块体非晶、纳米晶软磁材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
块体非晶、纳米晶磁性材料因其呈现的优异磁性能,已成为新型磁性材料研究
    的一个重要方向。本文概述了国内外关于非晶、纳米晶磁性材料研究现状及发展,
    通过大量的设计和实验,研究了铁基块体非晶、纳米晶合金的成分设计、制备工艺、
    微观结构、各种性能以及它们之间的关系。
     针对制备铁基块体非晶合金所需高纯 FeP 合金原料难以获得的问题,提出了一
    种用纯 Fe 和纯 P 合成高纯 FeP 合金的新工艺:低温扩散+快速加热。用该工艺可顺
    利合成 Fe89.87P10.13wt%、Ni81P19at%,、Fe68.4S31.6wt%、Ni77S23wt%、Co88.5P11.5wt%等共
    晶合金。
     本文提出了制备块体非晶合金的复合工艺:助熔剂净化+铜模铸造。自行设计了
    一系列铜模,可以简单方便地制备多个系列合金,包括柱状、片状、筒状以及圆环
    状等各种形状试样的块体非晶材料。
     采用助熔剂净化和铜模铸造相结合的工艺,用工业纯原料制备出块体非晶合金
    (Fe40Ni40P14B6) 100-xGax(x=4~6)。样品为直径 3mm 的圆柱体或宽 6mm、厚 1mm 的
    片材,长度都在 10 至 15mm 左右。实验表明,适量 Ga 元素的加入提高 Fe-Ni-P-B
    合金的非晶形成能力。Ga 提高合金非晶形成能力的主要原因是 Ga 对合金中的
    Fe3Ni3B、(Fe,Ni)23B6 等难熔相的产生有抑制作用。
     实验表明,对有较强非晶形成能力的合金(Fe40Ni40P14B6) 100-xGax(x=4~6),用
    适量的 In 取代 Ga 对合金的非晶形成能力影响不大。而金属 In 的价格远比金属 Ga
    低,因而在不影响性能的前提下,用 In 取代 Ga 具有工程意义。
     用助熔剂净化+铜模铸造复合工艺,制备了块体非晶合金(Fe40Co40P14B6)95Ga5。
    试样为厚 0.8mm、宽约 6mm,长约 20mm 的片材和直径 2mm,长约 20mm 的圆柱体。
     对六种成分铁基合金的非晶形成能力进行了对比,认为六种铁基合金非晶形成
    能力的顺序为:
    Fe65.5Cr4Mo4Ga4P12C5B5.5>Fe72Al5Ga2P11B4C5Si1~(Fe40Ni40P14B6)96Ga4~(Fe40Ni40P14B6)94
    Ga4In2>(Fe40Co40P14B6)95Ga5>>(Fe40Ni40Mo4B16) 95Ga5。
     研究了 Fe40Ni40P14B6 合金的深过冷凝固组织,发现 Fe40Ni40P14B6 合金经助熔剂
    净化后,在缓慢冷却条件下进行深过冷凝固时,随过冷度增大,显微组织由棒状共
    晶转变为几百纳米大小的网状调幅结构;在冷却速率较大的凝固条件下,将得到枝
    晶状组织。且随净化程度不同而导致凝固前深过冷能力的不同,快速凝固组织呈现
    含有三次枝晶的树枝晶、只含有二次枝晶的树枝晶、胞状晶的变化趋势,且胞状晶
     I
    
    
    的间距 λ 非常小,呈现为纳米纤维状结构。
    研究了块体非晶合金(Fe40Ni40P14B6)96Ga4在 Tg至 Tx附近进行退火时的非晶晶化
    组织。发现块体非晶合金(Fe40Ni40P14B6)96Ga4在 Tg至 Tx之间进行长时间退火时,试
    样将发生晶化。在不同退火条件下,块体非晶合金(Fe40Ni40P14B6)96Ga4晶化后将得到
    由放射状纳米晶组成的球状晶团和由网状调幅结构断裂而成的纳米等轴晶等晶粒形
    貌。当退火温度为 710K,退火时间为 60min 时,获得了较为均匀的纳米晶组织,晶
    粒直径约为 8nm。
Bulk amorphous and nanocrystalline magnetic material has become very much a
    pioneering research issue because of its excellent magnetism properties. In this paper, the
    history of bulk amorphous and nanocrystalline magnetic material and the research
    progress is reviewed. The chemical composition of the Fe-based bulk
    amorphous/nanocrystalline alloy, its manufacture technique, microstructure, properties
    and the relationship between them are investigated.
