日光温室环境建模和可视化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机和信息技术的发展,基于计算机的仿真和虚拟设计技术被引入到农业领域,并引起了越来越多研究人员的关注。温室是设施农业的重要组成部分,而设施农业是我国现代农业发展的主要方向。目前对温室的模拟大都以数值模拟为主,模拟结果大部分以数字和二维的形式表示出来,针对温室环境的三维建模及虚拟温室的可视化计算的研究还很少。本文围绕着日光温室三维形态的交互设计及可视化仿真应用,开展了如下工作:
     1.日光温室三维形态建模和交互式设计研究
     提出了日光温室三维结构的参数化模型,开发了交互式日光温室三维建模软件系统。该系统利用三视图设计方法得到日光温室模型的参数,根据参数生成温室的三维模型,最后在三维空间中显示设计好的日光温室模型。用户可以选择将系统提供的门、窗和风机等温室附属组件嵌入到温室模型中,组件在三维空间中的位置可以在二维视图中进行交互的调整。系统同时提供了模型导出功能,为三维日光温室模型的快速产生和重复性利用提供了便利。
     2.视点依赖的虚拟温室场景绘制与交互式漫游
     为对包含日光温室群体的虚拟农业场景进行实时、逼真的绘制,采用基于视点的连续LOD来减少实际需要绘制的网格数据量,并基于包围盒技术实现了视点的碰撞检测,同时使用可见性剔除算法来加速场景渲染速度。在渲染温室植物时,通过几何变换实现了大规模植物群体的快速构建,并在场景中使用阴影体算法来渲染阴影,生成了具有真实感的大规模虚拟温室农业场景。模拟结果表明该方法能有效地减少渲染的面元数目,大大提高了绘制速率,场景有较高的真实感,能够满足虚拟场景交互式实时漫游的要求。
     3.虚拟场景下雪和积雪的实时模拟
     提出了一种下雪和积雪过程模拟的方法,该方法采用粒子系统对雪粒子建模来模拟下雪过程,同时加入了风吹的效果;在模拟积雪时,通过在地面和屋顶构造一层三角形网格来保存雪的堆积信息,避免了保存雪粒子作为积雪实体的内存开销,同时考虑了雪飘落过程中与温室墙壁的碰撞检测;而在渲染时,采用了平均法向量和混合顶点颜色的方法来获得平滑的效果。模拟结果表明,该方法能有效地再现农业场景中下雪和积雪场景,在满足实时交互漫游的前提下表现出较强的真实感。
     4.日光温室采光量实时计算及可视化研究
     基于光的直线传播原理实时模拟了太阳光线在温室地面的投射情况,并且建立了日光温室地面太阳直接辐射计算模型和可视化方法。该方法为在虚拟温室内进行植物生长模拟提供了必要的可视化技术,此外还可以与散射辐射的模拟相结合,为日光温室内总辐射分布的模型建立和实施提供基础参数,在日光温室的采光量设计及各种植物的种植和生长模拟等研究方面具有重要的应用价值。
With the rapid development of computer and information technology,computer-based simulation and design have been used extensively to the field of agricultural research,and more and more researchers have been attracted.Greenhouse is an important part of facilities agriculture,whereas facilities agriculture one of core industries in the development of agriculture in China.However,currently simulations of greenhouse are generally numerical,with figures or two-dimension results.Researches of simulating vividly the greenhouse's internal scene and modeling greenhouse's environment in three-dimension are less developed.The paper tries to provide methods and software for modeling virtual solar greenhouse environment.The main contents and contributions of this thesis can be listed as follows:
     Ⅰ.Modeling three-dimension solar greenhouse and designing interactively
     A parametedzed 3D model of solar greenhouse is proposed,and an interactive design software system for solar greenhouse is developed.The system obtains the parameters of 3D solar greenhouse by using three-view design method,and reconstructs the 3D model of a greenhouse from these parameters.The system also provide several affiliate models of greenhouse,the user can select these affiliate models for embedding them into the greenhouse model,the 3D position for placing the selected affiliate model can be translated by adjusting the corresponding position in the 2D view.
