TrkB受体和KCC2在骨癌痛中的作用及可能机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:胫骨癌痛大鼠脊髓TrkB受体和KCC2的表达变化
     目的观察胫骨癌痛大鼠脊髓背角TrkB受体和KCC2表达变化。
     方法24只雌性SD大鼠,体重180~220g,随机分为2组:假手术组(J组,n=8)和模型组(M组,n=16)。假手术组和模型组大鼠分别于左胫骨近端骨髓腔注射生理盐水或Walker256乳腺癌细胞(1×10~7/ml)10μl。两组均在建模前、建模后第3、6、9、12天用机械触诱发痛测量仪测定大鼠左后肢机械缩足阈值,假手术组大鼠于建模后第12天处死,模型组于建模后第6、9、12天各处死4只大鼠,取脊髓L4~6组织,冰冻切片,用免疫组织化学方法检测脊髓背角TrkB受体和KCC2表达的变化。
     结果建模后6~12天,模型组大鼠左后肢机械缩足反射阈值显著下降,且随时间延长进行性发展;脊髓背角TrkB受体表达水平进行性升高,KCC2表达水平进行性降低;结果均有统计学差异(P<0.05)。
     结论脊髓背角TrkB受体和KCC2可能参与了大鼠胫骨癌痛的产生和维持。
     第二部分:鞘内注射TrkB中和抗体对胫骨癌痛大鼠痛行为学及脊髓KCC2表达的影响
     目的观察鞘内注射TrkB中和抗体后,胫骨癌痛大鼠痛行为学与脊髓背角KCC2表达的变化,并探讨其可能机制。
     方法40只雌性SD大鼠,体重180~220g,随机分为5组:Ⅰ组(n=8)为生理盐水对照组;Ⅱ组(n=8)为骨癌痛组;Ⅲ组(n=8)为对照组+TrkB中和抗体;Ⅳ组(n=8)为骨癌痛组+IgG;Ⅴ组(n=8)为骨癌痛组+TrkB中和抗体。Ⅰ组、Ⅲ组大鼠左胫骨近端骨髓腔注射生理盐水10μl,其他各组左胫骨近端骨髓腔均注射Walker256乳腺癌细胞(1×107/ml)10μl,建模当天所有大鼠行鞘内置管。Ⅲ组和Ⅴ组大鼠建模后第4、5天鞘内注射TrkB受体的中和抗体(2μg/10μl);Ⅳ组大鼠鞘内注射IgG(2μg/10μl),Ⅰ组、Ⅱ组大鼠不进行鞘内注射。各组在建模前、建模后第1~6天用机械触诱发痛测量仪测定大鼠左后肢机械缩足阈值(MWT),各组大鼠均于建模后第6天取L4~6脊髓组织,冰冻切片,用免疫组织化学方法检测脊髓KCC2的表达。
     结果建模后第6天,与Ⅰ组相比,Ⅱ组、Ⅳ组和Ⅴ组大鼠的MWT显著下降(P<0.01),Ⅲ组大鼠的MWT无变化(P> 0.05);与Ⅱ组、Ⅳ组相比,Ⅴ组大鼠的MWT显著增高(P<0.01)。与Ⅰ组相比,Ⅱ组、Ⅳ组大鼠脊髓背角中KCC2表达显著降低(P<0.01),Ⅲ组和Ⅴ组大鼠KCC2表达无显著差异(P>0.05);Ⅴ组大鼠脊髓背角中KCC2表达明显高于Ⅱ组、Ⅳ组(P < 0.01)。
     结论鞘内注射TrkB中和抗体可以部分缓解肿瘤诱发的机械性痛敏,这种效应可能与阻断TrkB途径从而阻止脊髓背角KCC2的表达下调有关;这提示脊髓背角KCC2可能参与了骨癌痛的形成。TrkB-KCC2途径可能是骨癌痛形成的重要机制之一。
Part one: The changes of TrkB receptor and KCC2 in the spinal cord of tibial bone cancer pain rats
     Objective To investigate expression change of tyrosine receptor kinase B(TrkB) and potassium-chloride cotransporter2(KCC2) in the spinal cord of tibial bone cancer pain rats.