     It’s difficult to obtain the high purity FeP alloy that used as the raw material for the
    preparation of Fe-based bulk amorphous. To solve the problem, a new technique: diffusion
    in low temperature + rapidly heating, is presented to synthesis the high purity FeP alloy
    with pure iron powder and pure phosphor powder. With the similar technique, a series of
    eutectic alloys such as Fe89.87P10.13wt%、Ni81P19at%,、Fe68.4S31.6wt%、Ni77S23wt%、
    Co88.5P11.5wt% have been synthesized successfully.
     In this thesis a new compound technique: flux-melting + copper casting, is presented
    to prepare bulk amorphous alloy from industrial raw materials. A series of copper moulds
    have been designed. With the different copper mould, bulk amorphous alloys can be
    prepared easily with different shapes such as rod, plate, cylinder and ring.
     Bulk amorphous alloys (Fe40Ni40P14B6) 100-xGax(x=4~6)have been prepared in the
    form of 3-mm-diam rods or 1-mm-thick plates by utilizing industrial raw materials. The
    glass synthesis consists of flux-melting and copper casting. Differential scanning
    calorimetry and X-ray diffraction show that amorphous alloys can formed for x=4-6. The
    properties measurements indicate that the amorphous alloys possess strong corrosion
    resistance and excellent soft magnetic properties. The microhardnessvalue of the
    amorphous alloy is lower than that of the crystalline alloy with the same composition. It
    has been demonstrated that Ga addition can be greatly helpful to increase the
    glass-forming ability of Fe40Ni40P14B. The main reason of increasing the glass-forming
    ability should be that the Ga addition restrains the crystallization of the Fe3Ni3B、
    (Fe,Ni)23B6.
     It has been demonstrated that In addition can replace part of Ga addition, which has
    little influence on the glass-forming ability of (Fe40Ni40P14B6) 100-xGax(x=4~6). However,
    The price of pure indium is far lower than that of pure gallium. Therefore, It is very
    important that gallium can replace by indium.
     III
    
    
    Bulk amorphous alloy (Fe40Co40P14B6)95Ga5 has been prepared in the form of Φ2×
    20mm rods and 0.8×6×20 plates by industrial raw material.. The glass synthesis consists
    of flux-melting and copper casting.
     The glass-forming ability of six kinds of Fe-based alloys has been compared.
    According the glass-forming ability, the order may be
    Fe65.5Cr4Mo4Ga4P12C5B5.5>Fe72Al5Ga2P11B4C5Si1~(Fe40Ni40P14B6)96Ga4~(Fe40Ni40P14B6)94
    (Ga4In2)>(Fe40Co40P14B6)95Ga5>>(Fe40Ni40Mo4B16) 95Ga5.
     The high undercooling solidification microstructure of Fe40Ni40P14B6 alloy has been
    researched. It has been found that the samples have different microstructures if the
    solidificotion conditoin is different. After fluxing, if the cooling rate is low, the specimen
    with high undercooling is occupied by subnetwork microstructure. If the cooling rate is
    high, the eutectic microstructure varies from dendrite containing tertiary dendrite arms,
    dendrite containing secondary dendrite arms to nanofiber with the alloy’s undercooling
    increasing.
     Bulk nanocrystalline alloy (Fe40Ni40P14B6)96Ga4 has been prepared by suitably
    controlled annealing treatment of the bulk amorphous alloy. When the samples anneal in
    the temperature between Tg and Tx for 60min, the crystallization occures. Under the
    different annealing condition, the microstructure presents two kinds of morphologys:
    crystal reunion composed of nanocrystal and equiaxed grain. When the annealing
    temperature is 710K, the annealing time is 60min,
引文
[1]王新林,孙桂琴.金属功能材料发展概况.金属功能材料,1999,6(4):149~154
    [2]Michael E,McHenry,Matthew A,et al .Amorphous and nanocrystalline materials
     for applications as soft magnets.Progress in Materials Science,1999,44:291-433
    [3]Makino A,Inoue A,Masumoto T.Nanocrystalline soft magnetic Fe-M-B (M
     = Zr, Hf, Nb) alloys produced by crystallization of amorphous phase (overview),
     Mat Trans JIM,1995,36:924~928.