     Ⅱ.View-dependent model virtual greenhouse scene and interactive walkthrough
     A method for real-time and realistic rendering virtual agricultural scenes which include group of solar greenhouse is proposed in this paper.This method uses view-dependent continuous LOD models to reduce the amount of polygons needed to be rendered actually,and a collision detection algorithm is implemented based on bounding box.The rendering speed of the scene is improved by using visibility culling techniques.In the constructed virtual agricultural scenes, large-scale plants stands are created rapidly,by using geometric transformation,while shadow volume algorithm is implemented to render shadow in the scene.These improved significantly the realism of the virtual agricultural scene.The simulation results demonstrate the proposed method can reduce the number of rendered elements effectively,and improves the rendering speed with highly realism.This can meet the needs for real-time and interactive walkthrough in large scale virtual scenes.
     Ⅲ.Real-time simulation of snow falling and accumulation in virtual scene
     A method is presented in this paper to simulate snow falling and accumulation,the algorithm simulates the snow falling process and models snowflake particles based on analyzing particle system,with the effects of wind-blown snow;in the simulation of snow accumulation,a blanket of triangulation mesh are constructed to store information about snow depth on the ground and roof,the memory cost for storing snowflake particles as snow accumulation therefore is avoided, the collision detection between snowflakes and the wall of greenhouse is considered in the falling process at the same time;a method of averaging normal and blending the color of vertex is adopted to obtain the smooth effect in snow rendering.The simulation results have proved that the proposed method is more effective for simulating snow falling and accumulation in agricultural scene,and it can satisfy basic need for real-time interactive navigation with realistic effects.
     Ⅳ.Real-time calculation and visualization of solar radiation in sunlight greenhouse
     Day lighting performance of a sunlight greenhouse is not only an important factor for growth and development of crops in it,but also a foundation of structural design for the sunlight greenhouse.A mathematical model of day lighting performance of a sunlight greenhouse is proposed in this paper.The change of the solar radiation in sunlight greenhouse is simulated by using 3D visualization techniques in real-time,and the change of the scope of day lighting and the solar radiation in real time can be observed visually as well.This may provide a direct method for studying and analyzing the day lighting performance and solar radiation in solar greenhouse,and help for correctly designing high-output,high-efficiency and economic sunlight greenhouse.
引文
[1]滕光辉,周春林.虚拟现实技术在温室中的应用[J].农业工程学报。2003,19(1):254-257.
    [2]T.Honjo,E.Lim.Visualization of Environment by VRML[A].Proceedings of World Congress of Computers in Agriculture and Natural Resource,2002,13:561-567.
    [3]Luis Iribarne,.los(?) Antonio Torres,Araceli Pena.Using Computer Modeling Techniques to Design Tunnel Greenhouse Structures[J].Computers in Industry,2007,58(5):403-415.
    [4]B.de Vries,A.J.Jessurun et al.Using 3D Geometric Constraints in Architectural Design Support Systems[A].Proceedings of the 8-th International Conference in Central Europa on Computer Graphics,Visualization and Interactive Digital Media 2000,Czech Replublic,2000.
    [5]Pascal Muller,Peter Wonka et al.Procedural Modeling of Buildings[A].Proceedings of the 28th annual conference on Computer graphics and interactive techniques,ACM Press,2001,301-308.
    [6]Peter Wonka,Michael Wimmer et al.Instant Architecture[A].Proceedings of ACM SIGGRAPH 2003,ACM Press,2003,669-677.
    [7]T.Boulardl,R.Haxairel,M.A.Lamrani2 et al.J.agric.Engng Res[J].Characterization and Modeling of the Air Fluxes induced by Natural Ventilation in a Greenhouse,1999,74:135-144.
    [8]Francisco Domingo Molina-Aiz et al.Measurement and Simulation of Climate inside Almer'ia-type Greenhouses Using Computational Fluid Dynamics[J].Agricultural and Forest Meteorology,2004,125:33-51.
    [9]H.Fatnassi,T.Boulard,C.Poncet et al.Optimisation of Greenhouse Insect Screening with Computational Fluid Dynamics[J].Biosystems Engineering,2006,93(3):301-312.
    [10]F.Rodr(?)guez,L.J.Yebra,M.Berenguel et al.Modeling and Simulation of Greenhouse Climate Using Dymola[A].15th Triennial World Congress,Barcelona,Spain.
    [11]傅宁,刘德义.温室大棚气流场的CFD数值模拟[J].天津农业科学,2006,12(3):17-19.