     Methods 24 female SD rats weighing 180~220g were randomly divided into 2 groups: Sham-operated group(J, n=8)、Model group(M, n=16).J and M groups were respectively injected 10μl normal saline(NS) or Walker 256 breast cancer cells(1×107/ml) into the left proximal tibial medullary cavity.At the day before and 3、6、9、12d after inoculation, response of the left hind paw to mechanical stimulation with dynamic plantar aesthesiometer were measured. Rats of J group were executed at the twelfth day after inoculation, Rats were executed at the sixth,Four rats of M group were respectively executed at sixth,ninth day,eight rats were executed at twelfth day after inoculation,the L4-6 spinal cord was removed.The expression of the spinal TrkB receptor and KCC2 was detected by immunohistochemistry assay.
     Results From the 6 to 12th day post inoculation, MWT in M group was significantly decreased(P<0.05),appeared visible mechanical allodynia and became more and more severe. At the same time, spinal TrkB expression levels were progressive increased(P<0.05)and spinal KCC2 protein levels were progressive reduced(P<0.05).
     Conclusion TrkB receptor and KCC2 in dorsal horn of Spinal cord may be involved in the generation and maintenance of rat tibial bone cancer pain.
     Part two: The effect of intrathecal injection of TrkB Ab on pain behavior and spinal KCC2 expression in a rat model of tibial bone cancer pain
     Objective To observe the effection of intrathecal injection of TrkB Ab on pain behavior and spinal KCC2 expression in a rat model of tibial bone cancer pain, then explore its possible mechanisms.
     Methods 40 female SD rats weighing 180~220g were randomly divided into 5 groups(n=8), groupⅠ: control group; groupⅡ: model group; groupⅢ: control group+ TrkB Ab; groupⅣ: model group+IgG; groupⅤ: model group+ TrkB Ab. GroupⅠand groupⅢwere injected 10μl normal saline(NS) into the left proximal tibial medullary cavity, groupⅡ, groupⅣand groupⅤw ere injected 10μl Walker 256 breast cancer cells(1×107/ml) into the left proximal tibial medullary cavity. Set pipes into subarachnoid space of all rats at establishing model day. TrkB Ab or IgG was injected intrathecal (it) at the fourth and fifth day after inoculation. At the day before and 1 to 6 d after inoculation, response of the left hind paw to mechanical stimulation with dynamic plantar aesthesiometer were measured.Rats were killed at the sixth day after establishing model and L4~6 lumbar segment of the spinal cord were removed for determination of KCC2 expression in the spinal cord dorsal horn by immunohistochemical methods.
     Results At the sixth day after inoculation, mechanical withdrawal threshold (MWT) was significantly decreased in rats of groupⅡ,ⅣandⅤvs groupⅠ; MWT was significantly increased in rats of groupⅤcompared with those in groupⅡandⅣg roup. KCC2 protein levels in the dorsal horn of spinal cord from groupⅡandⅣwere significantly decreased compared with those in groupⅠ(P<0.05);spinal KCC2 protein levels in groupⅤhigher relative to groupⅡandⅣ; spinal KCC2 expresssion was no found remarkly difference between groupⅢand groupⅤ.
     Conclusion Intrathecal TrkB Ab can partial remission mechanical hyperalgesia induced by tumor, this effect may be related to prevent the downregulation of spinal KCC2 expression by blocked BDNF-TrkB pathway. These results also indicate that KCC2 in dorsal horn of spinal cord may be involved in the development of bone cancer pain. TrkB-KCC2 pathway may be an important mechanism of bone cancer pain.
