) Phylogenetic characterization of the MIP family of transmembrane channel protein. J Membr Biol 153:171-180
    Pharis RP, Legge RL, Noma M, Kaufman PB, Ghosheh NS, Lacroix JD, Heller K (1981) Changes in endogenous gibberellins and the metabolism of 3H-GA4 after geostimulation in shoots of the oat plant(Avena sativa). Plant Physiol 67: 892-897
    Philippar K, Fuchs I, Luthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Bottger M, Becker D, Hedrich R (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96:12186-12191
    Philips AL, Huttly AK (1994) Cloning of two gibberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: expression of tonoplast water channel, γ-TIP, is increased by GA3. Plant Mol Biol 24: 603-615
    Phillips IDJ (1972) Endogenous giberellin transport and biosynthesis in relation to geotropic induction of excised sunflower shoot-tips. Planta 105:234-244
    Pickard B (1985) Role of hormones, protons and calcium in geotropism. In Encyclopedia of Plant Physiology, New Series. eds RP Pharis, DM Reid. Vol. 11, Hormonal Regulation of Development, Ⅲ. Role of Environmental Factors. Spring–Verlag, Berlin, pp179–261
    Pimenta Lange MJ, Lange T(2006) Gibberellin biosynthesis and the regulation of plant development. Plant Biol 8:281-90
    Prevarskaya N, Skryma R, Vacher P, Bresson-Bepoldin L, Odessa MF, Rivel J, San Galli F, Guerin J, Dufy-Barbe L (1994) Gonadotropin-releasing hormone induced Ca2+ influx in nonsecreting pituitary adenoma cells: role of voltage-dependent Ca2+ channels and protein kinase C. Mol Cell Neurosci 5: 699-708
    Richards DE, King KE, Ait-ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52: 67 – 88
    Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279: 1371–1373
    Rüdiger M, Elmar WW (1983) Kinetic studies on the redistribution of endogenous growth regulators in gravireacting plant organs. Planta 158:339-384
    Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice.Plant Physiol 134:1642-1653
    Saliba KJ, Kirk K (2001) H+-coupled pantothenate transport in the intracellular malaria parasite. J Biol Chem 276: 18115–18121.
    Sarda X, Tousch D, Ferrare K, Legrand E, Dupuis JM, Casse-Delbart F, Lamaze T (1997) Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. Plant J 12: 1103-1111
    Sch?ffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204:131-139
    Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133-3147
    Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5692 expressed sequence tags. Proc Natl Acad Sci USA 95:13330?13335
    Stewart BR, Peter BK, Hiroshi A, Richard PP (1987) Gibberellins and gravitropism in maize shoots , endogenous gibberellin-like substances and movement and metabolism of [3H]Gibberellin A20. Plant Physiol 83: 645–651
    Sun MH, Zhang MH, Liu HY, Li LG, YU X, Su WA, Tang ZC (2004) Distribution of water channel protein RWC3 and its regulation by GA and sucrose in rice (Oryza sativa). Acta Botanica Sinica 46: 1056-1064
    Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223
    Tamai K, Ma JF (2003) Characterization of silicon uptake by rice roots. New Phytol 158: 431–436
    Tanimoto E (1994) Interaction of gibberellin A3 and ancymidol in the growth and cell-wall extensibility of dwarf pea roots. Plant Cell Physiol 35:1019-1028
    Thomas SG, Rieu I, Steber CM (2005) Gibberellin metabolism and signaling. Vitam Horm 72:289-338
    Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (1999) Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am J Physiol Renal Physiol 277: 685–696
    Tyerman SD, Bohnert HJ, Maurel C, Steudle E, Smith JAC (1999) Plant aquaporins. Their molecular biology, biophysics and significance for plant-water relations. J Exp Bot 50:1055-1071
    Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173-194
