激活态雪旺细胞信号转导通路的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言周围神经的缺损,尤其是长段周围神经的缺损的修复是外科领域的一大难题。随着组织工程材料的不断发展和对于组织工程神经认识的不断深入,使得人工神经的发展成为一个非常有前景的领域。胶元-几丁糖有可能作为人工神经支架的良好材料;激活态雪旺细胞是一种具有高活性、快速增殖的可以显著促进周围神经再生的细胞,是组织工程人工神经良好的种子细胞。本课题将要分三个部分研究为何激活态雪旺细胞有优于正常态雪旺细胞的生物活性?
     第一部分激活态雪旺细胞信号转导通路的分子构成
     目的探索激活态雪旺细胞信号转导通路的分子构成。方法用改良成年SD大鼠雪旺细胞培养法培养激活态雪旺细胞(ASC)和正常态雪旺细胞(NSC),分别用RTK和G蛋白耦联的信号转导通路中的七个抑制剂,Western Blot法检测细胞内的p-ERK1/2水平的改变,比较激活态雪旺细胞和正常态雪旺细胞的信号转导通路的差异。结果光镜下激活态雪旺细胞和正常态的雪旺细胞形态上无差异,S-100染色均为阳性,Western Blot法检测ASC和NSC细胞内的ERK1/2水平无明显的差异,但ASC内p-ERK1/2水平有显著差异(p<0.01)。在激活态雪旺细胞,使用抑制剂CTX、D609和BAPTA-AM细胞内的p-ERK1/2水平显著降低,而其它抑制剂使用后细胞内的p-ERK1/2水平无明显的改变,差异具有显著性(p<0.01);在正常态的雪旺细胞,使用抑制剂U73122和BAPTA-AM,细胞内的p-ERK1/2水平显著降低,而其它抑制剂使用后细胞内的p-ERK1/2水平无明显的改变,差异具有显著性(p<0.01)。结论激活态雪旺细胞和正常态雪旺细胞是同一细胞的二种不同存在的状态,有活性的p-ERK1/2的水平的升高可能是雪旺细胞激活的关键环节。激活态雪旺细胞和正常态雪旺细胞都是通过G蛋白耦联受体信号转导通路来发挥生物效应的,但是激活态雪旺细胞通过PC-PLC分解磷脂酰胆碱使细胞内的DAG水平的提高来发挥生物效应的,而正常态雪旺细胞则通过PI-PLC信号转导通路发挥其生物效应的。
     第二部分应用转录因子蛋白/DNA组合芯片技术检测激活态雪旺细胞的活性转录因子
     目的检测激活态雪旺细胞活性转录因子。方法应用转录因子蛋白/DNA组合芯片技术检测激活态雪旺细胞的活性转录因子。结果激活态雪旺细胞和正常态雪旺细胞的转录因子芯片点阵图显示:激活态雪旺细胞比正常态雪旺细胞有5个转录因子蛋白上调2倍以上,它们是AP-1、NRF-1、NF-Atx、PO-B和PRDI-BF;活化的AP-1蛋白的显著增加可能就是激活态雪旺细胞增殖活性高重要的原因;NF-Atx表达升高可能是协同AP-1的转录表达;激活态雪旺细胞可能通过提高NRF1和mtTFA表达,引起线粒体呼吸链酶蛋白表达升高,线粒体酶活性升高,从而提高线粒体能量代谢,为激活态雪旺细胞的高分泌状态提供能量,促进激活态雪旺细胞的增殖;而PO-G不仅作用于它的靶基因,而且还作用于其它的基因位点,调节转录和DNA的修复和复制。PRDI-BF的升高也与激活态雪旺细胞的特殊的功能密切相关的。结论5个转录因子蛋白上调都与激活态雪旺细胞的快速分裂、高分泌状态密切相关。
     第三部分应用双荧光素酶报告基因检测系统检测激活态雪旺细胞信号转导通路
     目的应用双荧光素酶报告基因检测系统检测激活态雪旺细胞信号转导通路。方法采用荧火虫荧光素酶和海肾荧光素酶组成双荧光素酶报告基因实验系统,构建含NGF-TF与promotor/TRE的启动子的载体,感染激活态雪旺细胞,雪旺细胞的处理则分为7组:1.激活态雪旺细胞空白对照:2.激活态雪旺细胞+0.8μg pGL3+40 ng phRL-SV40;3.激活态雪旺细胞+0.8μg pGL3-NGFpromotor+40 ng phRL-SV40;4.激活态雪旺细胞+0.8μg pGL3-NGFpromotor+40 ngphRL-SV40+加药0.5小时;5.激活态雪旺细胞+0.8μg pGL3-NGFpromotor+40 ng phRL-SV40+加药1小时;6.激活态雪旺细胞+0.8μg pGL3-NGFpromotor+40 ng phRL-SV40+加药1.5小时:7.激活态雪旺细胞+0.8μg pGL3-NGFpromotor+40 ng phRL-SV40+加药2小时。结果从第三组加入活化的NGF的启动子但没有加入抑制剂后,RLU1的数值含有激活态雪旺细胞自身的荧光、海肾荧光素酶的荧光强度和萤火虫荧光素酶作用于底物的荧光强度的总和,因而数值最大,其相对值RLU1/RLU2也是最大,使用信号转导抑制剂D609后,第四组在用药0.5小时后,由于NGF启动子的活化受到抑制,萤火虫荧光素酶作用于底物的强度明显受到限制,表现在荧光强度显著下降。当D609随着时间的推移,逐渐衰减的时候,NGF启动子的活化受到抑制逐渐减弱,萤火虫荧光素酶作用于底物的强度明显增强,表现出荧光强度的逐渐增强。结论通过双荧光素酶报告基因系统可以直观地观察激活态雪旺细胞的信号转导通路的作用效应;直接证明了前面我们的信号转导通路的分子构成的检测结果的正确性。
Introduction
     It is a difficult problem in peripheral surgery when nerve deficiency especially long distant nerve deficiency meets. The artificial nerve is now one of prospective areas with the development of biomaterials and deeper study of tissue engineer nerve. Collagen-Chitosan might be an ideal material for fabrication artificial nerve and activated Schwann cell might be the ideal seed cell for the bio-active nerve because of its high bio-active and quick proliferation. In our three part of this research we will study the reason why activated Schwann cell perior nomal Schwann cell to boosting the regeneration of injuied nerve.