引文
1. Portenoy RK, Lesage P. Management of cancer pain. [J].Lancet,1999,353(9165): 1695-1700.
    2. Jimenez-Andrade JM, Mantyh WG, Bloom AP. Bone cancer pain[J]. Ann N Y Acad Sci,2010,1198:173-181.
    3. Thurlimann B, de Stoutoutz ND. Causes and treatment of bone pain of manignant origin[J]. Drugs,1996,51(3): 383-398.
    4. Goblirsch MJ, Zwlak P, Clohisy DR. Advances in understanding bone cancer pain[J]. J Cell Biochem,2005,96(4):682-688.
    5. Zhang Y, Han JS, Wang Y. Progress in the basic research on neurobiological mechanisms of cancer pain[J]. Sheng Li Ke Xue Jin Zhan,2004,35(3):224-228.
    6. Yanagisawa Y, Furue H, Kawamata T. Bone cancer induces a unique central sensitization through synaptic changes in a wide area of the spinal cord[J]. Mol Pain, 2010,6:38.
    7. Xiaoping G, Xiaofang Z, Yaguo Z. Involvement of the spinal NMDA receptor/ PKCγsignaling pathway in the development of bone cancer pain[J]. Brain Res,2010,1335: 83-90.
    8. Gu X, Zhang J, Ma Z, Wang J. The role of N-methyl-D-aspartate receptor subunit NR2B in spinal cord in cancer pain[J]. Eur J Pain,2010,14(5):496-502.
    9. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersen- sitivity by central neural plasticity[J]. J Pain,2009,10(9):895-926.
    10. Rea K, Roche M, Finn DP. Supraspinal modulation of pain by cannabinoids: the role of GABA and glutamate[J]. Br J Pharmacol,2007,152(5):633-648.
    11. Blaesse P, Airaksinen M S, Rivera C. Cation-Chloride Cotransporters and Neuronal Function [J]. Neuron,2009,61(6):820-838.
    12. Price T J, Cervero F, Gold M S, et al. Chloride regulation in the pain pathway[J]. Brain Res Rev,2009,6(1):149-170.
    13. Price TJ, Cervero F, de Koninck Y. Role of cation-chloride-cotransporters (CCC) in pain and hyperalgesia[J]. Curr Top Med Chem,2005,5(6):547-555.
    14. Coull JA, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain[J]. Nature,2005,438(7070): 1017-1021.
    15. Merighi A, Salio C, Ghirri A, et al. BDNF as a pain modulator[J]. Prog Neurobiol, 2008,85(3): 297-317.
    1.姚明,杨建平,王丽娜等.腹水传代与体外培养Walker 256癌细胞系建立大鼠骨癌痛模型的可行性[J].中华医学杂志,2008,88(13):880-884.
    2. Jimenez-Andrade JM, Mantyh WG, Bloom AP. Bone cancer pain[J]. Ann N Y Acad Sci,2010,1198:173-181.
    3. Thurlimann B, de Stoutoutz ND. Causes and treatment of bone pain of manignant origin[J]. Drugs,1996,51:383-398.
    4. Schwei MJ, Honore P, Rogers SD, et a1. Neurochemical and celluar reorganization of the spinal cord in a murine model of bone cancer pain[J]. J Neurosci,1999,19(24): 10886-10897.
    5. Davies, AM. The role of neurotrophins in the developing nervous system[J]. J Neurobiol,25(11):1334-1348.
    6. Numakawa T, Suzuki S, Kumamaru E. BDNF function and intracellular signaling in neurons[J]. Histol Histopathol,2010,25(2):237-258.
    7. Lu Y, Christian K, Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory[J]? Neurobiol Learn Mem,2008,89(3):312-323.
    8. Merighi A, Salio C, Ghirri A, et al. BDNF as a pain modulator[J]. Prog Neurobiol, 2008,85(3):297-317.
    9. Obata K, Noguchi K. BDNF in sensory neurons and chronic pain[J]. Neurosci Res,2006,55(1):1-10.
    10. Boudes M, Menigoz A. Non-neuronal BDNF, a key player in development of central sensitization and neuropathic pain[J]. J Physiol,2009,587(Pt 10):2111-2112.