    Vreeburg RAM, Benschop JJ, Peeters AJM, Colmer TD, Ammerlaan AHM, Staal M,Wan X, Steudle E, Hartung W (2004) Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. J Exp Bot 55:411-422
    Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis, its regulation by endogenous and environmental signals. Plant Cell Physiol 41:1281-1290
    Yong WD, Link B, O’Malley R, Tewari J, Hunter CT, Lu CA, Li XM, Bleecker AB, Koch KE, McCann MC, McCarty DR, Patterson SE, Reiter WD, Staiger C, Thomas SR, Vermerris W, Carpita NC (2005) Genomics of plant cell wall biogenesis. Planta 221: 747-751
    Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857
    Abas L, Benjamins R, Malenica N, Paciorek T, Wisniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8: 249-256
    Avraham T, Badani H, Galili S, Amir R (2005) Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine gamma-synthase gene. Plant Biotechnol J 3: 71-79
    Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133: 713-725
    Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948-950
    Bocca SN, Kissen R, Rojas-Beltran JA, Noel F, Gebhardt C, Moreno S, du Jardin P, Tandecarz JS (1999) Molecular cloning and characterization of the enzyme UDP-glucose: protein transglucosylase from potato.Plant Physiol Biochem 37: 809-819
    Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson PH (2003) ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15: 2612-2625
    Brock TG, Kapen EH, Ghosheh NS, Kaufman PB (1991) Dynamics of auxin movement in the gravistimulated leaf-sheath pulvinus of oat (Avena sativa). J Plant Physiol 138: 57-62
    Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126: 524-535
    Bucher M, Brander KA, Sbicego S, Mandel T, Kuhlemeier C (1995) Aerobic fermentation in tobacco pollen. Plant Mol Biol 28: 739-750
    Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16: 1191-1205
    Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26: 573-582
    Cui D, Neill SJ, Tang Z, Cai W (2005) Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending. J Exp Bot 56: 1327-1334
    Delgado IJ, Wang Z, de Rocher A, Keegstra K, Raikhel NV (1998) Cloning and characterization of AtRGP1. A reversibly autoglycosylated Arabidopsis protein implicated in cell wall biosynthesis. Plant Physiol 116: 1339-1350
    Drakakaki G, Zabotina O, Delgado I, Robert S, Keegstra K, Raikhel N (2006) Arabidopsis reversibly glycosylated polypeptides 1 and 2 are essential for pollen development. Plant Physiol 142: 1480-1492
    Drew MC (1997) Oxygen deficiency and root metabolism:injury and acclimation under hypoxia and anoxia. . Annu Rev Plant Physiol Plant Mol Biol 48: 223–250
    Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA 103: 236-241
    Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, Tan KH, Xu ZH, Chong K (2004) Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol 135: 1502-1513
    Gibeaut DM, Karuppiah N, Chang SR, Brock TG, Vadlamudi B, Kim D, Ghosheh NS, Rayle DL, Carpita NC, Kaufman PB (1990) Cell wall and enzyme changes during the graviresponse of the leaf-sheath pulvinus of oat (Avena sativa). Plant Physiol 94: 411-416
    Guilfoyle TJ (1995) Auxin regulated gene expression and gravitropism in plants. ASGSB Bull 8: 39-45
    Harrison MA, Pickard BG (1989) Auxin asymmetry during gravitropism by tomato hypocotyls. Plant Physiol 89: 652-657
    Hesse H, Kreft O, Maimann S, Zeh M, Hoefgen R (2004) Current understanding of the regulation of methionine biosynthesis in plants. J Exp Bot 55: 1799-1808
    Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5: 4864-4884
    Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132: 640-652
    Hsu LC, Chang WC, Yoshida A (1989) Genomic structure of the human cytosolic aldehyde dehydrogenase gene. Genomics 5: 857-865
    Hu l, Cui D, Neill S, Cai W (2007) OsEXPA4 and OsRWC3 are involved in asymmetric growth during gravitropic bending of rice leaf sheath bases(accepted by Physiologia Plantarum).
    Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345: 646-651
    Kim SK, Chang SC, Lee EJ, Chung WS, Kim YS, Hwang S, Lee JS (2000) Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol 123: 997-1004
    Kimbrough JM, Salinas-Mondragon R, Boss WF, Brown CS, Sederoff HW (2004) The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol 136: 2790-2805
    Kittang AI, van Loon JJ, Vorst O, Hall RD, Fossum K, Iversen TH (2004) Ground based studies of gene expression in Arabidopsis exposed to gravity stresses. J Gravit Physiol 11: P223-224
    Knight T (1806) On the direction of the radicle and germen during the vegetation of seeds. . Philosophical Transactions of the Royal Society 99: 108–120
    Langeveld SM, Vennik M, Kottenhagen M, Van Wijk R, Buijk A, Kijne JW, de Pater S (2002) Glucosylation activity and complex formation of two classes of reversibly glycosylated polypeptides. Plant Physiol 129: 278-289
    Li L, Xu J, Xu ZH, Xue HW (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17: 2738-2753
    Li Y, Nakazono M, Tsutsumi N, Hirai A (2000) Molecular and cellular characterizations of a cDNA clone encoding a novel isozyme of aldehyde dehydrogenase from rice. Gene 249: 67-74
    Long JC, Zhao W, Rashotte AM, Muday GK, Huber SC (2002) Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells. Plant Physiol 128: 591-602
    Macdonald IR, Hart JW (1987) New Light on the Cholodny-Went Theory. Plant Physiol 84: 568-570
    Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. Embo J 18: 2066-2073
    Martzivanou M, Hampp R (2003) Hyper-gravity effects on the Arabidopsis transcriptome. Physiol Plant 118: 221-231
    Meudt WJ (1987) Investigations on the Mechanism of the Brassinosteroid Response: VI. Effect of Brassinolide on Gravitropism of Bean Hypocotyls. Plant Physiol 83: 195-198
    Moseyko N, Zhu T, Chang HS, Wang X, Feldman LJ (2002) Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol 130: 720-728
    Muday GK, Haworth P (1994) Tomato root growth, gravitropism, and lateral development: correlation with auxin transport. Plant Physiol Biochem 32: 193-203
    Nakamoto D, Ikeura A, Asami T, Yamamoto KT (2006) Inhibition of brassinosteroid biosynthesis by either a dwarf4 mutation or a brassinosteroid biosynthesis inhibitor rescues defects in tropic responses of hypocotyls in the Arabidopsis mutant nonphototropic hypocotyl 4. Plant Physiol 141: 456-464
    Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000) Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol 124: 201-209
    Noguchi T, Fujioka S, Takatsuto S, Sakurai A, Yoshida S, Li J, Chory J (1999) Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-En-3-one to (24R)-24-methyl-5alpha-cholestan-3-one in brassinosteroid biosynthesis. Plant Physiol 120: 833-840
    Pandit J, Danley DE, Schulte GK, Mazzalupo S, Pauly TA, Hayward CM, Hamanaka ES, Thompson JF, Harwood HJ, Jr. (2000) Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis. J Biol Chem 275: 30610-30617
    Parker KE, Briggs WR (1990) Transport of indole-3-acetic acid during gravitropism in intact maize coleoptiles. Plant Physiol 94: 1763-1769
    Perata P, Alpi A (1993 ) Plant responses to anaerobiosis. Plant Sci 93: 1–17
    Raghunathan L, Hsu LC, Klisak I, Sparkes RS, Yoshida A, Mohandas T (1988) Regional localization of the human genes for aldehyde dehydrogenase-1 and aldehyde dehydrogenase-2. Genomics 2: 267-269
    Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122: 481-490
    Roitsch T, Tanner W (1994) Expression of a sugar-transporter gene family in a photoautotrophic suspension culture of Chenopodium rubrum L. Planta 193: 365-371
    Rorabaugh PA, Salisbury FB (1989) Gravitropism in higher plant shoots. VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls. Plant Physiol 91: 1329-1338
    Rothschild A, Wald FA, Bocca SN, Tandecarz JS (1996) Inhibition of UDP-glucose: protein transglucosylase by a maize endosperm protein factor. Cell Mol Biol (Noisy-le-grand) 42: 645-651
    Salisbury FB, Gillespie L, Rorabaugh P (1988) Gravitropism in higher plant shoots. V. Changing sensitivity to auxin. Plant Physiol 88: 1186-1194
    Sauer N, Gahrtz M, Stadler R, Stolz J, Truernit E (1994) Molecular biology of sugar transporters of the plant plasma membrane. Symp Soc Exp Biol 48: 155-165
    Sauer N, Stolz J (1994) SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker's yeast and identification of the histidine-tagged protein. Plant J 6: 67-77
    Schoor S, Moffatt BA (2004) Applying high throughput techniques in the study of adenosine kinase in plant metabolism and development. Front Biosci 9: 1771-1781
    Sedbrook JC, Chen R, Masson PH (1999) ARG1 (altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proc Natl Acad Sci USA 96: 1140-1145
    Selth LA, Dogra SC, Rasheed MS, Randles JW, Rezaian MA (2006) Identification and characterization of a host reversibly glycosylated peptide that interacts with the Tomato leaf curl virus V1 protein. Plant Mol Biol 61: 297-310
    Shibuya A, Yoshida A (1988) Frequency of the atypical aldehyde dehydrogenase-2 gene (ALDH2(2)) in Japanese and Caucasians. Am J Hum Genet 43: 741-743
    Tadege M, Dupuis II, Kuhlemeier C (1999) Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci 4: 320-325
    Tadege M, Kuhlemeier C (1997) Aerobic fermentation during tobacco pollen development. Plant Mol Biol 35: 343-354
    Tang GQ, Luscher M, Sturm A (1999) Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11: 177-189
    Tomlinson KL, McHugh S, Labbe H, Grainger JL, James LE, Pomeroy KM, Mullin JW, Miller SS, Dennis DT, Miki BL (2004) Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds: analysis of tobacco seed development and effects of overexpressing apoplastic invertase. J Exp Bot 55: 2291-2303
    Vartapetian BBJ, M.B. (1997) Plant adaptations to anaerobic stress. . Ann Bot 79: 3–20
    Weig A, Franz J, Sauer N, Komor E (1994) Isolation of a family of cDNA clones from Ricinus communis L. with close homology to the hexose carriers. J Plant Physiol. 143: 178–183
    Went FW, Thimann KV (1937) Phytohormones Mac millan, New York.