     Part 1: To explore molecular composition of activated Schwann cells' signal transduction pathway
     Objective To explore molecular composition of activated Schwann cells' signal transduction pathway. Methods Activated Schwann cells and normal Schwann cells were abtained by the way of modified Schwann cell from adult SD rats. 7 signal transduction pathway inhibitors of RTK and GPCR were added into activated Schwann cells and normal Schwann cells for an hour before these cells were collected respectively. Western Blot method was used to check the change of p-ERK1/2 to compare the difference between the activated Schwann cell and normal Schwann cell. Results Both of them were positive stained by S-100.ERK1/2 and p-ERK were also compared in activated Schwann cells and normal Schwann cells. There was no statistic difference of ERK1/2 between the two cells. However p-ERK was remarkable different (p<0.01) . The rising of p-ERK1/2 might be the key reason of Schwann cells activated. In activated Schwann cells, changes of p-ERK1/2 by CTX、D609 and B?PTA-AM were prominent but there was no distinct change using other inhibitors (p<0.01) . However in normal Schwann cells, changes of p-ERK1/2 inhibitor U73122 and BAPTA-AM were notably but there was no distinct change using other inhibitors (p<0.01) . Conclusions Activated Schwann cell and normal Schwann cells is the same cell in two different conditions. The rising of p-ERK1/2 might be the key reason of Schwann cells activated. GPCR was the common signal transduction pathway of Activated Schwann cell and normal Schwann cells. But Activated Schwann cells exert their biologic effect through PC-PLC decompounding choline and boosting level of DAG. However normal Schwann cells exert their biologic effect through PI-PLC signal transduction pathway.
     Part 2: To explore the activated transcription factors of activated Schwann cell using TranSignal~(TM) Protein/DNA Array techniques
     Objective To explore the activated transcription factors of activated Schwann cell. Methods TranSignal~(TM) Protein/DNA Array techniques were adopted to test the activated transcription factors. Results Lattice of activated Schwann cells showed that there were 5 different transcription factors doubly raised their expression than that of normal Schwann cells. The rising of AP-1 might be the dominant reason of activated Schwann cells' quick proliferation. NF-Atx takes a cooperation role with AP-1.NRF1, however, may supply the activated Schwann cells with energy with its enzyme mtTFA for its' quick proliferation and vigorous secretion. PO-G exerts its action in DNA repair and replication of activated Schwann cells. Finnally PRDI-BF ties closely up with the special condition of activated Schwann cells. Conclusion Total 5 different transcription factors correlated their level with activated Schwann cells' quick proliferation and vigorous secretion condition .
     Part 3: To examine the signal transduction passway of activated Schwann cell using the method of dual color fluorescence reporter gene system.
     Objective To examine the signal transduction of activated Schwann cell using the method of dual color fluorescence reporter gene system. Methods Dual color fluorescence reporter gene system made of pGL3 Luciferase Reporter and phRL-SV40 was adopted and vector contained NGF-promotor.Activated Schwann cells were infected by these vectors. After that Schwann cells were divided into 7 teams. They were: 1.Activated Schwann Cell(ASC), 2.ASC+ 0.8μg pGL3 + 40 ng phRL-SV40, 3.ASC+ 0.8μg pGL3-NGFpromotor + 40 ng phRL-SV40 4.ASC+ 0.8μg pGL3-NGFpromotor + 40 ng phRL-SV40 + add D609 0.5h, 5.ASC+ 0.8μg pGL3-NGFpromotor + 40 ng phRL-SV40 + add D609 1h,6.ASC+ 0.8μg pGL3-NGFpromotor + 40 ng phRL-SV40 + add D609 1.5h, 7.Cell+ 0.8μg pGL3-NGFpromotor + 40 ng phRL-SV40 + add D609 2h. Results Fluorescence of 3th team was the most intensive in the 7 teams. Its comparative value RLU1/RLU2 was also the biggest. However 0.5h after the usage of signal transduction inhibitor D609 the value of ASC decreased suddenly due to the activating of NGF-promotor was restrained. And pGL3 luciferase could not call into play. But alone with the attenuation of D609, the activated level NGF-promotor increase gradually. And pGL3 luciferase resumed their role playing on their substrate and the fluorescence intensity was also increased gradually. Concision The effect of signal transduction of activated Schwann cells on their target were observed directly through Dual color fluorescence reporter gene system. And our molecule composition of signal transduction pathway of activated Schwann cell were proved right directly.
引文
1. Mohammad J, Shenaq J, Rabinovsky E, et al. Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 12 centimeter nerve gap. Plast Reconstr Surg, 2000, 105 (2): 660-666.