    [12]王健,丁为民,杨红兵.温室周围气流运动的有限元模拟分析[J].西北农林科技大学学报(自然科学版),2006,34(3):161-164.
    [13]王定成.温室环境的支持向量机回归建模[J].农业机械学报,2004,35(5):106-109
    [14]栗阳,关志伟,陈由迪等.基于手势的人机交互的研究[J].系统仿真学报,2000,12(5):528-533.
    [15]栗阳,关志伟,戴国忠.笔式用户界面开发工具研究[J].软件学报,2003,14(3):392-400.
    [16]王坚,董士海,戴国忠.基于自然交互方式得多通道用户界面模型[J].计算机学报,1996,19(增刊):130-134.
    [17]付永刚,戴国忠,蒋成高等.支持笔输入的虚拟家居设计系统[J].计算机辅助设计与图形学学报,2002,14(9):877-879.
    [18]周明骏,徐礼爽,田丰等.协作笔试用户界面开发工具[J].软件学报,2008,19(10):2780-2788.
    [19]滕光辉,崔引安.密闭式鸡舍环境的“虚拟系统"[J].中国农业大学学报,2000,5(2):59-62.
    [20]白红武,腾光辉.中国第一个日光温室辅助设计软件研发成功[J].农村实用工程技术:温室园艺,2005,4:23-25.
    [21]周春林,腾光辉.虚拟温室的漫游及可控组件动画的实现[J].中国农业大学学报,2003,8(4):51-54.
    [22]节能日光温室建造规程.GB/T 19561-2004.北京:中国标准出版社,1993.
    [23]Clark,J.H.Hierarchical Geometric Models for Visible Surface Algorithms [J].Communications of the ACM,1976,19(10),547-554.
    [24]Airey,J.M.,J.H.R,ohlf,and F.P.Brooks,Jr.Towards Image Realism with Interactive Update Rates in Complex Virtual Building Environments[J].Computer Graphics(1990Symposium on Interactive 3D Graphics),1990,24(2),41-50.
    [25]Teller,S.J.Visibility Computations in Densely Occluded Polyhedral Environments[D].Ph.D.thesis,Computer Science Division(EECS),UC Berkeley,Berkeley,California.Available as Report No.UCB/CSD-92-708.1992.
    [26]Greene,N.,M.Kass,and G.Miller.Hierarchical z-buffer Visibility[J].In Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,1993,231-238.
    [27]Funkhouser,T.A.and C.H.S(?)quin.Adaptive Display Algorithm for Interactive Frame Rates During Visualization of Complex Virtual Environments[J].In Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,1993,247-254.
    [28]Maciel,P.W.C.and P.Shirley.Visual Navigation of Large Environments Using Textured clusters[J].In 1995 Symposium on Interactive 3D Graphics,ACM SIGGRAPH,1995,95-102.
    [29]杜金莲,田春爽,廖湖声.一种大规模草地的建模与实时绘制技术[J].系统仿真学报,2005,17(10):2410-2413.
    [30]李建徽,陈崇成,余轮等.一种大数据量森林场景组织及其实时绘制方法[J].系统仿真学报,2007,19(24):5722-5725.
    [31]T(u|¨)rker Yilmaz,Ugur G(u|¨)d(u|¨)kbay.Conservative Occlusion Culling for Urban Visualization Using a Slice-wise Data Structure[J].Graphical Models,2007,69:191-210.
    [32]徐利明,姜昱明.可漫游的虚拟场景建模与实现[J].系统仿真学报,2006,18(1):120-124.
    [33]王志强,洪嘉振,杨辉.碰撞检测问题研究综述[J].软件学报,1999,10(5):545-551.
    [34]D Cohen-Or,YL Chrysanthou,CT Silva.A Survey of Visibility for Walkthrough Application[J].IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2003,9(3):412-431.
    [35]WV Baxter Ⅲ,A Sud,NK Govindaraju,D Manocha.GigaWalk:Interactive Walkthrough of Complex Environments[J].Proceedings of the 13th Eurographics workshop on Rendering,2002.
    [36]梁爱民,梁晓辉,于卓.一种基于松散八叉树的复杂场景可见性裁剪算法[J].计算机辅助设计与图形学学报,2007,19(12):1593-1598.
    [37]L.Williams.Casting Curved Shadows on Curved Surfaces[J].Computer Graphics(Proc.of SIGGRAPH 78),1978,12(3):270-274.