    Weschke W, Panitz R, Gubatz S, Wang Q, Radchuk R, Weber H, Wobus U (2003) The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant J 33: 395-411
    Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol 35: 253-289
    Zhang Y, Liu Y, Wang H, Ye HC, Li GF (2005) Regulation of squalene synthase gene expression in tobacco by antisense transformation with an artemisia annua squalene synthase Gene. Chin J Agric Biotechol 13:416-422
    Zhao GR, Liu JY (2002) Isolation of a cotton RGP gene: a homolog of reversibly glycosylated polypeptide highly expressed during fiber development. Biochim Biophys Acta 1574: 370-374
    Anikeeva ID (1990) Genetic studies of Arabidopsis seeds during space flight. Kosm Biol Aviakosm Med 24: 22-25
    Brown AH (1984) The influence of gravity on the structure and functions of plant material. Adv Space Res 4: 299-303
    Cowles JR, Scheld HW, Lemay R, Peterson C (1984a) Growth and lignification in seedlings exposed to eight days of microgravity. Ann Bot (Lond) 54: 33-48
    Cowles JR, Scheld HW, Peterson C, LeMay R (1984b) Growth and development of plants flown on the STS-3 Space Shuttle mission. Acta Astronaut 11: 275-277
    Driss-Ecole D, Schoevaert D, Noin M, Perbal G (1994) Densitometric analysis of nuclear DNA content in lentil roots grown in space. Biol Cell 81: 59-64
    Edwards BF, Gray SW (1971) Cellular changes in wheat seedlings during orbital flight. Life Sci Space Res 9: 113-118
    Guo YH, Xie LB, Wang X, Deng LP (2004) Technological innovation of induced breeding of space and selection of new variety on pepper. Acta Agriculturae Nudeatae Sinica 18: 265-268 Halstead TW, Dutcher FR (1987) Plants in space. Annu Rev Plant Physiol 38: 317-45.
    Hampp R, Hoffmann E, Schonherr K, Johann P, De Filippis L (1997) Fusion and metabolism of plant cells as affected by microgravity. Planta 203 Suppl: S42-53
    Han L, Sun ZY, Qian YQ, Peng ZH (2004) Changes in biological characteristics of Poa pratensis carried by Shenzhou-3 spaceshi. Pratacultural science 21: 17-19
    Hoson T, Soga K, Mori R, Saiki M, Wakabayashi K, Kamisaka S, Kamigaichi S, Aizawa S, Yoshizaki I, Mukai C, Shimazu T, Fukui K, Yamashita M (1999) Morphogenesis of rice and Arabidopsis seedlings in space. J Plant Res 112: 477-486
    Hu FR, Zhao HJ, Zhang L, L., Xia Yw, Wu Dx (2004) Space technique induced elite abiotic stress tolerant yellow tall fescue. Acta Agriculturae Nucleatae Sinica 18: 286-288 Jiang PD (2000) Space Biology. Qingdao Publishing House. Qingdao.