    2. Geuna S, Tos P, Battiston B,et al. Bridging peripheral nerve defects with musclevein combined guides.Neurol Res,2004,26(2): 139-44.
    3. Varon S,Williams I.R. Peripheral nerve regeneration in a silicone model chamber: cellular and molecular aspects. Peripheral Nerve Repair and Regeneration, 1986, 1: 9-15
    4. Evans G.R.D., Brandt K., Widmer M.S.,et al. In vivo evaluation of poly(L-lactic acid)porous conduits for peripheral nerve regeneration. Biomaterials, 1999;20:1109-1115
    5. Hadlock T., Elisseeff J., Langer R., et al. A Tissue-Engineered Conduit for Peripheral Nerve Repair. Arch Otolaryngol Head Neck Surg, 1998; 124(10): 1081-1086
    6. Spierings E.,Vleggeert-Lankamp C.L.A.M.,Marani E, et al.Allorecongnition of Artificial Nerve Guides Filled with Human Schwann Cells an in vitro Pilot Study. Transplantation. 2000;69(3):455-459
    7. Rutkowski G..E., Heath C. A.. Development of a Bioartificial Nerve Grafi.I.Design Based on a Reaction-Diffusion Model. Biotechnol. Prog.2002; 18:362-372
    8. Rutkowski G..E., Heath C. A.. Development of a Bioartificial Nerve Graft. Ⅱ. Nerve Regeneration in vitro Biotechnol. Prog.2002; 18:373-379
    9. Hu M, Sabelman E.E., Tsai C., et al. Improvement of Schwann Cell Attachment and proliferation on Modified Hyaluronic Acid Strands by Polylysine. Tissue Engineer, 2000;6(6):585-593
    10. Hadlock T., Sundback C., Hunter D, et al. A polymer Conduit seeds with Schwann Cells Promotes Guided Peripheral Nerve Regeneration. Tissue Engineering, 2000;6(2):119-127
    11. Terzis J. K, Sun O. D, Yhanos P. K. History and basic science review: past, present, and future of nerve repair[J]. J Reconstr Microsurg, 1997,13:215-25.
    12. Wei X, Lao J, Gu Y.D. Bridging peripheral nerve defect with chitosan-collagen film.Chin J Traumatol. 2003, 6(3): 131-4.
    13.劳杰,熊良俭,顾玉东,等.应用激活态的雪旺细胞填充导管修复周围神经缺损的初步研究.中华手外科杂志.2000;16(4):236-240
    14.劳杰,熊良俭,赵新,等.不同时段预变神经雪旺细胞的形态学变化.中华手外科杂志.2001;21(11):689-691
    15.劳杰,熊良俭,顾玉东,等.不同时段的预变性神经段分子生物学变化.中华手外科杂志.2000;16(3):172-174
    16.蒋良福,劳杰,何继银,等.几丁糖胶原复合膜及激活态雪旺细胞修复周围神 经缺损的实验研究.中华手外科杂志,2005,21(3):172-174
    17.劳杰,蒋良福,顾玉东.激活态雪旺细胞生长相关蛋白43mRNA表达的研究.中华骨科杂志,2005,25(6):372-374
    18.劳杰,蒋良福,顾玉东等,脑源性神经营养因子在激活态雪旺细胞中表达的初步实验研究.中华手外科杂志,2003 19(2):109-111
    19. Jessen K.R., Mirsky R. THE ORIGIN AND DEVELOPMENT OF GLIAL CELLS IN PERIPHERAL NERVES. NATURE REVIEWS. 2005 6:671-683
    20. Naylor LH. Reporter Gene Technology: The Future Looks Bright. Biochemical Pharmacology, 1999, 58(5):749-757.
    1. Fansa H, Keilhoff G, Wolf G, et al. Tissue engineering of peripheralnerves: A comparison of venous and acellular muscle grafts with cultured Schwann ceils. Plast Reconstr Surg,2001,107:485—496.
    2. Hudson TW, Evans GR, Schmidt CE. Engineering strategies for peripheral nerve repair. Clin Plast Surg,1999,26:617-628
    3.何继银,劳杰.人工神经预构的研究进展.中国修复重建外科杂志,2005,19(9):755-757
    4.蒋良福,劳杰,何继银,等.几丁糖胶原复合膜及激活态雪旺细胞修复周围神经缺损的实验研究.中华手外科杂志,2005,21(3):172-1741.
