氯沙坦联合辛伐他汀对心力衰竭大鼠心脏重构的作用及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     充血性心力衰竭(congestive heart failure,CHF)是一种复杂的临床症候群,是多种心血管疾病的终末期表现。心力衰竭是心脏对负荷和刺激产生连续的结构和功能重构的一种动态过程,因而对心室重构的防治就成为阻止心力衰竭发生的重要环节。本研究的目的,是探讨氯沙坦(losartan,Los)联合辛伐他汀(simvastatin,Sim)对压力负荷心力衰竭大鼠心脏重构的作用,并从神经内分泌激素、细胞因子、心肌细胞凋亡以及心肌纤维化等方面,探讨其协同作用的可能机制,为临床上心力衰竭的药物治疗提供新的思路。
     方法:
     降主动脉缩窄(ascending aortic constriction,AAC)术建立大鼠压力负荷心力衰竭模型;
     模型建立后将SD雄性大鼠随机分成6组:正常对照组(control group,不用药物干预))、假手术组(sham group,不用药物干预))、模型组(ascending aorticconstriction,AAC,不用药物干预)、氯沙坦组(AAC+Los;Los,5mg/kg)、辛伐他汀组(AAC+Sim;Sim,2 mg/kg)、氯沙坦组与辛伐他汀合用组(AAC+Los+Sim;Los,5mg/kg;Sim,2 mg/kg)。术后第5天开始灌胃,每天一次,共35天。正常对照组、假手术组、模型组每天灌胃等容积蒸馏水一次;
     应用经胸壁超声心动图(transthoracic echocardiography,TTE)检查,心、肺重量测定,光镜、透射电镜分析细胞形态学以及心肌胶原的改变,对AAC模型进行评价并观察药物治疗各组对压力负荷大鼠心脏重构的影响;
     概率总和检验评价氯沙坦联合辛伐他汀对压力负荷大鼠心脏重构的协同作用;
     心电图检查计算心率,颈总动脉插管测定血压;
     直接清除法,测定血清TCH、TG、LDL-C和HDL-C的浓度;
     放射免疫法测定外周血浆AngⅡ、ET和ANP浓度;
     双抗体夹心ELISA方法检测外周血清TNF-α、IL-6、BNP和CRP的浓度;
     心室组织切片TUNEL法检测细胞凋亡;
     体外实验,Ⅱ诱导心肌细胞凋亡,应用3-(4,5-二甲基噻唑)-2,5-二苯基四氮唑溴盐(MTT)测定心肌细胞活力,荧光显微镜观察凋亡细胞形态,FITC-Annexin V和PI双重染色流式细胞仪检测心肌细胞凋亡率,流式细胞仪检测Bax和Bcl-2蛋白的表达,免疫组化测定心肌细胞中Caspase-3蛋白的表达;
     Western印迹法测定心室组织ERK1/2、P-ERK1/2蛋白质含量;
     实时荧光定量PCR,探针法检测大鼠心室组织中AT_1R mRNA表达,SYBRgreenⅠ染料法检测大鼠心室组织中MMP2、MMP9、TIMP1、TIMP2、AT_2R以及Collagen-1、Collagen-3 mRNA的表达。
     结果:
     1.压力负荷心力衰竭大鼠模型的评价
     TTE检查,AAC术后3周模型组即出现心脏重构现象,术后5周更加明显,表现为左心室扩大、室壁增厚、心脏射血功能下降以及左心室质量及左心室质量指数增加;
     术后5周器官重量,AAC组心脏重量、心脏重量指数、左心重量、左心重量指数、肺脏重量以及肺脏重量指数明显高于control、sham组;
     AAC组血液BNP浓度明显升高;
     光学显微镜下,AAC组心肌和肺组织HE染色显示:心肌纤维排列紊乱,大部分心肌细胞浊肿变性,部分心肌纤维溶解,肺泡腔缩窄,肺泡腔有少量出血,部分肺泡腔内积液,肺间质水肿,肺间质淤血,有少量炎症细胞浸润;
     投射电镜下,AAC组心肌纤维排列紊乱,部分Z带消失,线粒体肿胀,嵴突模糊不清,可见大量空泡变性,闰盘结构紊乱,有少量细胞核破裂,可见少量凋亡小体,胶原纤维增生明显。
     以上结果表明,应用AAC术能成功建立压力负荷心力衰竭大鼠模型。
     2心脏重构的检测
     TTE检查,氯沙坦联合辛伐他汀,在减轻心脏质量及心脏质量指数方面优于两药单用;
     药物治疗5周,各组收缩压及心率比较无显著性差异;
     氯沙坦和辛伐他汀均能缓解AAC导致的心脏重量、心脏重量指数、肺脏重量以及肺脏重量指数的增加,氯沙坦联合辛伐他汀效果更明显;
     概率总和检验,LV Mass/Body Weight、HW/BW Ratio、LV Weight/BW Ratio和Lung Weight/BW Ratio的q值分别是1.17、1.17、1.16和1.26,均大于1.15。结果表明,氯沙坦联合辛伐他汀对压力负荷心力衰竭大鼠心脏重构可能具有协同作用。
     3.血脂分析
     药物治疗5周,TCH、LDL-C、HDL-C和TG,各组比较无显著性差异。
     4.AngⅡ、ET-1、ANP、BNP、CRP、IL-6和TNF-α的血液浓度
     压力负荷心力衰竭大鼠AngⅡ、ET-1、ANP、BNP、CRP、IL-6和TNF-α血液浓度明显升高,氯沙坦、辛伐他汀以及两药合用可以明显降低压力负荷心力衰竭大鼠ET-1、ANP、BNP、CRP、IL-6和TNF-α血液浓度,而对AngⅡ的血液浓度无明显影响,两药联合比氯沙坦、辛伐他汀单用对ET-1、ANP、BNP和TNF-α血液浓度的降低作用更明显。
     5.AT_1R、AT_2R mRNA的表达
     压力负荷心力衰竭大鼠心室组织AT_1R mRNA的表达明显升高,氯沙坦对AT_1R mRNA的表达无明显影响,辛伐他汀和两药联合对压力负荷心力衰竭大鼠高表达的AT_1R mRNA有明显的下调作用;
     压力负荷心力衰竭大鼠心室组织AT_2R mRNA的表达与正常对照组和假手术组比较无显著性差异,辛伐他汀对AT_2R mRNA的表达无明显影响,而氯沙坦以及两药联合对AT_2R mRNA的表达有明显的上调作用。
     6.ERK、P-ERK蛋白表达
     压力负荷心力衰竭大鼠ERK1/2的磷酸化程度增加,氯沙坦、辛伐他汀以及两药合用均能部分抑制ERK1/2的磷酸化,而氯沙坦联合辛伐他汀作用更明显。
     7.心肌细胞凋亡
     心室肌组织切片TUNEL染色结果显示,药物治疗各组均能减少压力负荷造成的心肌细胞凋亡,而氯沙坦联合辛伐他汀比两药单用效果更显著;
     体外实验,用10(-7)mol/L的AngⅡ培养心肌细胞48小时,增加了心肌细胞的凋亡,降低了细胞的存活能力。氯沙坦(10~(-5)mol/L)和辛伐他汀(10~(-5)mol/L),无论是单独还是联合使用,均显著的减少了由AngⅡ诱导的心肌细胞凋亡,提高了心肌的存活能力。概率总和检验,细胞活力和心肌细胞凋亡q值分别是1.31和1.21,提示,氯沙坦联合辛伐他汀对提高细胞活力以及抑制AngⅡ诱导的心肌细胞凋亡具有协同作用。AngⅡ可引起心肌细胞Bax蛋白表达的显著增加,而Bcl-2蛋白表达减少。氯沙坦和联合用药可以有效地下调Bax蛋白表达,上调Bcl-2蛋白表达,而辛伐他汀没有类似的作用。AngⅡ可引起心肌细胞Caspase-3蛋白的表达显著增加,氯沙坦、辛伐他汀以及联合用药均可以有效地下调Caspase-3蛋白表达,而联合用药作用更显著。
     8.心肌胶原含量及MMPs、TIMPs mRNA的表达
     压力负荷大鼠心肌胶原含量、Ⅰ型和Ⅲ型胶原mRNA表达的比值明显增加,氯沙坦、辛伐他汀以及两药合用均能减少压力负荷引起的心肌胶原增生,降低Ⅰ型和Ⅲ型胶原mRNA表达的比值,尤其两药合用效果更明显;
     压力负荷心力衰竭大鼠MMP2、MMP9 mRNA的表达明显升高,氯沙坦、辛伐他汀以及两药合用对其无明显影响,压力负荷心力衰竭大鼠TIMP1、TIMP2mRNA的表达亦明显升高,而氯沙坦、辛伐他汀以及两药联合均能明显下调TIMP1、TIMP2 mRNA的表达,两药联合的下调作用更明显;
     结论:
     1.应用降主动脉缩窄术能成功建立压力负荷心力衰竭大鼠模型。主要表现为左心室扩大、室壁增厚、心脏射血功能下降、左心重量增加、肺间质水肿淤血、线粒体肿胀,嵴突模糊不清、胶原纤维增生以及血液BNP浓度明显升高。
     2.氯沙坦联合辛伐他汀对压力负荷心力衰竭大鼠心脏重构的抑制作用优于两药单用。
     3.氯沙坦联合辛伐他汀抑制压力负荷心力衰竭大鼠心脏重构的可能机制
     a辛伐他汀对压力负荷心力衰竭大鼠高表达的AT_1 R mRNA有明显的下调作用,氯沙坦对AT_2R mRNA的表达有明显的上调作用;
     b氯沙坦联合辛伐他汀比两药单用能更明显抑制ERK1/2的磷酸化;
     c氯沙坦联合辛伐他汀比两药单用能更有效地抑制心肌细胞凋亡、提高细胞活力、下调Caspase-3蛋白的表达;
     d氯沙坦联合辛伐他汀比两药单用能更明显地抑制心肌胶原增生、降低Ⅰ型和Ⅲ型胶原mRNA表达的比值;
     e氯沙坦联合辛伐他汀比两药单用更能明显下调TIMP1、TIMP2 mRNA的表达。
Objective:Congestive heart failure(CHF) is a complex clinical syndrome that features a failing heart together with advanced signs and symptoms arising from various cardiovascular diseases.Heart failure is a successive dynamic structure and function remodeling process,which is characterized by the heart responses to overloading and some other stimulation.Thus,target at cardiac remodeling is very important therapies in preventing the progress of heart failure.In this study,we aimed to investigate the effects of combined treatment with simvastatin and losartan on cardiac remodeling in Rats. Furthermore,the mechanisms of these effects were investigated focus on neuroendocrine hormonal activation,proinflammatory cytokines,apoptosis of myocardial cell and myocardial fibrosis.This maybe can lead to the notion that new drug therapy in clinical practice for heart failure.