    11. Barbacid M. The Trk family of neurotrophin receptors[J]. J Neurobiol,1994,25 (11) :1386-1403.
    12. Barbacid M. Structural and functional properties of the TRK family of neurotro- phin receptors[J]. Ann N Y Acad Sci,1995,766:442-458.
    13. Mannion RJ, Costigan M, Decosterd I, et al. Neurotrophins: peripherally and centrally Acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity[J].Proc Natl Acad Sci USA,1999,96(16): 9385-9390.
    14. Widenfalk J, Lundstromer K, Jubran M, et al. Neurotrophic factors and receptors in the imamture and adult spinal cord after mechanical injury or kainic acid[J]. Neurosci,2001,21,(10):3457-3475.
    15. Michael GJ, Averill S, Shortland PJ, et al. Axotomy results in major changes in BDNF expression by dorsal root ganglion cells: BDNF expression in large trkB and trkC cells, in pericellular baskets, and in projections to deep dorsal horn and dorsal column nuclei[J]. Eur J Neurosci,1999,11(10):3539-3551.
    16. Narita M, Yajima Y, Aoki T, et al. Up-regulation of the TrkB receptor in mice injured by the partial ligation of the sciatic nerve[J]. Eur Pharmacol,2000,401(2):187-190.
    17. Zhou LJ, Yang T, Wei X, et al. Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat[J]. Brain Behav Immun,2011,25(2):322-334.
    18. Geng SJ, Liao FF, Dang WH, et al. Contribution of the spinal cord BDNF to the development of neuropathic pain by activation of the NR2B-containing NMDA receptors in rats with spinal nerve ligation[J]. Exp Neurol,2010,222(2):256-266.
    19. Rea K, Roche M, Finn DP, et al. Supraspinal modulation of pain by cannabi- noids: the role of GABA and glutamate[J]. Br J Pharmacol,2007,152(5):633-648.
    20. Blaesse P, Airaksinen MS, Rivera C, et al. Cation-Chloride Cotransporters and Neuronal Function[J]. Neuron,2009,61(6):820-838.
    21. Price T J, Cervero F, Gold M S, et al. Chloride regulation in the pain pathway[J]. Brain Res Rev,2009,60(1):149-170.
    22. Kahle KT, Staley KJ, Nahed BV, et al. Roles of the cation-chloride cotransporters in neurological disease[J]. Nat Clin Pract Neurol,2008,4(9):490-503.
    23. Kanaka C, Ohno K, Okabe A, et al. The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system[J]. Neuroscience,2001,104(4):933-946.
    24. Stil A, Liabeuf S, Jean-Xavier C, et al. Developmental up-regulation of the potassium-chloride cotransporter type 2 in the rat lumbar spinal cord[J]. Neuroscience, 2009,164 (2):809-821.
    25. Coull JA, Boudreau D, Bachand K, et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain[J]. Nature,2003,424 (6951):938–942.
    26. Zhang W, Liu LY, Xu TL, et al. Reduced potassium-chloride cotransporter expression in spinal cord dorsal horn neurons contributes to inflammatory pain hypersen-sitivity in rat[J]. Neuro science,2008,152(2):502–510.
    27. Wu LA, Huang J, Wang W, et al. Down-regulation of K+-C1- co-transporter 2 in mouse medullary dorsal horn contributes to the formalin induced inflammatory orofacial pain[J]. Neuroscience Letters,2009,457(1):36-40.
    28. Miletic G, Miletic V. Loose ligation of the sciatic nerve is associated with TrkB receptor- dependent decreases in KCC2 protein levels in the ipsilateral spinal dorsal horn[J]. Pain,2008,137(3):532-539.
    29. Boulenguez P, Liabeuf S, Bos R, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury[J]. Nat Med, 2010,16(3):302-307.