    5. Corfas G., Miguel Omar Velardez M.O., Ko C.P., et al.Mechanisms and Roles of xon-Schwann Cell Interactions. J NEUROSCI, 2004 24(42): 9250-9260
    6. Karanth S., Yang G., Yeh J., et al. Nature of signals that initiate the immune response during Wallerian degeneration of peripheral nerves. Experimental Neurology, 2006,202:161-166
    7. Haasterta, K., Grosskreutzb J., Jaeckelb M., et al. Rat embryonic motoneurons in long-term co-culture with Schwann cells: a system to investigate motoneuron diseases on a cellular level in vitro. Journal of Neuroscience Methods 142 (2005) 275-284
    8. Yuan Y., Zhang P. Y., Yang Y. M., et al. The interaction of Schwanncells with chitosan membranes and fibers in vivo. Biomaterials 25 (2004) 4273-4278
    9.冯世庆,孔晓红,孙振辉,等.大鼠神经干细胞与小鼠雪旺细胞混合培养的研究.中华实验外科杂志,2006,23(1):81-83
    10.龚炎培,汤锦波顾剑辉,等.巨噬细胞对体外培养的雪旺细胞及背根神经节感觉神经元作用的实验研究.中华手外科杂志,2005,21(5):311-313
    11.张自杰,朱家恺.乳鼠雪旺氏细胞的培养纯净和形态学研究.中华显微外科杂志,1991,14:422-45
    12.胡睎棠,熊良俭,劳杰,等.从成年大白鼠坐骨神经分离培养许旺细胞的方法学探讨.中华显微外科杂志,2002,25(3):197—200
    13.戴传昌,曹谊林,王炜,等.许旺细胞在聚羟基乙酸纤维上三维定向培养.中华显微外科杂志,2000,23:42 71
    14.劳杰,熊良俭,赵新,等.不同时段预变神经雪旺细胞的形态学变化.中华骨科杂志,2001,21(11):689-691
    15.劳杰,熊良俭,顾玉东,等.改良成年SD大鼠雪旺细胞培养的实验研究.中华手外科杂志,1999,15:114-116
    16.劳杰,熊良俭,顾玉东,等.预变性神经移植修复神经缺损的实验研究.中华手外科杂志,1998,14:106-108
    17.劳杰,顾玉东.激活态雪旺细胞在细胞培养下的生长规律.中华手外科杂志,2002,18:174-176.
    18. HurtadoaA, Lawrence Moona L. D.F., Maquet V. et al. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials, 27 (2006):430-442
    19. Haastert K., Lipokatic E., Fischer M., et al. Differentially promoted peripheral nerve regeneration by grafted Schwann cells over-expressing different FGF-2 isoforms. Neurobiology of Disease 21 (2006) 138-153
    20. Paununzio M.E., Jou I.M., Andrew Longa A., et al. A new method of selecting Schwann cells from adult mouse sciatic nerve. Journal of Neuroscience Methods 149 (2005) 74-81
    21.韩济生,主编.神经科学原理.第二版.北京:北京医科大学出版社,1999,265-419
    22.金惠铭,卢建,殷莲华,主编.细胞分子病理生理学.第一版.河南:郑州大学出版社,2002,64-80
    23. Reynolds A.J., Hendry I.A., Bartlett S.E. Anterrograde and retrograde transport of active extracellular signal-related kinasel(ERK1) in the ligated rat sciatic nerve. Neuroscience, 2001, 105(3):761-771
    24. Cheng C. Y, Huang S.C.M., Hsiao L.d., et al. Bradykinin- stimulated p42/p44 MAPK activation associated with cell proliferation in corneal keratocytes. Cellular Signaling, 2004 (16):535-549
    25. Lin H.J., Shaffer K.m., Chang Y.H., Barker J.L., et al. Acute exposure of toluene transiently potentiates p42/p44 mitogen-activated protein kinase(MAPK) activity in cultured rat cortical astrocytes. Neuroscience Letters, 2002(332):103-106
    26.黄文林,朱孝峰,主编.信号转导.第一版.北京:人民卫生出版社,2005,25-105
    27. Cheng C. Y, Huang S.C.M., Hsiao L.d., et al. Bradykinin- stimulated p42/p44 MAPK activation associated with cell proliferation in corneal keratocytes. Cellular Signaling, 2004,16:535-549
    28. ZhangL. L., ShimizuS. andTsujimotoY.. Two distinct Fas-activated signaling pathways revealed by an antitumordrug D609. Oncogene, 2005, 24: 2954-2962
    29. Cifonel M.G., Roncaiolil P, Maria R.D., et al. Multiple pathways originate at the Fas/APO-1(CD95) receptor: sequential involvement of phosphatidylcholine- pecific phospholipase C andacidic sphingomyelinase in the propagation of the apoptotic signal. The EMBO Journal, 1995,14(23):5859-5868,
    30. Katarzyna J. Procyk K.J., Rippo M.R., Testi R. et al. Lipopolysaccharide induces Jun N-terminal kinase activation in macrophages by a novel Cdc42/Rac-independent pathway involving sequential activation of protein kinase C ξ and phosphatidyl choline- dependent phospholipase C. BLOOD, 2000, 96(7): 2592-2598
    31.陈迎风,吴兴中.磷脂酰胆碱特异性磷脂酶C的研究.生命的化学,1999,19,4:173-174
    1.黄文林,朱孝峰,主编.信号转导。第一版.北京:人民卫生出版社,2005,132-150.
    2.卢健,余应年,徐仁宝.受体信号转导系统与疾病.济南:山东科学技术出版社,2001:305-328.
    3. Lee W, Mitchell P, Tjian R. Purified transcription factor AP-1 interacts with TPA inducible enhancer elements. Cell, 1987,49:741~752.
    4.王新楠,宋智刚,吴媛,等.人肝刺激因子基因5′—侧翼序列克隆和结构分析.遗传学报,2003,30(12):1171~1176
    5. Stocco DM, WangX, Jo Y,et al. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol, 2005,19 (11):2647-59.
    6. Tkach V, Tulchinsky E, Lukanidin E et al. Role of the Fos family members, c-Fos, Fra-1 and Fra-2, in the regulation of cell motility. Oncogene, 2003, 22(32):5045-54.
    7. Van Dam H, Castellazzi M. Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene, 2001, 20(19):2453-64
    8. Randak C, Brabletz T, Hergenrother M, et al. Cyclosporin A suppresses the expression of the interleukin 2 gene by inhibiting the binding of lymphocyte-specific factors to the IL-2 enhancer. EMBO J. 1990, 9(8):2529-36.