    [4].Yoshizawz,Oguma S,Yamauchi K.Magnetic properties of nanocrystalline alloy
     Fe-Si-B, J.Appl.Phys.,1988,64:6040~6046
    [5]钟太彬,林均品,陈国良,Fe3Si 基合金的制备及应用研究进展.功能材料,
     1999,30(4):156~159
    [6]王立军,陈传彪,张国祥.磁压缩激光器与非晶微晶铁芯 .金属功能材料,
     1999,6 (2):62~67
    [7]顾雪辉.FeCuNbVSiB 纳米晶软磁合金及其在电力电子技术领域中的应用.功
     能材料,1999,30(4):355~358
    [8]孙桂琴,喻晓军.非晶及纳米晶合金研究进展.金属功能材料,1999,6(4):
     156~159
    [9]张振中,宋广生,杨根仓等,深过冷 Fe82B17Si1 共晶合金的再辉及凝固组织特
     征,自然科学进展,2000, V10, No.1, 54-59
    [10]T.Naohara.Aging effects of the microstructure and soft magnetic properties in an
     amorphous Fe-Si-B-Nb alloy , Appl.Phys..Lett.,1996,68(7):1012~1014
    [11]Inoue A , Kimura H, Sasamori K, et al. High strength Al-V-M (M = Fe, Co or Ni)
     alloys containing high volume fraction of nanoscale amorphous precipitates,
     Mater.Trans.JIM.,1995:36,676()
    [12]Suzuki K,Makino A,Inoue A,et al.Low core losses of nanocrystalline
     Fe-M-B (M = Zr, Hf, of Nb) alloys, J.Appl.Phys.,1993:74,3316~3324
    [13]Zhang Y,Hono K,Inoue A,et al.Nanocrystalline structural evolution in
     Fe90Zr7B3 soft magnetic material,Acta mater.1996:44,1497~1502
    [14]Fujii Y,Fujita H,Seki A, et al.Magnetic properties of nanocrystalline alloy
     Fe-P-C-Cu-(Ge,Mo)-Si, J.Appl.Phys.,1991:70,6241~6246
     112
    
    
    [15]Liu T,Gao Y F,Xu Z X,et al.Compositional evolution and magnetic
     properties of nanocrystalline Fe81.5Cu0.5Mo0.5P12C3Si2.5, J.Appl.Phys.,1996:
     80,3972~3976
    [16]Klement W,Willens R H,Duwez P.Nature,1960:187
    [17]Chen H S.Thermodynamic considerations on the formation and stability of
     metallic glasses. Acta.Metall.,1974:22,1505~1511
    [18]Chen H S,Jackson K A.Metallic Glasses,ASM,Metals Park,OH,
     1978:75
    [19]Inoue A,Kita K,Zhang T,et al.Amorphous La55Al25Ni20 alloy prepared by
     water quenching, Mater.Trans.JIM,1989:30,722~725
    [20]Inoue A,Ohtera K,Kita K,et al.New amorphous Mg-Ce-Ni alloys with
     high strength and good ductility,J.J.Appl.Phys.,1988:27,2248~2251
    [21]Inoue A,Zhang T,Masumoto T.Zr-Al-Ni amorphous alloys with high glass
     transition temperature and significant supercooled liquid
     region.Mater.Trans.JIM,1990:31,177~183
    [22]Amiya K,Nishiyama N,Inoue A,et al.Mechanical strength and thermal
     stability of Ti-based amorphous alloys with large glass-forming ability,
     Mater.Sci.Eng.A,1994:179/180,692~696
    [23]Inoue A,Nishiyama N,Kimura H.Preparation and thermal stability of bulk
     amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter,
     Mater.Trans.JIM,1997:38,179~183
    [24]Diefenbach A,Gillessen F,Herlach D M et al.Crystallization kinetics
     and glass formation in undercooled Fe-Ni-P-B alloy melts. Journal of
     Non-crystalline solids,1993:156~158,580~584
    [25]Inoue A,Gook J S.Fe-based ferromagnetic glassy alloys with wide
     supercooled liquid region, Mater.Trans.JIM,1995:36,1180~1183
    [26]Inoue A.Bulk amorphous alloys with soft and hard magnetic properties,
     Mater.Sci.Eng.A,1997:226~228,357~363
    [27]Inoue A,Zhang T,Itoi T,et al.New Fe-Co-Ni-Zr-B amorphous alloys with
     wide supercooled liquid regions and good soft magnetic properties,