     Methods:The pressure overload dependent heart failure model in rats was induced by ascending aortic constriction(AAC).After AAC,the animals were randomly separated 6 groups:normal control group,no operation and drug treatment;control sham group, no drug treatment;model group(AAC),no drug treatment,losartan treatment group(AAC+Los,Los,5mg/kg);simvastatin treatment group(AAC+Sim,Sim,2 mg/kg); combination of losartan and simvastatin(AAC+Los+Sim;Los,5mg/kg;Sim,2 mg/kg). Different drug was intragastric administrated to the animals daily from day 5 after operation to the end of experiment for 35 days.The control group was administered with the same volume of vehicle.The heart and lung weight was measured by transthoracic echocardiography.Cell morphology and myocardium collagen change was checked by light microscope and transmission electron microscope.These methods were used for investigating the effects of drug treatment on cardiac remodeling.The probability sum test(q test) was used to evaluate the synergism effects of simvastatin and losartan on pressure overload dependent heart failure in rats.The heart rate was calculated by electrocardiography and blood pressure was determined by carotid arterial cannula.The concentration of TCH,TG,LDL-C and HDL-C in serum was measured by the method of directly clearance.The concentration of AngⅡ,ET and ANP in blood plasma was measured by the method of radioimmunity.The concentration of TNF-α, IL-6,BNP and CRP in serum was measured by ELISA.Myocardial cell apoptosis was checked by TUNEL method.In vitro experiment,AngⅡwas used to induce apoptosis of myocardial cell.The activity of myocardial cell was checked by MTT method.Cell morphology of apoptotic cell was observed by fluorescence microscope.Double staining for FITC-Annexin V binding and for cellular DNA using propidium iodide(PI) was performed to check the ratio of apoptotic cell using flow cytometry.Bax and Bcl-2 protein expressions were measured by flow cytometry detection.The expression of caspase-3 was in myocardial cell was examined by immunohistochemistry.The protein expression of ERK1/2 and P- ERK1/2 in ventricular tissue was measured by Western blot.The mRNA expression of MMP2,MMP9,TIMP1,TIMP2,AT_2R,Collagen-1 and Collagen-3 in ventficular tissue was measured by real-time PCR.
     Results
     1.The evaluation of pressure overload dependent heart failure model in rats
     The results of TTE showed that the phenomenon of cardiac remodeling was emerged 3 weeks after AAC and more clear in 5 weeks after operation.The signs showed that left ventricular enlargement,ventricle wall thickening,the dysfunction of cardiac ejection and increasing of left ventricular mass or index of left ventricular mass. weight of heart,index of heart weight,left heart weight,index of left heart weight, weight of lung and index of lung weight of AAC group is significantly high than the group of control and sham.The concentration of BNP in serum significantly increased in AAC group.For AAC model group,the HE staining of heart and lung tissue showed as follows:The derangement structure of cardiac muscle fibers,bulk cloudy swelling degeneration of myocardial cell,fibronolysis in part of cardiac muscle fibers, coarctation of alveolar space,Congestion and edema in lung mesenchyma,small amounts bleeding and fluidify in alveolar space and inflammatory cell infiltration. Observed by projection electron microscope showed that in AAC group as follows:The derangement structure of cardiac muscle fibers,Partly disappearance in zone Z,unclear of crista mitochondriales,magnanimous vacuolar degeneration,disorder structrue of intercalary disc,apoptosis body and hyperplasy of collagen fibers.The results above showed that the pressure overload dependent heart failure model in rat was successful established by AAC.
     2.The assessment of cardiac remodeling
     The results of TTE showed that combination of simvastatin and losartan significantly decreased the weight of heart and index of heart weight when compared with single drug treatment.
     There were no significant differences about systolic pressure and heart rates among all the groups with drug treatment for 5 weeks.
     Simvastatin and losartan alone relieved the increased of weight of heart,index of heart weight,weight of lung and index of lung weight induced by AAC.Moreover,the effects of combination of simvastatin and losartan on these indexs were much better.