    9. Li Y, Raisman G. Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord. J Neurosci, 1994,4(7): 050-63.
    10. Palombella V J and Maniatis T. Inducible processing of interferon regulatory factor-2. Mol Cell Biol. 1992, 12(8): 3325-3336.
    11. Palombella V J and Maniatis T. Inducible processing of interferon regulatory factor-2. Mol Cell Biol. 1992, 12(8): 3325-3336.
    12. Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science. 2002,296(5573):1646-7.
    13. Evans MJ, Scarpulla RC. NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev, 1990, 4(6):1023-34.
    14.谢燕,朱光旭,江海洪,等.缺氧复氧对培养仔鼠心肌细胞NRF1和mtTFA表达的影响与L-carnitine保护作用.第二军医大学学报,2001,23(12):1399-1402.
    15. Benekli M, Baer MR, Baumann H, et al. Signal transducer and activator of transcription proteins in leukemias. Blood. 2003, 101 (8):2940-54.
    
    
    
    16. Lu Y, Zeft AS, Riegel AT. Cloning and expression of a novel human DNA binding protein, PO-GA. Biochem Biophys Res Commun. 1993,193(2): 779-86.
    
    17. Licinio J, Gold PW, Wong ML. A molecular mechanism for stress-induced alterations in susceptibility to disease. Lancet. 1995,346 (8967): 104-6.
    
    18. Keller AD and Maniatis T. Identification of an inducible factor that binds to a positive regulatory element of the human beta-interferon gene. Proc Natl Acad Sci U S A. 1988, 85(10): 3309-3313.
    1. Yang TT, Kain SR, Kitts P, et al. Dual color microscopic imagery of cells expressing the green Fluorescent protein and a red-shifted variant. Gene. 1996; 173(1):19-23.
    2. Bora RS, Malik R, Arya R, et al. A reporter gene assay for screening of PDE4 subtype selective inhibitors. Biochem Biophys Res Commun. 2007, 356(1):153-8.
    3. Hill SJ, Baker JG, Rees S. Reporter-gene systems for the study of G-protein-coupled receptors. Curr Opin Pharmacol. 2001, 1(5): 526-32
    4. Whitmarsb AJ. Examining signaling specificity to transcription factors. Methods, 2002, 26(3):217-25.
    5.沙新平,胡国龄.报告基因系统的研究进展.国外医学临床生物化学与检验学分册,2003年第24卷第1期 26~28
    6.刘志锋,姜勇.报告基因技术的理论基础及其应用。生理科学进展,2002,33(4):361~363.
    7.薛丽香,童坦君,张宗玉.报告基因的选择及其研究趋向.生理科学进展,2002.33(4):364-366
    8. Jessen KR. and Mirsky R. The origin and development of glial cells in peripheral nerves. Nature review, 2005, 6:671-682
    9. Naylor LH. Reporter gene technology: the future looks bright. Biochem Pharmacol. 1999, 58(5):749-57
    10. McCauslin CS, Heath V, Colangelo AM. et al. CAAT/enhancer-binding protein delta and cAMP- response element-binding protein mediate inducible expression of the nerve growth factor gene in the central nervous system. J Biol Chem. 2006, 281 (26):17681-8.
    
    11. Colangelo AM, Johnson PF, Mocchetti I. Beta-adrenergic receptor- induced activation of nerve growth factor gene transcription in rat cerebral cortex involves CCAAT/enhancer-binding protein delta. Proc Natl Acad Sci U S A. 1998, 95(18):10920-5.
    
    12. Canu N, Possenti R, Ricco AS , et al. Cloning, structural organization analysis, and chromosomal assignment of the human gene for the neurosecretory protein VGF. Genomics. 1997, 45(2):443-6.
    
    13. Arcangelo GD, Habas R, Wang S, et al. Activation of codependent transcription factors is required for transcriptional induction of the vgf gene by nerve growth factor and Ras. Mol. Cell. Biol., 1996, 16, (9): 4621-4631
    
    14. Gerrard L, Howard M, Paterson T, et al. A proximal E-box modulates NGF effects on rat PPT-A promoter activity in cultured dorsal root ganglia neurones. Neuropeptides. 2005, 39(5):475-83.
    
    15.Zeng J, Too HP, Ma Y, et al. A synthetic peptide containing loop 4 of nerve growth factor for targeted gene delivery. J Gene Med. 2004, 6(11): 1247-56.
    
    16. Nasim MT, Trembath RC. A dual-light reporter system to determine the efficiency of protein-protein interactions in mammalian cells. Nucleic Acids Res. 2005, 33(7):e66.