    Jiao S, Hilaire E, Paulsen AQ, Guikema JA (2004) Brassica rapa plants adapted to microgravity with reduced photosystem I and its photochemical activity. Physiol Plant 122: 281-290
    Klymchuk DO, Brown CS, Chapman DK (1999) Ultrastructural organization of cells in soybean root tips in microgravity. J Gravit Physiol 6: P97-98
    Klymchuk DO, Brown CS, Chapman DK, Vorobyova TV, Martyn GM (2001) Cytochemical localization of calcium in soybean root cap cells in microgravity. Adv Space Res 27: 967-972 Klymchuk DO, Kordyum EL, Vorobyova TV, Chapman DK, Brown CS (2003) Changes in
    vacuolation in the root apex cells of soybean seedlings in microgravity. Adv Space Res 31: 2283-2288
    Kordyum EL (1997) Biology of plant cells in microgravity and under clinostating. Int Rev Cytol 171: 1-78
    Laurinavicius R, Stockus A, Buchen B, Sievers A (1996) Structure of cress root statocytes in microgravity (Bion-10 mission). Adv Space Res 17: 91-94
    Li JG, Liu M, Wang PS, Zhang J, Xue H, Guo YH (2000) Effects of space conditions on mutation and inheritance of tomato. Space Med Med Eng 13: 114-118
    Li JG, Pan GT, Cao MJ, Rong TZ, Jiang XC (2002) A study of genetic stability of male sterile mutant of maize obtained from space flighted seeds. Space Med Med Eng 15: 51-54
    Mashinsky A, Ivanova I, Derendyaeva T, Nechitailo G, Salisbury F (1994) "From seed-to-seed" experiment with wheat plants under space-flight conditions. Adv Space Res 14: 13-19
    Merkys AJ, Laurinavichius RS, Rupainene OJ, Savichene EK, Jaroshius AV, Shvegzhdene DV, Bendoraityte DP (1983) The state of gravity sensors and peculiarities of plant growth during different gravitational loads. Adv Space Res 3: 211-219
    Merkys AJ, Laurinavichius RS, Rupainene OY, Shvegzhdene DV, Yaroshius AV (1981) Gravity as an obligatory factor in normal higher plant growth and development. Adv Space Res 1: 109-116
    Merkys AJ, Laurinavicius RS, Svegzdiene DV (1984) Plant growth, development and embryogenesis during Salyut-7 flight. Adv Space Res 4: 55-63
    Merkys AJ, Laurinavicius RS, Svegzdiene DV, Jarosius AV (1985) Investigations of higher plants under weightlessness. Physiologist 28: S43-46
    Monje O, Stutte G, Chapman D (2005) Microgravity does not alter plant stand gas exchange of wheat at moderate light levels and saturating CO2 concentration. Planta 222: 336-345
    Moore R, McClelen CE, Fondren WM, Wang CL (1987a) Influence of microgravity on root-cap regeneration and the structure of columella cells in Zea mays. Am J Bot 74: 218-223
    Moore R, Fondren WM, McClelen CE, Wang CL (1987b) Influence of microgravity on cellular differentiation in root caps of Zea mays. Am J Bot 74: 1006-1012
    Podlutsky AG (1992) Ultrastructural analysis of organization of roots obtained from cell cultures at clinostating and under microgravity. Adv Space Res 12: 93-98
    Ren WB, Han JG, Zhang YW (2006) A study of the effect of space mutagenesis of grass seeds Pratacultural Science 23: 72-76
    Stutte GW, Monje O, Goins GD, Tripathy BC (2005) Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis of dwarf wheat. Planta 223: 46-56
    Tang ZS, Yang J, ZHao.Y., Yuan HY, Liu P (2004) Traits and miosis of serile tmato mutant induced by space flight. J China West Norm Univ(Natural Sciences) 25: 16-20
    Volkmann D, Behrens HM, Sievers A (1986) Development and gravity sensing of cress roots under microgravity. Naturwis senschaften 73: 438-441
    Wang GJ, Yan GY, Sun Y, Huang JH, Diao YL, Deng SL, Sun GZ (2004) Breeding effect of space treatment on spring wheat. Acta Agriculturae Nucleatae Sinica 18: 257-260
    Wen XF, Zhang l, Dai WX, Li CH (2004) Study of space mutation breeding in china. Acta Agriculturae Nucleatae Sinica 18: 241-246
    Weng ML (1998) Mutation induced by space conditions in Escherichia coli strains. Space Med Med Eng 11: 245-248
    West JB (2000) Physiology in microgravity. J Appl Physiol 89: 379-384
    Zhang J, Li JG, Wang PS, Wang XQ, Jiang XC (2000) Molecular analysis of space mutant line of kidney bean. Space Med Med Eng 13: 410-413
    薛应龙主编(1985)植物生理学实验手册。上海科学技术出版社,上海。
    颜昌敬主编(1990)植物组织培养手册。上海科学技术出版社,上海。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700