     Using the probability sum test,the q value of LV Mass / Body Weight,HW / BW Ratio,LV Weight / BW Ratio and Lung Weight/BW Ratio were 1.17,1.17,1.16 and 1.26.All of the values were higher than 1.15.These results showed that synergism effects of simvastatin and losartan on cardiac remodeling.
     3.Results of lipoprotein cholesterol and triglyceride in blood
     There were no significant differences about TCH,LDL-C,HDL-C and TG among all the groups with drug treatment for 5 weeks.
     4.The concentration of AngⅡ,ET-1,ANP,BNP,CRP,IL-6 and TNF-αin blood
     In AAC group,the concentration of AngⅡ,ET-1,ANP,BNP,CRP,IL-6 and TNF-αin blood significantly increased.Treatment with simvastatin and losartan alone and in combination decreased the level of ET-1,ANP,BNP,CRP,IL-6 and TNF-α,but had no effect on AngⅡ.Combination of simvastatin and losartan significantly decreased the level of ET-1,ANP,BNP and TNF-αin blood when compared with single drug treatment.
     5.The mRNA expression of AT_1 R and AT_2R
     The mRNA expression of AT_1 R in ventricular tissue significantly increased In AAC group.Treatment with losartan had no effect on the expression of AT_1R.Simvastatin or combination of simvastatin and losartan both significantly decreased the high level of AT_1R mRNA expression by AAC.
     There was no significant difference of mRNA AT_2R expression among the normal and model rats.Treatment with losartan had no effect on the expression of AT_2R. Losartan or combination of simvastatin and losartan both significantly increased the AT_2 R mRNA expression.
     6.ERK and P-ERK protein
     In pressure overload dependent heart failure rats,the degree of phosphorylation of ERK1/2 increased,Treatment with simvastatin,losartan or combination of simvastatin and losartan all partial inhibited the phosphorylation ERK1/2.The degree of inhibition of phosphorylation ERK1/2 was much higher when combination of simvastatin and losartan compared with single drug treatment.
     7.Cardiomyoeyte apoptosis
     Cardiomyocyte apoptosis was checked by TUNEL method and the results showed that drug treatment decreased the cardiomyocyte apoptosis induced by AAC.The degree of anti-apoptotic effect was much higher in the combination of two drugs when compared with single drug treatment.
     In vitro experiment,incubation with 10~(-7) mol/L AngⅡfor 48 h increased cardiomyocyte apoptosis and decreased cell viability.Losartan(10~(-5) mol/L) and simvastatin(10~(-5) mol/L),either alone or in combination,significantly decreased AngⅡ-induced cardiomyocyte apoptosis and increased cell viability.The q-values calculated by the probability sum test were 1.31 and 1.21 for cardiomyocyte apoptosis and cell viability,respectively.These demonstrated that there was a synergistic effect between losartan and simvastatin in inhibiting AngⅡ-induced cardiomyocyte apoptosis and increasing cell viability.AngⅡinduced a significant increase in Bax protein expression but decreased those of Bcl-2.Losartan decresed Bax expression and increased Bcl-2 expression while simvastatin had no such effect.AngⅡinduced the protein expression of caspase-3 in cardiomyocyte.Simvastatin,losartan or combination of simvastatin and losartan significantly decreased the protein expression of caspase-3.The degree of inhibition in expression of caspase-3 was much higher when combination of simvastatin and losartan compared with single drug treatment.
     8.Collagen production and the mRNA expression of MMPs and TIMPs
     In AAC group,the mRNA expression of collagenⅠandⅢsignificantly increased. Treated with simvastatin and losartan alone and in combination,the collagen and the ratio of mRNA expression of collagenⅠandⅢsignificantly decreased.The degree of inhibition in the ratio of collagenⅠandⅢmRNA expression was much higher when combination of simvastatin and losartan compared with single drug treatment.
     In AAC group,the mRNA expression of MMP2 and MMP9 significantly increased. Treatment with simvastatin and losartan alone and in combination had no effects on the mRNA expression of MMP2 and MMP9.Also,the mRNA expression of TIMP1 and TIMP2 significantly increased In AAC group.Treatment Simvastatin and losartan alone and in combination significantly decreased the TIMP1 and TIMP2 mRNA expression. The degree of inhibition in the ratio of TIMP1 and TIMP2 mRNA expression,was much higher when combination of simvastatin and losartan compared with single drug treatment.
     Conclusions
     1.The pressure overload dependent heart failure model in rat was successful established by ascending aortic constriction.
     2.Combination of simvastatin and losartan significantly inhibited cardiac remodeling induced by AAC when compared with single drug treatment.