    
    17. Suzuki C, Nakajima Y, Akimoto H et al. A new additional reporter enzyme, dinoflagellate luciferase, for monitoring of gene expression in mammalian cells. Gene, 2005,344:61-66
    
    18. Dolnikov A, Shen S, Millington M, et al. A sensitive dual- fluorescence reporter system enables positive selection of ras suppressors by suppression of ras-induced apoptosis. Cancer Gene Ther. 2003, 10(10):745-54
    
    19. Te-Tuan Yang, Steven R. Kain, Paul Kitts, et al. Dual color microscopic imagery of cells expressing the green fluorescent protein and a red-shifted variant. Gene, 173, (1), 1996: 19-23
    20. Emily A. Newman, Stephanie J.et al. Identification of RNA-binding proteins that regulate FGFR2 splicing through the use of sensitive and specific dual color fluorescence minigene assays
    21. Asselbergs FA, Grossenbacher R, Ortmann R, et al. Position- independent expression of a human nerve growth factor-luciferase reporter gene cloned on a yeast artificial chromosome vector. Nucleic Acids Res. 1998, 26(7):1826-33
    22. Vitale P, Braghetta P, Volpin D, et al. Mechanisms of transcriptional activation of the col6al gene during Schwann cell differentiation. Mech Dev. 2001 Apr;102(1-2):145-56
    23. Li Z, Ding M, Thiele CJ, et al. Ethanol inhibits brain-derived neurotrophic factor-mediated intracellular signaling and activator protein-1 activation in cerebellar granule neurons. Neuroscience. 2004; 126 (6):149-62
    24. Alheim K, McDowell TL, Symons JA, et al. An AP-1 site is involved in the NGF induction of IL-1 alpha in PC12 cells. Neurochem Int. 1996 , 29, (5): 487-96
    25. Matthews JS, O'Neill LA. Distinct roles for p42/p44 and p38 mitogen-activated protein kinases in the induction of IL-2 by IL-1. Cytokine. 1999, 11 (9):643-55
    26. Tai TC, Wong-Faull DC, Claycomb R, et al. Nerve growth factor regulates adrenergic expression. Mol Pharmacol. 2006, 70(5):1792-801.
    27.Suzuki T, Kurahashi H, Ichinose H. Ras/MEK pathway is required for NGF-induced expression of tyrosine hydroxylase gene. Biochem Biophys Res Commun. 2004 , 315(2):389-96
    28. Kumahara E, Ebihara T, Saffen D. Nerve growth factor induces zif268 gene expression via MAPK-dependent and -independent pathways in PC12D cells. J Biochem (Tokyo). 1999, 125(3):541-53.
    1. Hasegawa M,Seto A, Uchiyama N, et al .Location of E-Cadhesin in Peripheral Glia after Nerve Injury and Repair. J. Neuropathol. Exp. Neurol, 1996,55:424-43.
    2. Heumann R, Korching S, Bandtlow C, ET al. Change of Nerve Growth Factor Synthesis in Nonneuronal Cell in Response to Sciatic Nerve Transection. J. Cell Bio,1987, 104:1623-1631.
    3. Taniuchi M, Cark HB, Schweitzer JB, et al. Expression of Nerve Growth Factof Receptors by Schwann Cells of Axotomized Peripheral Nerves: Ultrastructural Location , Suppression by Axonal Contact , and Binding Properties. J. Neurosci, 1988(2):664-681.
    4. Hoke A, Gordon T, Zochodne DW, et al. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp. Neuro, 2002, 173:77-85.
    5. Sung OY, Patrizia CB, Bruce C, et al. Competitive Signaling Between TrkA and P75 Nerve Growth Factor Receptors Determines Cell Survival. J. Neurosci, 1998, 18:3273" 3281.
    6. Zhou XF, Rush RA , Mclachlan EM. Defferential Expression of the P75 Nerve Growth Factor Receptor in Glia and Neurons of the Rat Dorsal Root Ganglia after Peripheral Nerve Transection. J. Neurosc, 1996. 16:2901-2911.
    7. Merja SH, Paul E, Tamara B, et al. Kilpatrick. Nerve Growth Factor Signaling through P75 Induces Apoptosis in Schwann Cells via a Bcl-2-Independent Pathway. J.Neurosci.,1999,19:4828-4838.
    8. Gu CH, Patrizia CB, Srinivasan A, et al. Oligodenocyte Apoptosis Mediated by Caspase Activation. J.Neurosci, 1999,19: 3043-3049.
    9. Patrizia CB, Carter BD, Dobrowsky RT, et al. Death of Oligodendrocytes Mediated by the Interaction of Nerve Growth Factor with Its receptorP75. Nature, 1996, 383: 716-719.
    10. Majdan M, Lachancen C, Gloster A, et al. Transgenic Mice Expressing the Intracellular Domain of the P75 Neurotrophic receptot Undergo Neuronal Apoptosis. J. .Neurosci, 1997, 17:6988-6998.
    11. Banmji SX, Majdan M, Pozniak CD, et al . The P75 Neurotrophic Recepot Mediates Neuronal Apoptosis and Is Essential for Naturnally Occurring Sympathetic Nenron Death. J. Cell Bio, 1998, 140:911-923.
    12. Gilmer-Hill, Holly S, Beuerman, et al. Response of GAP-43 and p75 in Human Neuromas over Time after Traumatic Injury. Neurosurgery . 2002,51:1229-1238.
    13. Lu, J, Ashwell, Ken. Olfactory Ensheathing Cells: Their Potential Use for Repairing the Injured Spinal Cord. Spine . 2002, 27: 887-892.
    14. Lee R, Kermani P, Kenneth K. et al. Regulation of Cell Survival by Secreted Proneurotrophins . Science, 2001, 294: 1945-1948.
    15. Mamidipudi V, Wooten MW. Dual role for p75(NTR) signaling in survival and cell death: can intracellular mediators provide an explanation?. J.Neurosci. Research. 2002, 68:373-84.
    16. Mamidipudi V, Li X, Wooten MW. Identification of interleukin 1 receptor-associated kinase as a conserved component in the p75-neurotrophin receptor activation of nuclear factor-kappa B. J. Bio. Chemi ,2002,277: 28010-8.