    30. Hasbargen T, Ahmed MM, Miranpuri G, et al. Role of NKCC1 and KCC2 in the development of chronic neuropathic pain following spinal cord injury[J]. Ann N Y Acad Sci,2010,1198:168-172.
    31. Lu Y, Zheng J, Xiong L, et al. Spinal cord injury-induced attenuation of GABA-ergic inhibition in spinal dorsal horn circuits is associated with down-regulation of the chloride transporter KCC2 in rat[J]. J Physiol,2008,586(Pt 23):5701-5715.
    32. Morgado C, Pereira-Terra P, Cruz CD, et al. Minocycline completely reverses mechanical hyperalgesia in diabetic rats through microglia-induced changes in the expression of the potassium chloride co-transporter 2 (KCC2) at the spinal cord[J]. Diabetes Obes Metab,2011,13(2):150-159.
    1.姚明,杨建平,王丽娜等.腹水传代与体外培养Walker 256癌细胞系建立大鼠骨癌痛模型的可行性[J].中华医学杂志,2008,88(13):880-884.
    2.杨建平,蒋豪,吴珏.大鼠脊髓蛛网膜下腔埋管并长期留管操作的改进[J].中华麻醉学杂志,1993,13(2):110.
    3. Groth R,Aanonsen L. Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation- induced hyperalgesia[J]. Pain,2002,100(1-2):171-181.
    4. Zhang W, Liu LY, Xu TL. Reduced potassium-chloride co-transporter expression in spinal cord dorsal horn neurons contributes to inflammatory pain hypersensitivity in rat[J]. Neuroscience,2008,152(2):502-510.
    5. Coull JA, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain[J]. Nature,2005,438(7070):1017- 1021.
    6. Miletic G, Miletic V. Loose ligation of the sciatic nerve is associated with TrkB receptor- dependent decreases in KCC2 protein levels in the ipsilateral spinal dorsal horn[J]. Pain,2008,137(3):532-539.
    7. Endo T, Ajiki T, Inoue H, et al. Early exercise in spinal cord injured rats induces allodynia through TrkB signaling[J]. Biochem Biophys Res Commun,2009,381(3): 339-344.
    8. Xidao Wang, Joseline Ratnam, Bende Zou, et al. TrkB Signaling Is Required for Both the Induction and Maintenance of Tissue and Nerve Injury-Induced Persistent Pain[J]. The Journal of Neuroscience,2009,29(17):5508-5515.
    9. Matayoshi S, Jiang N, Katafuchi T, et al. Actions of brain derived neurotrophic factor on spinal nociceptive transmission during inflammation in the rat[J]. Physiol,2005, 569(pt2):685-695.
    10. Merighi A, Bardoni R, Salio C, et al. Pre-synaptic functional trkB autoreceptors mediate the release of excitatory neurotransmitters from primary afferent terminals inLamina II (substantia gelatinosa) of post-natal rat spinal cord[J]. Dev Neurobiol,2008, 68(4):457-475.
    11. Garraway SM, Petruska JC, Mendell LM. BDNF sensitizes the response of lamina II neurons to high threshold primary afferent inputs[J]. Eur J Neurosci,2003,18(9): 2467-2476.
    12. Pezet S, Cunningham J, Patel J, et al. BDNF modulates sensory neuron synaptic activity by a facilitation of GABA transmission in the dorsal horn[J]. Mol Cell Neurosci,2002,21(1):51-62.
    13. Bardoni R, Ghirri A, Salio C, et al. BDNF-mediated modulation of GABA and glycine release in dorsal horn lamina II from postnatal rats[J]. Develop Neurobiol,2007,67 (7):960-975.
    14. Blaesse P, Airaksinen M S, Rivera C. Cation-Chloride Cotransporters and Neuronal Function [J]. Neuron,2009,61(6):820-838.