     Mater.Trans.JIM,1997:38,359~362
     113
    
    
    [28]Inoue A,Zhang W.New Fe-based amorphous alloys with large magnetostriction
     and wide supercooled liquid region before crystallization, J.Appl.Phys.,1999:
     85,4491~4497
    [29]Inoue A,Gook J S.Multicomponent Fe-based glassy alloys with wide
     supercooled liquid region before crystallization, Mater.Trans. JIM,1995:36,
     1282~1285
    [30]Shen T D,Schwarz R B.Bulk ferromagnetic glasses prepared by flux
     melting and water quenching, Appl,Phys,Lett,,1999:75,49~51
    [31]Inoue Akihisa,Makino Akihiro,Mizushima Takao.Ferromagnetic bulk glassy
     alloys,Journal of Magnetism and Magnetic Materials,2000:215-216,246~252
    [32]Shen T D,Schwarz R B.Bulk ferromagnetic glasses in the Fe–Ni–P–B
     System,Acta mater.2001:49,837~847
    [33]Herlach D M,Cochrane R F.Containerless processing in the study of
     metallic melts and their solidification, Inter Mater Reviews,1993:38,273~
     347
    [34]Kui H W,Greer A L,Turnbull D.Formation of bulk metallic glass by
     fluxing, Appl.Phys.Lett.,1984:45,615~616
    [35]Amiya K,Inoue A.Thermal stability and mechanical properties of Mg-Y-Cu-M
     (M = Ag, Pd) bulk amorphous alloys, Mater.Trans.JIM,2000:41,1460~1462
    [36]Kang H G,Park E S,Kim W T,et al.Fabrication of bulk Mg-Cu-Ag-Y
     glassy alloy by squeeze casting, Mater.Trans.JIM.,2000:41,846~849
    [37]Konovalov I I,Komissarov V A,Maslov A A,et al.Bulk amorphous
     plate production by a casting process,J Non-Crystalline Solids,1996:205-207,
     536~539
     [38]Inoue A,Yokoyama Y,,Shinohara Y,et al.Preparation of bulky
     Zr-based amorphous alloys by a zone melting method, Mater.Trans.JIM.,1994:
     35,923~926
     [39]Busch B,Kim Y J,Johnson W L.Thermodynamics and kinetics
     of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5
     alloy, J.Appl.Phys.,1995:77,4039~4045
    [40]Inoue A,Zhang T,Takeuchi A.Bulk amorphous alloys with high mechanical
     114
    
    
    strength and good soft magnetic properties in Fe-TM-B (TM=IV-VII group
     transition metal) system, Appl.Phys.Lett.,1997:71,464~466
    [41].Xiao J Z,Leung K K,Kui H W,Mechanism of grain refinement in
     undercooled Cu30Ni70, Appl.Phys.Lett.,1995:67:3111~3113
    [42]Bardenhueer,Bleckman.Journal of Australian Inst. Metals.1941:10(3),223~
     230
    [43]Powell G L F,Hogant L M.The undercooling of Copper-Oxgen alloys,
     TMS-AIME,1968:242(10),2133~2138
    [44]Flemings M C,Shiohara Yuh.Solidification of undercooled metals,Materials
     Science and Engineering.,1984:65,157~170
    [45]Kui H W,Greer A L,Turnbull D.Formation of bulk metallic glass by
     fluxing, Appl.Phys.Lett.,1984:45,615~616
    [46]魏炳波.液态镍基合金的净化、深过冷与快速凝固.[博士学位论文].西北
     工业大学图书馆,1989
    [47]周尧和、胡壮麒,介万奇.凝固技术.北京:机械工业出版社,1998
    [48]Kaspar M,Gleiter H.Thermotransport in grain boundries,Acta Metallurgica,
     1984:32,1903~1906
    [49]甘章华,肖建中.块体纳米磁性材料研究进展,材料导报,2001:15,23~
     25
    [50]Guo W H,Kui H W.Bulk nanostructured alloy formation with controllable
     grain size,Acta Materialia, 2000:48(9),2117~2121
    [51]Gan Z H,Xiao J Z,Chen B L.Nanofibres forming in bulk alloy
     Fe40Ni40P14B6,,submitted.