    17. Roux PP, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor. Prog. Neurobio, 2002,67:203-33.
    18. ABhakar AL, Roux PP, Lachance C, et al. The P75 Neurotrophin Receptor (P75NTR) Alters Tumor Necrosis Factor-mediated NF- κB Activity under Physiological Conditions, but Direct P75NTR-media NF- κ B Activation Requires Cell Stress. J. Bio. Chem, 1999, 274 :21443-21449.
    19. Khursigara G, Bertin J, Yano H, et al. A Prosurvival Function for P75 Receptor Death Domain Mediated via the Casepase Recruitment Domain Receptor-Interacting Protein-2. J. Neurosci. 2001,21: 5854-5863.
    20. Meier C, Parmantier E, Brennan A, et al. Developing Schwann Cells Acquired the Ability to Survive without Axons by Establishing an Autocrine Circuit involving Insuling-like Growth Factor, Neurotrophic-3, and Platelet-derived Growth Factor-BB, J. Neurosci., 1999, 19; 3847-3859.
    21. Grinspan JB, Marchionni M, Reeves M, et al. Axonal Ineractions Regulate Schwann Cell Apoptosis in Developing Peripheral Nerve:Neuregulin Receptors and the Role of Neuregulins. J. Neurosci., 1996, 16:6107-6118.
    22. Leimeroth R, Lobsiger C, Lussi A, et al . Membrane-bound neuregulinl type III actively promotes Schwann cell differentiation of multipotent Progenitor cells. Developmental Biology.,2002, 246:245-58 .
    23. Winseck AK, Caldero J, Ciutat D, et al. In vivo analysis of Schwann cell programmed cell death in the embryonic chick: regulation by axons and glial growth factor. J. Neurosci., 2002,22: 4509-21.
    24.Syroid DE, Zorick TS, Christophe AE, et al. A Role for Insulin-Like Growth Factor - 1 in the Regulation of Schwann Cell Survival. J. Neurosci., 1999,19:2059-2068.
    25. Sendtner M, Gotz R , Holtmann B, et al . Endogenous Gliary Neurotrophic Factor Is a Lesion Factor for Axotomized Motoneurons in Adult Mice. J. Neurosci.1997, 17:6999-7006
    26. HirataH, Hibasami H, YoshidaT, et al. Nerve growth factor signaling of p75 induces differentiation and ceramide- mediated apoptosis in Schwann cells cultured from degenerating nerves. GLIA., 2001, 36:245-58,
    1. Evans G.R.D., Brandt K., widmer M.S.,et al. In vivo evaluation of poly(L-lactic acid)porous conduits for peripheral nerve regeneration. Biomaterials, 1999;20:1109-1115.
    2. Hadlock T, Elisseeff J, Langer R, et al. A Tissue-Engineered Conduit for Peripheral Nerve Repair. Arch Otolaryngol Head Neck Surg, 1998;124(10):1081-1086.
    3. Rodriguez FJ, Gomez N, Perego G, et al. Highly permeable polylactide- caprolactone nerve guides enhance peripheral nerve regeneration through long gaps Biomaterials. 1999; 20:1489-1500.
    4. Oudega M, Gautier SE, Chapon P, et al. Axon regeneration into Schwann cell grafs within resorbable poly(α-hydroxyacid)guidance channels in the adult rat spinal cord. Biomaterial, 2001;22:1125-1136.
    5. Rutkowski GE and Heath CA. Development of a Bioartificial Nerve Graft. Ⅰ. Design Based on a Reaction-Diffusion Model. Biotechnol. Prog., 2002;18:362-372.
    6. Rutkowski GE and Heath CA. Development of a Bioartificial Nerve Graft. Ⅱ. Nerve Regeneration in vitro. Biotechnol. Prog. 2002,18:373-379.
    7. Hu M, Sabelman ES, Tsai C, et al. Improvement of Schwann Cell Attachment and proliferation on Modified Hyaluronic Acid Strands by Polylysine. Tissue Engineer, 2000,6(6):585-593.
    8. Hadlock T, Sundback C, Hunter D, et al. A polymer Conduit seeds with Schwann Cells Promotes Guided Peripheral Nerve Regeneration. Tissue Engineering, 2000,6(2):119-127.
    9. Xu XM, Zhang SX, Li HY, et al. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eu-J-Neurosci. 1999;11(5):1723-1740.
    10. Almudena RC, Plant GW, Avila J, et al. Long-Distance Axonal Regenerationin the Transected Adult Rat Spinal Cord Is Promoted by Olfactory Ensheathing Gila Transplants. J Neurosci. 1998,18:3803-3815.
    11. Fansa H., Schneider W., Keilhoff G.. Revascularization of Tissue-Engineered Nerve Grafts and Invasion of Macrophages. Tissue Engineering, 2001,7(5):519-524.
    12. Matsumoto K, Ohnishi KA, Kiyotani T, et al. Peripherial nerve across an 80-mm gap bridged by a polyglycolic acid(PGA)-collage tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regeneration nerves. Brain Res. 2000, 86:315-328.
    13.王光林,杨志明,谢惠琪,等.周围神经组织工程材料的预构.中国修复重建外 科杂志,2000:14(2):110-114.
    14.沈尊理,Berger Alfred,Hiernerrobert,等.部组织工程化人工神经修复长段神经缺损的初步报告.中华手外科杂志.2001:17(2):112-115.
    15.陈峥嵘,程飙.雪旺细胞种于医用组织引导再生胶原膜构建自体人工神经的实验研究.中华手外科杂志.2001:17(3):176-178.