     3.Some mechanisms of effects of combination simvastatin and losartan on cardiac remodeling were investigated as follows.
     a,Combination of simvastatin and losartan significantly decreased the protein expression of caspase-3 when compared with single drug treatment.
     b,Combination of simvastatin and losartan significantly increased the activity of cells and inhibited the apoptosis of myocardial cell induced by AngⅡwhen compared with single drug treatment.
     c,Combination of simvastatin and losartan significantly inhibited myocardium collagen production induced by AAC when compared with single drug treatment.More interesting,Combination treatment significantly decreased the ratio of mRNA expression of collagenⅠand collagenⅢ.
     d,Combination of simvastatin and losartan significantly decreased the mRNA expression of TIMP 1 and TIMP2 when compared with single drug treatment.
     e,Simvastatin significantly decreased the high level mRNA expression of AT_1R by AAC;losartan significantly increased the mRNA expression of AT_2 R.
     f,Combination of simvastatin and losartan significantly inhibited the phosphorylation ERK1/2 when compared with single drug treatment.
     g,Combination of simvastatin and losartan significantly decreased the concentration of ET-1,ANP,BNP and TNF-αin blood when compared with single drug treatment.
引文
1.翟淑波、孙景辉、郭放充血性心力衰竭发病机制的研究进展.临床儿科杂志 2006,24(10):851-853.
    2.敬慧智,吕云霞,闫西艴,刘进,金宏一,孙琳氯沙坦治疗高血压所致充血性心力衰竭的临床价值.高血压杂志.2005,13(9):545-548.
    3.齐玉琴,李以宏,葛才荣 他汀类药物临床应用进展.中国误诊学杂志,2005,5(5):853-855
    4.Dahlof B,Devereux RB,Kjeldsen SE,et al.Cardiovascular morbidty and mortality in the Losartan Intervention For Endpoint reduction in hypertension study(LIFE):a randomized trial against atenolol.Lancet,2002,359:995-1003.
    5.Cohn JN,Togoni G.A randomized trial of the angiotnsion-receptor blocker valsartan in chronic heart failure.N Engl J Med,2001,345:1667-1675.
    6.Pfeffer MA,Swedberg K,Granger CB,et al.Effects of candesartan on mortality and morbidity in patients with in chronic heart failure.Lancet,2003,362:759-766.
    7.Prasad A,Tupas-Habib T,Schenke WH,et al.Acute and chronic angiotension-1receptor antagonism reverses endothelial dysfunction in atherosclerosis.Circulation,2000,101:2349-2354.
    8.Luan Z,Chase AJ,Newby AC.Long-term Intervention with Pravastatin in Ischemic Disease Study Group.Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and abroad range of initial cholesterol levels.N Engl J Med,1998,339:1349-57.
    9.Lars EM,Atsma DE,Kuijpers MMC,et al.The effect of sarcolemmal cholesterol content on intracellular calcium ion concentration in cultured cardiomyocytes.Arch Biochem Biophys,1994,313:58-63.
    10.Kureishi Y,Luo Z,Shoijima I,et al.The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normal cholesterolemic animals.Nat Med 2000,6:1004-10.
    11.Liquett RU,Cornish Kq,Zucker IH.Statin therapy restores sympathovagal balance in rimental heart failure.J Appl Physiol,2003,95:700-4.
    12.Luan Z,Chase AJ,Newby AC.Statins Inhibit Secretion of Metalloproteinases -1,-2,-3,-9 From Vascular Smooth Muscle Cells and Macrophages.Arterioscler Thromb Vasc,2003,23:769-775.
    13.Strehlow K,Wassmann S,Bohm M,et al.Angiotensin AT_1 receptor over-expression in hypercholesterolemia.Ann Med,2000,32:386-9.
    14.Pitt B,Pool-wison PA,Segal R,et al.Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure;a randomized trial:the Losartan Heart Failure Survival Study ELITE Ⅱ.Lancet,2000,355:1582-1587.
    15.Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease:the Scandinavian Simvastatin Survival Study(4S).Lancet.1994;344:1383-1389.
    16.Bauersaches J,Galuppo P,F raccaro llo D,et al.Improvement of left ventricular remodeling and function by hydroxyl methylglutaryl coenzyme a reductase inhibition with cerivastatin in rate with heart failure after myocardial infarction[J].Circulation,2001,104(9):982-985.
    17 Ping HAN,Zheng-xu CHU,Fu-ming SHEN,et al.Synergism of hydrochlorothiazide and nitrendipine on reduction of blood pressure and blood pressure variability in spontaneously hypertensive rats.Acta Pharmacologica Sinica,2006,27(12):1575-9.
    18 Gang LING,Ai-jun LIU,Fu-ming SHEN,et al.Effects of combination therapy with atenolol and amlodipine on blood pressure control and stroke prevention in stroke-prone spontaneously hypertensive rats.Acta Pharmacol Sin,2007,28(11):1755-60.
    19 Hasenfuss G.Animal model of humen cardiovascular disease heart failure and hypertrophy.Cardiovasc Res,1998,3(1):60-76. 20Smith HJ, Nuttall AA. Experimental models of heart failure. Cardiovasc Res, 1985,19(4):181-186.
    