    [52]Pfeifer F,Radeloff C.J.Mag.Mag.Mat.,1980,19:190~194.
    [53]Massalski T.Binary alloy phase diagrams,Materials Park,OH ASM International
     1990.
    [54]Boll R.Soft magnetic metals and alloys,In: Buschow KHJ,editor.Materials
     science and technology,a comprehensive treatment,1994,vol.3B:399 [chapter
     14].
    [55]Herzer G,Hilzinger HR.Surface crystallization and magnetic properties in
     amorphous iron rich alloys, J.Mag.Mag.Mat.,1986,62:143~151.
     115
    
    
    [56]Herzer G.In: Buschow KHJ, editor. Handbook of magnetic materials, vol. 10.
     Amsterdam: Elsevier Science, 1997. P.415 [chapter 3].
    [57]He Y,Schwarz R B,Archuleta J I.Bulk glass formation in the Pd-Ni-P
     system, Appl,Phys,Lett.,1996:69,1861~1863
    [58]Schwarz R B,He Y.Formation and properties of bulk amorphous Pd-Ni-P
     alloys, Mater.Sci.Forum.,1997:235-238,231~240
    [59]He Y,Shen T D,Schwarz R B.Bulk amorphous metallic alloys: Synthesis
     by fluxing techniques and properties, Metall.Mater.Trans.A,1998:29,1795~
     1804
    [60]Shen T D,He Y,Schwarz R B.Bulk amorphous Pd-Ni-Fe-P alloys:
     preparation and characterization, J.Mater.Res.,1999:14,2107~2115
    [ 61 ] Shen T D , Schwarz R B , Thompson J D . Paramagnetism,
     superparamagnetism, and spin-glass behavior in bulk amorphous Pd-Ni-Fe-P alloys,
     J.Appl.Phys.,1999:85,4110~4119
    [62]Inoue A,Zhang T,Masumoto T.Glass-forming ability of alloys,
     J.Non-Cryst.Solids.,1993:156-158,473~480
    [63]Inoue A.High strength bulk amorphous alloys with low critical cooling rates
     (overview), Mater.Trans.JIM.,1995:36,866~875
    [64]Inoue A,Vazquea M,Hernando A.Nanostructured and Non-Crystalline
     Materials,World Scientific,Singapore,1994:15~21
    [65]Inoue A,Shin K S,Yoon J K,et al.Advanced Materilas abd Processing,
     The Korean Institute of Matals and Materilas,Seoul,1995:1849~1853
    [66]Inoue A.Sci.Rep.Res,Inst.Tohoku.Univ.,1996:42A,1.
    [ 67 ] Takaomi Itoi , Akihisa Inoue . High-frequency permeability of
     (Fe,Co,Ni062Nb8B30 amorphous alloys with a wide supercooled liquid region,
     Appl.Phys.Lett.,1999:74(17),2510~2512
    [68]Inoue A,Shinohara Y,Gook J S.Thermal and magnetic properties of bulk
     Fe-based glassy alloys prepared by copper mold casting, Mater.Trans.JIM,1995:
     36,1427~1433
    [69]Guinier A,Dexter D L.X-ray studies of materials,Interscience Publishers,
     New York:,1963
     116
    
    
    [70]Ohandley R C,Levy R A,Hasegawa R.Amorphous magnetism II,
     New York: Plenum Press,1977:379~385
    [71]Cullity B D.Elements of X-ray diffraction,Reading,MA:Addison-
     Wesley.1978.