    15. Price TJ, Cervero F, Gold MS, et al. Chloride regulation in the pain pathway[J]. Brain Res Rev,2009,60(1):149-170.
    16. Price TJ, Cervero F, de Koninck Y. Role of cation-chloride-cotransporters (CCC) in pain and hyperalgesia[J]. Curr Top Med Chem,2005,5(6):547-555.
    17. Rivera C, Voipio J, Thomas-Crusells J, et al. Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2[J]. J Neurosci,2004, 24(19):4683-4691.
    18. Rivera C, Li H, Thomas-Crusells J, et al. BDNF-induced TrkB activation down- regulates the K+-Cl- cotransporter KCC2 and impairs neuronal Cl- extrusion[J]. J Cell Biol,2002,159(5):747-752.
    19. Woo NS, Lu J, England R, et al. Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene[J]. Hippocampus, 2002,12(2):258-268.
    20. Wu LA, Huang J, Wang W, et al. Down-regulation of K+-C1- co-transporter 2 in mouse medullary dorsal horn contributes to the formalin induced inflammatory orofacial pain[J]. Neuroscience Letters,2009,457(1):36-40.
    21. Boulenguez P, Liabeuf S, Bos R, et al. Down-regulation of the potassium-chloridecotransporter KCC2 contributes to spasticity after spinal cord injury[J]. Nat Med, 2010,16(3):302-307.
    22. Hasbargen T, Ahmed MM, Miranpuri G, et al. Role of NKCC1 and KCC2 in the development of chronic neuropathic pain following spinal cord injury[J]. Ann N Y Acad Sci,2010,1198:168-172.
    23. Lu Y, Zheng J, Xiong L, et al. Spinal cord injury-induced attenuation of GABA- ergic inhibition in spinal dorsal horn circuits is associated with down-regulation of the chloride transporter KCC2 in rat[J]. J Physiol,2008,586(Pt 23):5701-5715.
    24. Morgado C, Pereira-Terra P, Cruz CD, et al. Minocycline completely reverses mechanical hyperalgesia in diabetic rats through microglia-induced changes in the expression of the potassium chloride co-transporter 2 (KCC2) at the spinal cord[J]. Diabetes Obes Metab,2011,13(2):150-159.
    25. Morgado C, Pinto-Ribeiro F, Tavares I. Diabetes affects the expression of GABA and potassium chloride cotransporter in the spinal cord: a study in streptozotocin diabetic rats[J]. Neurosci Lett,2008,438(1):102-106.
    1. Mannion RJ, Costigan M, Decosterd I,et al. Neurotrophins: peripherally and centrally Acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity[J]. Proc Natl Acad Sci USA,1999,96(16):9385-9390.
    2. Narita M, Yajima Y, Aoki T, et al. Up-regulation of the TrkB receptor in mice injured by the partial ligation of the sciatic nerve[J]. Eur Pharmacol,2000,401(2):187-190.
    3. Zhou LJ, Yang T, Wei X, et al. Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat[J]. Brain Behav Immun,2011,25(2):322-334.
    4. Geng SJ, Liao FF, Dang WH, et al. Contribution of the spinal cord BDNF to the development of neuropathic pain by activation of the NR2B-containing NMDA receptors in rats with spinal nerve ligation[J]. Exp Neurol,2010,222(2):256-266.
    5. Groth R,Aanonsen L. Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation- induced hyperalgesia[J]. Pain,2002,100(1-2):171-181.
    6. Matayoshi S, Jiang N, Katafuchi T, et al. Actions of brain derived neurotrophic factor on spinal nociceptive transmission during inflammation in the rat[J]. Physiol,2005, 569(pt2):685-695.
    7. Klein R, Conway D, Parada LF, et al. The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain[J]. Cell,1990, 61(4):647-656.
    8. Middlemas DS, Lindberg RA, Hunter T. trkB, a neural receptor protein tyrosine kinase: evidence for a full-length and two truncated receptors[J]. Mol Cell Biol,1991,11(1): 143-153.