    21 Wilson JR. Douglas P. Hickey WF, et al. Experimental congestive heart failure produced by rapid ventricular pacing in the dog: Cardiac effects.Circulation, 1987,75(4): 857-867.
    
    22. Dibner-Dunlap ME, Thames MD. A simplified technique for the production of heart failure in the dog by rapid ventricular pacing.Am J Med, 1990, 300(5):288-290.
    
    23.Shen YT, Lynch JJ, Shannon RP, et al. A novel heart failure model induced by sequential coronary artery occlusions and tachycardiac stress in awake pigs [J].Am J Physiol, 1999,276(1):H388-H398.
    
    24.Holycross BJ, Summer BM, Dunn RB, et al. Plasma rennin activity in heart failure SHHF/Mcc facp rats. Am J Physiol, 1997,273(1):H228-H238.
    
    25.Khadour FH, Kao RH, Park S, et al. Age-dependent augmentation of cardiac endothelial NOS in a genetic rat model of heart failure.Am J Physiol, 1997, 273(3):H1223-H1230.
    
    26.Carraway JW, Park S, McCune SA, et al. Comparison of irbesartan with captopril effects on cardiac hypertrophy and gene expression in heart failure-prone male SHHF/Mcc facp rats. J Cardiovasc Pharmacol, 1999, 33(3):451-460.
    
    27.Kihara Y, Inoko M, Morii I, et al. Transition from compensatory hypertrophy to dilated, failing left ventricles in Dahl salt-sensitive rats. Am J Physiol, 1994, 267(6):H2471-H2482.
    
    28.Bing OH, Brooks WW, Conrad CH, et al. Intracellular calcium transients in myocardium from spontaneously hypertensive rats during the transition to heart failure.Circ Res, 1991, 68(5): 1390-1400.
    
    29.Li Z, Bing OH, Long X, et al. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat.Am J Physiol, 1997, 272(5):H2313-H2319.
    30.Weinberg EO, Schoen FJ, George D, et al. Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation, 1994,90(3):1410-1422.
    
    31.Liao R, Jain M, Cui L, D'Agostino J, Aiello F, Luptak I, Ngoy S, Mortensen RM,Tian R. Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation, 2002,106:2125-2131.
    
    32.Kjekshus J, Pedersen TR, Olsson AG, et al. The effects of simvastatin on the incidence of heart failure in patients with coronary heart disease. J Card Fail, 1997,3:249-54.
    