    [72]Inoue A,Zhang T,Koshiba H.et al.New bulk amorphous Fe-(Co,Ni)-M-B
     (M = Zr,Hf,Nb,Ta,Mo,W) alloys with good soft magnetic properties, J
     Appl.Phys.,1998,83:6326~6331
    [73]Chen H S.Recent developments in ternary alloys, Rep.Prog.Phys.,1980:
     43,353~358
    [74]Inoue A,Shinohara Y,Gook J S.Thermal and magnetic properties of bulk
     Fe-based glassy alloys prepared by copper mold casting, Materials Transactions,
     JIM, v 36, n 12 Mater.Trans.JIM,1995:36,1427~1433
    [75]Inoue A,Gook J S.Effect of additional elements (M) on the thermal stability
     of supercooled liquid in Fe72-xAl5Ga2P11C6B4Mx glassy alloys,
     Mat.Trans.JIM.1996,37:32~38
    [76]Inoue A,Takeuchi A,Zhang T.et al.Soft magnetic properties of bulk
     Fe-based amorphous alloys prepared by copper mold casting, IEEE Trans
     Mag.1996,32:4866~4871
    [77]Inoue A,Park R E.Soft magnetic properties and wide supercooled liquid
     region of Fe-P-B-Si base amorphous alloys, Mat.Trans.JIM.1996,37:1715~
     1721
    [78]Inoue A,Gook J S.Fe-based ferromagnetic glassy alloys with wide
     supercooled liquid region, Mat.Trans.JIM,1995,36:1180~1183
    [79]Inoue A,Gook J,S.Multicomponent Fe-based glassy alloys with wide
     supercooled liquid region before crystallization, Mat.Trans.JIM,1995,36:1282~
     1285
    [80]Inoue A,Shinohara Y,Gook J S.Thermal and magnetic properties of bulk
     Fe-based glassy alloys prepared by copper mold casting, Mat.Trans.JIM,1995,
     36:1427~1433
    [81]Koshiba H,Inoue A,Makino A.Nanocrystallization and magnetic properties
     of Fe56Co7Ni7Zr2M8 B20(M = Nb or Ta) glassy alloys, Nanostructured Mat.1997,
     117
    
    
    8:997~1005
    [82]Inoue A,Zhang T,Itoi T,et al.New Fe-Co-Ni-Zr-B amorphous alloys with
     wide supercooled liquid regions and good soft magnetic properties,
     Mat.Tran.JIM,1997,38:359~362
    [83]Mizushima T,,Makino A,Inoue A.Influence of Si addition on thermal
     stability and soft magnetic properties for Fe-Al-Ga-P-C-B glassy alloys,
     J.Appl.Phys.1998,83:6329~6335
    [84]Alben R,Budnick J,Cargill III G S,In:Metallic glasses,Metals Park:
     OH:ASM,1978:304~310
    [85]Alben R,Becker J J,Chi M C,Random anisotropy in amorphous
     ferromagnets, J.Appl.Phys.,1978:49,1653~1658
    [86]Harris R,Plischke M,Zuckermann M,J.Phys.Rev.Lett.,1973:31,
     160~166
    [87]Herzer G,Creep induced magnetic anisotropy in nanocrystalline Fe-Cu-Nb-Si-B
     alloys, IEEE Trans.Mag.,1994:30,4800~4802
    [88]Hernando A,Navarro I,Gorria P.Iron exchange-field penetration into the
     amorphous interphase of nanocrystalline materials, Phys.Rev.B,1995:51,3281~
     3284
    [89]Yoshizawa Y,Yamauchi K,Fe based soft magnetic alloys composed of ultrafine
     grain structure, J.Jpn.Inst.Met.,1989:53,241~248
    [90]Luborsky F E,Levy R A,Hasegawa R,Amorphous magnetism II,Plenum
     Press,New York,1997
    [91]Luborsky F E,IEEE Trans.Mag.1978:14,1008~1014
    [92]Ohnuma M,Suzuki J,Funahashi S,et al.Small-angle neutron scattering
     study on Fe-Cu-Nb-Si-B nanocrystalline alloys, Physic B,1995:213/214,582~
     584
    [93]Pradell T,Clavaguera N,Zhu J,et al.Moessbauer study of the
     nanocrystallization process in Fe73.5CuNb3Si17.5B5 alloy, J.Phys.Condens.Matter,
     1995,7:4129~4135.