    16. spierings E, Vleggeert-Lankamp CLAM, Marani E, et al. Allorecongnition of Artificial Nerve Guides Filled with Human Schwann Cells an in vitro Pilot Study. Transplantation, 2000;69(3):455-459.
    17. Verdu E, Navarro X, Graciela GC, et al. Olfactory bulb ensheathing cells enhance peripherial nerve regeneration. NeuroReport, 1999;10:1097-1101.
    18.劳杰,熊良俭,顾玉东,等.应用激活态的雪旺细胞填充导管修复周围神经缺损的初步研究.中华手外科杂志.2000;16(4):236-240.
    19.劳杰,熊良俭,赵新,等.不同时段预变神经雪旺细胞的形态学变化.中华手外科杂志.2001:21(11):689-691.
    20.劳杰,熊良俭,顾玉东,等.不同时段的预变性神经段分子生物学变化.中华手外科杂志.2000;16(3):172-174.
    21. Miller C, Jeftinija S, Mallapragada S. Micropatterned Schwann Cell-Seeded Biodegradable Polymer Substrares Significantly Enhance Neurite Alignment and Outgrowth. Tissue Engineering, 2001;7(6):705-715
    22. Suzuki Y, Tanihara M, Ohnishi K, et al. Cat peripheral nerve regeneration across 50mm gap repaired with a novel nerve guide composed of freeze-dried alginate gel. Neuroscience Letters, 1999; 259:75-78
    23. Suzuki K, Suzuki Y, Ohnishi K, et al. Regeneration oe transected spinal cord in young adult rats using freeze-dried alginate gel. Neuroscience Letters. 1999;10:2891-2894.
    24. Mosahebi A, SimonM, Wiberg M, et al. A Novel Use of Alginate Hydrogel as Schwann Cell Matrix. Tissue engineering, 2001:7(5):525-534
    1. Bruck.W. The role of macrophages in Wallerian degeneration. Brain pathol, 1997; 7 (2):741~752.
    2. Dahlin LB, Brandt J. Basic science of peripheral nerve repair -Wallerian degeneration/growth cone. Oper Tech Orthop, 2004 14: 138-145.
    3. Liefner M, Siebert H, Sachse T, et al. The role of TNF-alpha during Wallerian degeneration. J Neuroimmunol, 2000; 108(1-2):147~152.
    4. Dezawa M, Adachi-Usami E. Role of Schwann cells in retinal ganglion cell axon regeneration. Prog Retin Eye Res, 2000,19(2): 171~204.
    5. Reynolds AJ., Hendry IA, Bartlett SE. Anterograde and retrograde transport of active extracellular signal-related kinase 1 (ERK1) in the ligated rat sciatic nerve. Neuroscience, 2001;105(3):761~771
    6. Rummier LS, Dinh PT, Gupta R. The Anatomy and Biochemistry of Myelin and Myelination. Oper Tech Orthop. 2004;14:146~152.
    7. Bershadsky A, Chausovsky A, Becker E, et al. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr Biol 1996;6: 1279-1289.
    8. Ffrench-Constant C, Colognato H, Franklin RJ. The mysteries of myelin unwrapped. Science, 2004 ; 304(5671):688-689.
    9. Roche PH, Figarella-Branger D, Daniel L et al. Expression of cell adhesion molecules in normal nerves, chronic axonal neuropathies and Schwann cell tumors. J Neurol Sci 1997; 151(2): 127-133.
    10. Previtali SC, Feltri ML, Archelos JJ, et al. Role of integrins in the peripheral nervous system. Prog Neurobiol, 2001; 64: 35-49
    11 Ide C. Peripheral nerve regeneration.Neurosci Res, 1996, 25:101-121.
    12 Rummler LS, Gupta R. Peripheral nerve repair: a review. Curr Opin Orthop, 2004;15: 215 -219.
    13. Michailov GV. Sereda MW. Brinkmann BG. et al. Axonal neuregulin-1 regulates myelin sheath thickness.Science, 2004,;304: 700-703.
    14. Garratt AN., Britsch S, Birchmeier C. Neuregulin, a factor with many functions in the life of a schwann cell. Bioessays, 2000; 22: 987-996.
    15. Vartanian T, Goodearl A, Lefebvre S, et al. Neuregulin induces the rapid association of focal adhesion kinase with the erbB2-erbB3 receptor complex in schwann cells. Biochem Biophys Res Commun, 2000, 271(2): 414-417.
    16. Garratt AN., Voiculescu O, Topilko P, et al. A dual role of erbB2 in myelination and in expansion of the schwann cell precursor pool. J Cell Biol, 2000, ; 148(5): 1035 -1046.
    17. Zorick TS, Lemket G. Schwann cell differentiation. Current Opinion in Cell Biology, 1996; 8(6):870-876.
    18. Clark R, Stewart M, Miskimins WK. et al. Involvement of MAP kinase in the cyclic AMP induction of myelin basic protein gene expression. Int J Devl Neuroscience, 1998; 16(5): 323-331.
    19 Tabemero A, Stewart HJ, jessen KR, et al. The Neuron-Glia Signal β Neuregulin Induces Sustained CREB Phosphorylation on Ser-133 in Cultured Rat Schwann Cells. Mol Cell Neurosci, 1998; 10(5-6) 309-322.
    20. Mutoh T, Li M, Yamamoto M, et al. Differential signaling cascade of MAP kinase and S6 kinase depends on 3', 5'-monophosphate concentration in schwann cells: correlation to cellular differentiation and proliferation. Brain Res, 1998;810(1-2): 274-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700