    33.Lewis SJ, Moye LA, Sacks FM, et al. Effect of pravastatin on cardiovascular events in older patients with myocardial infarction and cholesterol levels in the average range.Results of the Cholesterol and Recurrent Events (CARE) trial. Ann Intern Med, 1998,129:681-9.
    
    34.LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med, 2005,352:1425-35.
    
    35.Hognestad A, Dickstein K, Myhre E, et al. Effect of combined statin and beta-blocker treatment on one-year morbidity and mortality after acute myocardial infarction associated with heart failure. Am J Cardiol, 2004, 93:603-6.
    
    36.Segal R, Pitt B, Poole-Wilson PA, et al. Effects of HMG-CoA reductase inhibitors (statins) in patients with heart failure:[abstract]. Eur J Heart Failure, 2000, 2(Suppl 2):96.
    
    37.Mozaffarian D, Nye R, Levy WC. Statin therapy is associated with lower mortality among patients with severe heart failure. Am J Cardiol, 2004, 93:1124-9.
    
    38.Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007,35(4):495-516.
    
    39.Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-rAnging implications in human disease.J Intern Med,2005,258(6):479-517.
    40.Li Z,Bing OH,Long X,Robinson KG,Lakatta EG.Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat.Am J Physiol,1997,272:H2313-9.
    41.Wencker D,Chandra M,Nguyen K,Miao WF,Garantziotis S,Factor SM,et al.A mechanistic role for cardiac myocyte apoptosis in heart failure.J Clin Invest,2003,111:1497-504.
    42.Abbate A,Biondi-Zoccai GG,Baldi A.Pathophysiologic role of myocardial apoptosis in post-infarction left ventricular remodeling.J Cell Physiol,2002,193(2):145-53.
    43.Pang JJ,Xu RK,Xu XB,Cao JM,Ni C,Zhu WL,et al.Hexarelin protects rat cardiomyocytes from Angiotensin Ⅱ-induced apoptosis in vitro.Am J Physiol Heart Circ Physiol,2004,286(3):H1063-9.
    44.Mel'nikova NP,Timoshin SS,Jivotova EY,Pelliniemi LJ,Jokinen E,Abdelwahid E.Angiotensin-Ⅱ activates apoptosis,proliferation and protein synthesis in the left heart ventricle of newborn albino rats.Int J Cardiol,2006,112(2):219-22.
    45.Wassmann S,Laufs U,B(a|")umer AT,M(u|")ller K,Konkol C,Sauer H,et al.Inhibition of geranylgeranylation reduces Angiotensin Ⅱ-mediated free radical production in vascular smooth muscle cells:involvement of Angiotensin AT1 receptor expression and Racl GTPase.Mol Pharmacol,2001,59:646-54.
    46.Luo JD,Zhang WW,Zhang GP,Guan JX,Chen X.Simvastatin inhibits cardiac hypertrophy and Angiotensin-converting enzyme activity in rats with aortic stenosis.Clin Exp Pharmacol Physiol,1999,26:903-8.
    47.Burlew BS,Weber KT.Cardiac fibrosis as a cause of diastolic dysfunction.Herz,2002,27:92-98.
    48.陈晓锋,顾振纶,唐礼江.基质金属蛋白酶在心力衰竭中作用的研究进展.中国药理学通报,2004,20(2):137-140.
    49.Sivasubramanian N,Coker ML,Kurrelmeyer KM,et al.Left ventficular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor.Circulation, 2001,104(7): 826-831.
    
    50.Mitani H, Bandoh T, Ishikawa J, et al. Inhibitory effects of fluvastatin, a new HMG-CoA reductase inhibitor, on the increase in vascular ACE activity in cholesterol-fed rabbits. Br J Pharmacol, 1996,119:1269-75.
    
    51 .Luo JD, Zhang WW, Zhang GP, et al. Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clin Exp Pharmacol Physiol, 1999,26:903-8.
    
    52.0i S, Haneda T, Osaki J, et al. prevents angiotensin II-induced cardiac hypertrophy in cultured neonatal rat heart cells. Eur J Pharmacol, 1999, 376:139-48.
    
    53.Takemoto M, Node K, Nakagami H, et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest, 2001,108:1429-37.
    
    54.Pliquett RU, Cornish KG, Peuler JD, et al. Simvastatin normalizes autonomic neural control in experimental heart failure. Circulation, 2003,107:2493-8.
    
    55.Wassmann S, Laufs U, Baumer AT, et al. Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells:involvement of angiotensin AT1 receptor expression and Racl GTPase. Mol Pharmacol,2001, 59:646-654.
    
    56. Ichiki T, Takeda K, Tokunou T, et al. Down regulation of angiotensin II type 1 receptor by hydrophobic 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2001,21:1896-1901.
    
    57.Nickenig G, Baumer AT, Temur Y, et al. Statin-sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. Circulation, 1999,100:2131-2134.
    
    58.Satoh K, Ichihara K, Landon EJ, et al. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors block calcium-dependent tyrosine kinase Pyk2 activation by angiotensin II in vascular endothelial cells: involvement of geranylgeranylation of small G protein Rap1.J Biol Chem, 2001,276: 15761-15767.
    59.Masatsugu H, Tai-Xing Cui, Zhen Li, et al. Fluvastatin Enhances the Inhibitory Effects of a Selective Angiotensin II Type 1 Receptor Blocker, Valsartan, on Vascular Neointimal Formation. Circulation, 2003,107:106-112.
    