    [94]Hoffmann H,Static wall coercive force in ferromagnetic thin films, IEEE
     Trans.Mag.,1973:9,17~21
     118
    
    
    [95]严东生,无机材料学报,1995;10(1): 1
    [96]余声明.磁性应用技术的新近发展.世界电子元器件,1999:(10),23()
    [97]Turnbull D,Contemp.Phys.,1969:10,473~476
    [98]Robert H Perry,Perry’s Chemistry Engineer’s Handbook,Sixth Edith.1984
    [99]黄继华,金属及合金中的扩散,冶金工业出版社,1996
    [100]戚正风等,固态金属中的扩散与相变,机械工业出版社,1998
    [101]Chen M W,Wang X M,Sakai A,et al.Microstructure investigation
     of an annealed amorphous Fe-C-Si-B cast iron,Scr.Mater.,2000:43,1021~
     1026
    [102]郭贻诚,王震西。非晶态物理学,北京:科学出版社,1984
    [103]Z. H. GAN, H. Y. YI, J. PU,et al.Preparation of bulk amorphous
     Fe–Ni–P–B–Ga alloys from industrial raw materials,Scripta Mater.2003:48,
     1543~1547
    [104]Li Chunfei,Junji Saida,Matsushida M,Effect of Sn addition on the glass-forming
     ability in (Cu40Ti30Ni15Zr10)(100-x)/95Snx (x = 0, 2, 4, 6 and 8) alloys,Scripta
     Mater.,2000:42,923~927
    [105]Zhang T,Inoue A,Masumoto T,Amorphous Zr-Al-TM (TM=Co, Ni, Cu)
     alloys with significant supercooled liquid region of over 100 K,
     Mater.Trans.JIM,1991:32 ,1005~1010
    [106]Lin X H,Johnson W L,Formation of Ti-Zr-Cu-Ni bulk metallic glasses,
     J.Appl.Phys.,1995:78,6514~6518
    [107]Hays C C,Kim C P,Johnson W L,Large supercooled liquid region
     and phase separation in the Zr-Ti-Ni-Cu-Be bulk metallic glasses,
     Appl.Phys.Lett.,1999:75,1089~1091
    [108]甘章华,杨依强,肖建中,Ga, In 对 Fe40Ni40P14B6共晶合金非晶形成能力的
     影响,材料科学与工程学报,已收录。
    [109]X. Hu,S C Ng,Y P Feng,Y Li,Glass forming ability and in-situ
     composite formation in Pd-based bulk metallic glasses,Acta Materialia,2003:
     51,561~572
    [110]Lu Z P,Hu X.,Li Y,Ng S C,Glass forming ability of La–Al–Ni–Cu
     and Pd–Si–Cu bulk metallic glasses,Materials Science and Engineering A,2001:
     119
    
    
    304–306,679–682。
    [111]Konovalov I I,Komissarov V A,Maslov A A,et al.Bulk amorphous
     plate production by a casting process,Journal of Non-Crystalline Solids,1996:
     205-207,536~539
    [112]Barandiaran J M,Colmenero J,Continuous cooling approximation for the
     formation of a glass, J.Non-Cryst.Solids,1981:46,277~287
    [113]李志华.用于配电变压器铁芯的具有高工作磁感的非晶合金.金属功能材料,
     2001, 8(5):137~142
    [114]甘章华,王敬丰,肖建中,块体非晶合金 Fe-Ni-P-B-Ga 的制备与性能.金属
     学报,已收录(2003 年 10 月刊出)
    [115][美] F.P.因克罗普拉, D.P.德威特 著,陆大有,于广经,朱谷经等译,传
     热基础,宇航出版社出版,1987
    [116] Herzer G,Grain size dependence of coercivity and permeability in nanocrystalline
     ferromagnets,IEEE Trans Magn,1990:26,1397~1402.
    [117]高汝伟,冯维存,陈伟等,纳米复合永磁材料的交换耦合相互作用与有效各向
     异性,科学通报,2002,47:829~832
    [118] Willard M A,Huang M Q,Laughlin D,E,et al.Magnetic properties
     of HITPERM (Fe, Co)88Zr7B4Cu1 magnets,J.Appl.Phys.1999,85:4421~
     4428
    [119]Тамман Г.Стеклообразное Состояние ОНТИ,м
     -1(1935).
    [120] 段仁官,梁开明,顾守仁等,非晶态材料分相机理的理论探讨,应用科学学报,
     1999,17:103-108
    [121] Fan G J , Quan M X, Hu Z Q , et al . Deformation-induced
     microstructural changes in Fe40Ni40P14B6 metallic glass,Journal of Materials
     Research,1999,14:3765~3774

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700