    [38]F.C.Crow.Shadow Algorithms for Computer Graphics[J].Computer Graphics(Proc.of SIGGRAPH 77),1977,11(2):242-248.
    [39]T.Heidmann.Real Shadows[J].Real time,Iris Universe,1991,(18):23-31.
    [40]张勇,王莉.视景仿真系统中实时阴影绘制技术的研究[J],系统仿真学报,2006,18(增刊1):180-186.
    [41]王润洁,田景全,倪政国.基于粒子系统的实时雨雪模拟[J].系统仿真学报,2003,15(4):495-496.
    [42]罗维佳,都金康,谢顺平.基于粒子系统的三维场地降雨实时模拟[J].中国图像图形学报,2004,9(4):495-500.
    [43]徐利明,姜昱明.基于粒子系统与openGL的实时雨雪模拟[J].计算机仿真,2005,22(7):242-245.
    [44]S.Law,B.M.Oh and J.Zalesky.The Synthesis of Snow Covered Terrains[EB/OL].http://www.graphics.lcs.mit.edu/boh/Projects/snowGen-FinalWrite.html,1996.
    [45]R.W.Summer,J.F.O'brien and J.K.Hodgins.Animating Sand,Mud and Snow[C].Vancouver,British Columbia:In Proceedings of Graphics Interface,1998,125- 132.
    [46]Nishita T,lwasaki H,Dobashi Y et al.A Modeling and Rendering Method for Snow by Using Meatballs[J].Computer Graphics Forum,1997,16(3):357-364.
    [47]P.Fearing.Computer Modeling of Fallen Snow[C].New York,USA:In Proceedings of the 27th annual conference on Computer graphics and interactive techniques,2000,37-46.
    [48]Haglund,H,Anderson,M,and Hast,A.Snow Accumulation in Real-Time[C].Norrk(o|¨)ping,Sweden:Proceedings of SIGRAD 2002,11-15.
    [49]Per Ohlsson,Stenfan Sipel.Real-time Rendering of Accumulated Snow[C].G(a|¨)vle,Sweden:SIGRAD 2004,25-31.
    [50]Kohe Tokoi.A Shadow Buffer Technique for Simulating Snow-covered Shapes[C].Sydney,Australia:International Conference on Computer Graphics,Imaging and Visualization,2006, 310-316.
    [51]Changbo Wang,Zhangye Wang,Tian Xia et al.Real-time Snowing Simulation[J].The Visual Computer:International Journal of Computer Graphics,2006,22(5):315-323.
    [52]陈彦云,孙汉秋,郭白宁等.自然雪景的构造和绘制[J].计算机学报,2002,25(9):916-921.
    [53]彭群生等.计算机真实感图形的算法基础[M].北京:科学出版社,2003.
    [54]尹勇,金以丞,任鸿翔等.自然现象的实时仿真[J].系统仿真学报,2002,14(9):1217-1219.
    [55]韩瑞波,戴树岭.可调参数的粒子系统及其在飞行仿真中的应用[J].系统仿真学报,2006。18(8):2296-2299.
    [56]G.Papadakis,D.Manolakos,S.Kyritsis.Solar Radiation Transmissivity of a Single-Span Greenhouse through Measurements on Scale Models[J].Journal of Agricultural Engineering Research,1998,71(4):331-338.
    [57]Kozai T,Kimura M,Direct Solar Light Transmission into Multi-span greenhouses[J].Agric.Meteorol,1977,18:339-349.
    [58]Smith C.V,Kingham H.G.A Contribution to Glasshouse Design[J].Agric.Meteorol,1971,8:447.
    [59]Shaojin Wang,Thierry Boulard.Measurement and Prediction of Solar Radiation Distribution in Full-scale Greenhouse Tunnels[J].EDP Sciences,2000,41-50.
    [60]曹永华,孙忠富,吴毅明等.温室采光辅助设计软件(GRLT)的研制[J].农业工程学报,1992,8(4):69-77.
    [61]吴毅明,曹永华,孙忠富等.温室采光设计的理论分析方法[J].农业工程学报,1992,8(3):73-80.
    [62]王锡平,郭焱,李保国等.玉米冠层内太阳直接辐射三维空间分布的模拟[J].生态学报,2005,25(1):7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700