    60.Adams JW, Sokata Y, Davis MG, et al. Enhanced Galphaq signa ling: a common pathway mediates cardiac hypertrophy and apopoticheart failure. Proc N atl Acad Sci USA, 1998,95:10140-10145.
    
    61.Bogoyevitch MA, Ketterman AJ, Sugden PH. Cellular stresses dif2ferentially active c-Jun N-terminal p rotein kinases and extracellular signal-regulated p rotein kinases in cultured ventricular myocytes. J B iol Chem, 1995,270: 29710 - 29717.
    
    62. Hill CS, Treisman R. Transcrip tional regulation by extracellular signals:mechanisms and specificity. Cell, 1995, 270: 389 - 393.
    
    63.Laufs U, La Fata V, Plutzky J, et al. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation, 1998, 97:1129-35.
    
    64.Hernandez-Perera O, Perez-Sala D, Navarro-Antolin J, et al. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest, 1998,101:2711-9.
    
    65.Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature, 1990,343:425-30.
    
    66.Casey PJ. Protein lipidation in cell signaling. Science, 1995, 268: 221-5.
    
    67.Packer M. Is tumor necrosis factor an important neurohormonal mechanism in chronic heart failure? Circulation, 1995,92:1379-82.
    
    68.Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med, 1990, 323:236-41.
    
    69. Pinsky DJ, Cai B, Yang X, et al. The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor beta. J Clin Invest, 1995,95:677-85.
    70.孙桂玲,张莉,管耕园.基质金属蛋白酶抑制剂与冠心病.J Clin Cardiol (China),2003,19(10):634-636.
    71.Seeland U,Haeuseler C,Hinrichs R,et al.Myocardial fibrosis in transforming growth facyor-beta(1)(TGFbeta(1)) transgenic mice is associated with inhibition of interstitial collagenase.Eur J Clin Invest,2002,32(5):295-303.
    1. Weber KT. Cardiac interstitium in heart and disease: The fibrillar collagen network. J Am Coll Cardiol, 1989, 13 (7): 1637-1652.
    
    2. Schwartz AJ, Wilson DA, Weber KT. Factors regulating collagen synthesis and degradation during second intention healing of wounds in the thoracic region and the distal aspect of the forelimb of horses. Am J Vet Res, 2002, 63 (11):1564-1570.
    
    3. Marti HP. Role of matrix metalloproteinases in the progression of mallesions. Press Med, 2000, 29 (14): 811-817.
    
    4. Haas TL, Davis SJ, Madri JA. Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP andMMP-2 in microvascular endothelial cells.J Biol Chem, 1998,273 (6) 3: 604-610.
    
    5. Huppertz B, Kertschanska S, Demir AY, et al. Immunohistochemistry of matrix metalloproteinases (MMP), their substrates, and their inhibitors (TIMP) during trophoblast invasion in the human placenta.Cell Tiss Res, 1998, 291 (1): 133-148.
    
    6. Celentano DC, Frishman WH. Matrix metalloproteinases and coronary artery disease: a novel therapeutic target. J Clin Pharmacol, 1997, 37 (11): 991-1000.
    
    7. Alper O, Bergmann-Leitner ES, Bennett TA, et al. Epidemal growth factor receptor signaling and invasive phenotype of ovarian carcinoma cells. J Natl Cancer Inst, 2001,93(18):1375-1384.
    
    8. Menshol JA,Vincenti MP, Brinckerhoff CE. IL-linduces collagenase-3(MMP-13) promoter activity in stably transfected chondrocytic cells requirement for Runx-2 and activation by P38MAPK and JNK pathway. Nuclei Acids Res, 2001, 29 (21): 4361-4377.
    