    9. Fryer RH, Kaplan DR, Feinstein SC, et al. Developmental and mature expression of full-length and truncated TrkB receptors in the rat forebrain[J]. Comp Neurol,1996, 374,(1):21-40.
    10. Altar CA, Siuciak JA, Wright P, et al. In situ hybridization of trkB and trkC receptor mRNA in rat forebrain and association with high- affinity binding of [125I]BDNF, [125I]NT-4/5 and [125I]NT-3[J]. Eur J Neurosci,1994,6(9):1389-1405.
    11. Widenfalk J, Lundstromer K, Jubran M, et al. Neurotrophic factors and receptors in the imamture and adult spinal cord after mechanical injury or kainic acid[J]. Neurosci, 2001,21,(10):3457-3475.
    12. Zhou XF, Parada LF, Soppet D, et al. Distribution of trkB tyrosine kinase immunoreactivity in the rat central nervous system.[J]. Brain Res,1993, 622(1-2): 63- 70.
    13. Michael GJ, Averill S, Shortland PJ, et al. Axotomy results in major changes in BDNF expression by dorsal root ganglion cells: BDNF expression in large trkB and trkC cells, in pericellular baskets, and in projections to deep dorsal horn and dorsal column nuclei[J]. Eur J Neurosci,1999,11(10):3539-3551.
    14. Reichardt, L.F. 2006. Neurotrophin-regulated signalling pathways[J]. Philos Trans R Soc Lond B Biol Sci,2006, 361(1473):1545-1564.
    15. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction[J]. Annu Rev Biochem,2003,72:609-642.
    16. Sugimoto T, Kuroda H, Horii Y, et al. Signal transduction pathways through TRK-A and TRK-B receptors in human neuroblastoma cells[J]. Jpn J Cancer Res,2001, (92): 2152-60.
    17. Arévalo JC, Wu SH. Neurotrophin signaling: many exciting surprises[J]! Cell Mol Life Sci,2006,63(13):1523-1537.
    18. Xidao Wang, Joseline Ratnam, Bende Zou, et al. TrkB Signaling Is Required for Both the Induction and Maintenance of Tissue and Nerve Injury-Induced Persis- tent Pain[J]. The Journal of Neuroscience, 2009,29(17):5508-5515.
    19. Zhang W, Liu LY, Xu TL. Reduced potassium-chloride co-transporter expression in spinal cord dorsal horn neurons contributes to inflammatory pain hypersensitivity in rat[J]. Neuro- science,2008,152(2):502-510.
    20. Coull JA, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain[J]. Nature,2005,438(7070):1017- 1021.
    21. Miletic G, Miletic V. Loose ligation of the sciatic nerve is associated with TrkB receptor- dependent decreases in KCC2 protein levels in the ipsilateral spinal dorsal horn[J]. Pain,2008,137(3):532-539.
    22. Endo T, Ajiki T, Inoue H, et al. Early exercise in spinal cord injured rats induces allodynia through TrkB signaling[J]. Biochem Biophys Res Commun,2009,381(3): 339-344.
    23. Yoshinori Yajima, Minoru Narita, Michiko Narita, et al. Involvement of a spinal brain- derived neurotrophic factor/full-length TrkB pathway in the development of nerve injury-induced thermal hyperalgesia in mice[J].Brain Research,2002,958(2):338-346.
    24. Cynthia LR, Carmen CL, Susan GD. In vivo evidence that truncated trkB.T1 participates in nociception[J]. Mol Pain,2009,5:61.
    25. Ghilardi JR, Freeman KT, Jimenez-Andrade JM. Administration of a tropomyosin receptor kinase inhibitor attenuates sarcoma-induced nerve sprouting, neuroma formation and bone cancer pain[J]. Mol Pain,2010,6:87.