    9. Baker AH, Zaltsman AB, George SJ, et al. Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or-3 overexpression on rat vascular smooth muscle cell invasion,proliferation,and death in vitro.TIMP-3 promotes apoptosis.J Clin Invest,1998,101(6) 1:478-487.
    10.Greene J,Wang M,Liu YE,et al.Molecular cloning and characterization of human tissue inhibitor of metalloproteinase4.J Biol Chem,1996,271(48) 30:375-380.
    11.Spinale FG,Coker ML,Heung LJ.A matrix metalloproteinase induction Pactivation system exists in the human left ventricular mycocardium and is upregulated in heartfailure.Circulation,2000,102(16) 1:944-949.
    12.Wassenaar A,Verschoor T,Kievits F,et al.CD40 engagement modulates the production of matrix metallo-proteinase by gingival fibroblasts.Clin Exp Immunol,1999,115(1) 161-167.
    13.张涛,李自成.基质金属蛋白酶与心脏疾病.中华临床杂志,2003,3(6):47-50.
    14.Nagase H.Activation mechanisms of matrix metalloproteinase.Biol Chem,1997,378(324):151-160.
    15.Route-Benzineb P,Gontero B,Dreyfus P,et al.Angiotensin Ⅱ induces nuclear factor-κB acyivation in cultured neonatal rat cardiomyocytes through proyein kinase C signalling pathway.J Mol Cell Cardiol,2000,32(10)1:767-778.
    16.孙桂玲,张莉,管耕园.基质金属蛋白酶抑制剂与冠心病.J Clin Cardiol (China),2003,19(10):634-636.
    17.Seeland U,Haeuseler C,Hinrichs R,et al.Myocardial fibrosis in transforming growth facyor-beta(1)(TGFbeta(1)) transgenic mice is associated with inhibition of interstitial collagenase.Eur J Clin Invest,2002,32(5):295-303.
    18.Dostal DE,Hunt RA,Kule CE,et al.Molecularmechanisms of Angiotensin Ⅱ in modulating cardiac function:intracardiac effects and signal transduction pathways.J Mol Cell Carsiol,1997,29(20):2893.
    19.Sano H,Okamoto H,Kitabatake A,et al.Increased mRNA expression of cartensive rats.Mol Cell Biochem.1998,178(1):51-52.
    20.Ohtani S,Fuiiwara H,Hasegawa K,et al.Up regulated expression of angiotensin Ⅱ type Ⅰ receptor gene in human pathologic hearts.J Caed Fail,1997,3(2):303-305.
    21.许松,许玉凤,等.钙调神经磷酸酶在血管紧张素Ⅱ刺激的心脏成纤维细胞增殖中的作用.生理学报,2000,52(4):305-307.
    22.Gohe C,Kahlert S,Lobbert K,et al.Angiotensin converting enzyme inhibition modulates cardiac growth.J Hypertens,1998,16(2):377-379.
    23.Schorb W,Bool DE.Angiotensin Ⅱ is mitogenic in neonatal rat cardiac fibro-blasts.Circ Res,1993,73(3):413-415.
    24.方淑贤,苑力娜,郑恒,等.芦沙坦对心脏成纤维细胞胶原Ⅰ、Ⅲ型mRNA表达水平的影响.同济医科大学学报,1999,28(4):326-328.
    25.Varo N,Iraburu MJ,Varela M,et al.Chronic AT1 Blockade Stimulates fibrosis in Spontaneously Hypertensive Rats.Hypertension,2000,35(6):1197-54.
    26.成军.细胞外基质的分子生物学与临床研究.北京:北京医科大学出版社,1999.221-228.
    27.Holtz J.Role of inhibitor of AT1 Blockade in the remodeling following myocardial infarction.Basic Res Cardiol,1998,93(Suppl 2):92.
    28.Gunja-Smith Z,Morales AR,Romanelli R,et al.Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy:Role of metalloproteinases and pyridinoline cross-links.Am J Pathol,1996,148(5)1:639-648.
    29.Romanic AM,Burns Kurtis CL,Gout B,et al.Matrix metalloproteinase expression in cardiac myocytes following myocardial in-farcttion in the rabbit.Life Sci,2001,68(7):799-814.
    30.Danielsen CC,wiggers H,Andersen HR.Increased amounts of collagenase and gelatinase in porcine myocardiumfollowing ischemic and reperfusin.J Mol Cell Cardiol,1998,30(7) 1:431-442.
    31.Hojo Y,Ikeda U,Ueno S,et al.Expression of matrix metalloproteinase in patients with acute myocardial infarction.Jpn Circ J,2001,65(2):71-75.
    32.King MK,Coker ML,Goldberg A,et al.Selective matrix metalloproteinase inhibition with developing heart failure:Effects on left ventricular function and structure.Circ Res,2003,92(2):177-185.
    33.Heymans S,Lutttm A,Nuyens D,et al.Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac but impaires therapeutic angigenesis and causes cardiac failure.Nat Med,1999,5(10):1 135-142.
    34.Romanic AM,Harrison SM,Ban W,et al.Myocardial protection for ischaemia Preperfusion injury by targeted deletion of matrix metalloproteinase-9.Cardiovasc Res,2002,54(3):549-558.
    35.Iwanaga Y,Aoyama T,Kihara Y,et al.Ex-cessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats.J Am Coll Cardiol,2002,39(8) 1:384-391.
    36.Roten L,Nemoto S,Simsic J,et al.Effecta of gene deletion of the tissue inhibitor of the matrix metalloproteinases-type 1(TIMP-1 on left ventricular geometry and function in mice.J Mol Cell Cardiol,2000,32(1):109-120.
    37.Thomas CV,Coker ML,Zellner JL,et al.Increasaed matrix metalloproteinase activity and selective Upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy.Circulatinn,1998,97(17) 1:708-715.
    38.Li YY,Feldman AM,Sun Y,et al.Differential expression of tissue inhibitors of metalloproteinases in the failing human heart.Circulation,1998,98(17) 1:728-734.
    39.陈晓锋,顾振纶,唐礼江.基质金属蛋白酶在心力衰竭中作用的研究进展.中国药理学通报,2004,20(2):137-140.
    40.Sivasubramanian N,Coker ML,Kurrelmeyer KM,et al.Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor.Circulation,2001,104(7):826-831.
    41.Lopez B,Gonzalez A,Diez J.Role of matrix metalloproteinases in hypertension associated cardiac fibrosis.Current Opinion Nephrology Hypertension,2004,13(11): 197-204.
    42.胡英,蔡乃绳,沈学东,等.阻断肾素-血管紧张素-醛固酮系统对自发性高血压大鼠左室肥厚及心肌纤维化的逆转作用.临床心血管疾病杂志,1999,15(12):564-566.
    43.Brilla CG.Regression of myocardial in hypertensive heart disease:diverse effects of various antihypertensive geugs.Cardiovasc Res,2000,46(2):324.
    44.Kim S,Zhan Y.Candesartan,and amlodipine in hypertensive rates.Hypertension,2000,36(4):769.
    45.Sugimoto K,Fujimura A.Role of bradykin in the reduction of left ventricular hypertrophy rats.Jpn J Pharmacd,1998,76(3):431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700