    26. Merighi A, Bardoni R, Salio C, et al. Pre-synaptic functional trkB autoreceptors mediate the release of excitatory neurotransmitters from primary afferent terminals in lamina II (substantia gelatinosa) of post-natal rat spinal cord[J]. Dev Neurobiol,2008, 68(4):457-475.
    27. Kerr BJ, Bradbury EJ, Bennett DL, et al. Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord[J]. Neurosci,1999,19(12):5138-5148.
    28. Heppenstall PA, Lewin GR. BDNF but not NT-4 is required for normal flexion reflex plasticity and function[J]. Proc Natl Acad Sci USA,2001, 98(14):8107-8112.
    29. Arvanian VL, Mendell LM. Removal of NMDA receptor Mg2+ block extends the action of NT-3 on synaptic transmission in neonatal rat motoneurons[J]. Neurophysiol, 2001,8(1):123-129.
    30. Garraway SM, Petruska JC, Mendell LM. BDNF sensitizes the response of lamina II neurons to high threshold primary afferent inputs[J]. Eur J Neurosci,2003,18(9): 2467-2476.
    31. Salio C, Averill S, Priestley JV, et al. Costorage of BDNF and neuropeptides within individual dense-core vesicles in central and peripheral neurons[J]. Dev Neurobiol, 2007,67(3):326-338.
    32. Pezet S, Cunningham J, Patel J, et al. BDNF modulates sensory neuron synaptic activity by a facilitation of GABA transmission in the dorsal horn[J]. Mol Cell Neurosci,2002,21(1):51-62.
    33. Pezet S, Malcangio M, Lever IJ, et al. Noxious stimulation induces Trk receptor and downstream ERK phosphorylation in spinal dorsal horn[J]. Mol Cell Neurosci,2002, 21(4):684-695.
    34. Slack SE, Pezet S, McMahon SB, et al. Brainderived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord[J]. Eur J Neurosci,2004,20(7):1769-1778.
    35. Slack SE, Thompson SW. Brain-derived neurotrophic factor induces NMDA receptor 1 phosphorylation in rat spinal cord[J]. Neuroreport,2002,13(15):1967-1970.
    36. Bardoni R, Ghirri A, Salio C, et al. BDNF-mediated modulation of GABA and glycine release in dorsal horn lamina II from postnatal rats[J]. Develop Neurobiol,2007, 67(7):960-975.
    37. Merighi A, Salio C, Ghirri A, et al. BDNF as a pain modulator[J]. Prog Neurobiol, 2008,85(3): 297-317.
    38. Blaesse P, Airaksinen MS, Rivera C. Cation-Chloride Cotransporters and Neuronal Function[J]. Neuron,2009,61(6):820-838.
    39. Morales-Aza BM, Chillingworth NL, Payne JA, et al. Inflammation alters cation chloride cotransporter expression in sensory neurons[J]. Neurobiol Dis,2004,17(1): 62-69.
    40. Kanaka C, Ohno K, Okabe A, et al. The differential expression patterns of messenger RNAs encoding K–Cl cotransporters (KCC1, 2)and Na–K–2Cl cotransporter (NKCC1) in the rat nervous system[J]. Neuroscience,2001,104(4):933-946.
    41. Rivera C, Li H, Thomas-Crusells J, et al. BDNF-induced TrkB activation down- regulates the K+–C1-cotransporter KCC2 and impairs neuronal C1-extrusion[J]. The Journal of Cell Biology,2002,159(5):747-752.
    42. Jongen JL, Haasdijk ED, Sabel-Goedknegt H, et al. Intrathecal injection of GDNF and BDNF induces immediate early gene expression in rat spinal dorsal horn[J]. Exp Neurol,2005,194(1):255-266.
    43. Miletic G, Hanson EN, Miletic V. Brain-derived neurotrophic factor elicited or sciatic ligation- associated phosphorylation of cyclic AMP response element binding protein in the rat spinal dorsal horn is reduced by block of tyrosine kinase receptors[J]. Neurosci Lett,2004,361(1-3):269-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700